1
|
Surmacki JM, Quiros-Gonzalez I, Bohndiek SE. Evaluation of Label-Free Confocal Raman Microspectroscopy for Monitoring Oxidative Stress In Vitro in Live Human Cancer Cells. Antioxidants (Basel) 2022; 11:573. [PMID: 35326223 PMCID: PMC8945565 DOI: 10.3390/antiox11030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the impact of free radicals and antioxidants in cell biology is vital; however, noninvasive nonperturbative imaging of oxidative stress remains a challenge. Here, we evaluated the ability of label-free Raman spectroscopy to monitor redox biochemical changes in antioxidant (N-acetyl-l-cysteine, NAC) and pro-oxidant (tert-butyl hydroperoxide, TBHP) environments. Cellular changes were compared to fluorescence microscopy using CellROX Orange as a marker of oxidative stress. We also investigated the influence of cell media with and without serum. Incubation of cells with NAC increased the Raman signal at 498 cm-1 from S-S disulphide stretching mode, one of the most important redox-related sensors. Exposure of cells to TBHP resulted in decreased Raman spectral signals from DNA/proteins and lipids (at 784, 1094, 1003, 1606, 1658 and 718, 1264, 1301, 1440, 1746 cm-1). Using partial least squares-discriminant analysis, we showed that Raman spectroscopy can achieve sensitivity up to 96.7%, 94.8% and 91.6% for control, NAC and TBHP conditions, respectively, with specificity of up to 93.5, 90.1% and 87.9%. Our results indicate that Raman spectroscopy can directly measure the effect of NAC antioxidants and accurately characterize the intracellular conditions associated with TBHP-induced oxidative stress, including lipid peroxidation and DNA damage.
Collapse
Affiliation(s)
- Jakub Maciej Surmacki
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Isabel Quiros-Gonzalez
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Animal Histopathology Core at IUOPA, University of Oviedo, 33006 Oviedo, Spain
- Redox Biology and Metabolism in Cancer, Instituto de Investigación Biosanitaria ISPA, 33006 Oviedo, Spain
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
2
|
Xotlanihua-Gervacio MDC, Guerrero-Flores MC, Herrera-Moreno JF, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, Sordo M, Rojas-García AE. Micronucleus frequency is correlated with antioxidant enzyme levels in workers occupationally exposed to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31558-31568. [PMID: 30206828 DOI: 10.1007/s11356-018-3130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Oxidative stress can cause DNA damage leading to nuclear anomalies such as micronuclei (MN). Antioxidant enzymes involved in protection against intracellular oxidative stress include glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Pesticide exposure induces oxidative stress and alters antioxidant defense mechanisms, including detoxification and scavenger enzymes. The aim of this study was to evaluate MN frequency in workers occupationally exposed to pesticides and their relationship with antioxidant enzyme activities. A cross-sectional study was conducted in 201 individuals, some of whom were dedicated to the spraying of pesticides. The cytokinesis-block micronucleus (CBMN) assay was conducted, and the activities of GPx, GR, SOD, and CAT were determined. The geometric mean (GM) of MN was 5.4 (1-26 MN). The GM for the antioxidant enzymes was 198.68 U/mL for GPx, 38.96 U/g Hb for GR, 94.78 U/mL for SOD, and 69.77 U/g Hb for CAT. There was a lower MN frequency in males than that in females, and a higher nuclear index. In addition, age affected MN frequency. There was a negative correlation between MN frequency and GPx activity, but a positive one between MN frequency and GR activity. These findings suggest the involvement of GPx in MN frequency.
Collapse
Affiliation(s)
- Maria Del Carmen Xotlanihua-Gervacio
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Mirna Citlali Guerrero-Flores
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
- Posgrado en Ciencias Biológico Agropecuarias|, Unidad Académica de Agricultura, Km. 9 Carretera Tepic, Compostela, Xalisco, Nayarit, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico
| | - Monserrat Sordo
- Instituto de Investigaciones Biomédicas, UNAM, P.O. Box 70228, Ciudad Universitaria, 04510, México DF, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, 63155. Ciudad de la Cultura s/n. Col. Centro, C.P. 63000, Tepic, Nayarit, Mexico.
| |
Collapse
|
3
|
Tozour JN, Delahaye F, Suzuki M, Praiss A, Zhao Y, Cai L, Heo HJ, Greally JM, Hughes F. Intrauterine Hyperglycemia Is Associated with an Impaired Postnatal Response to Oxidative Damage. Stem Cells Dev 2018; 27:683-691. [PMID: 29598691 DOI: 10.1089/scd.2017.0232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperglycemia and other adverse exposures early in life that reprogram stem cells may lead to long-lasting phenotypic influences over the lifetime of an individual. Hyperglycemia and oxidative stress cause DNA damage when they exceed the protective capabilities of the cell, in turn affecting cellular function. DNA damage in response to hyperglycemia and oxidative stress was studied in human umbilical cord mesenchymal stem cells (hUC-MSCs) from large-for-gestational-age (LGA) infants of mothers with gestational diabetes mellitus (LGA-GDM) and control subjects. We tested the response of these cells to hyperglycemia and oxidative stress, measuring reactive oxygen species (ROS) levels and antioxidant enzyme activities. We find that hUC-MSCs from LGA-GDM infants have increased DNA damage when exposed to oxidative stress. With the addition of hyperglycemic conditions, these cells have an increase in ROS and a decrease in antioxidant glutathione peroxidase (GPx) activity, indicating a mechanism for the increased ROS and DNA damage. This study demonstrates that a memory of in utero hyperglycemia, mediated through downregulation of GPx activity, leads to an increased susceptibility to oxidative stress. The alteration of GPx function in self-renewing stem cells, can mediate the effect of intrauterine hyperglycemia to be propagated into adulthood and contribute to disease susceptibility.
Collapse
Affiliation(s)
- Jessica N Tozour
- 1 Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine , Bronx, New York
| | - Fabien Delahaye
- 1 Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine , Bronx, New York.,2 Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine , Bronx, New York
| | - Masako Suzuki
- 1 Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine , Bronx, New York
| | - Aaron Praiss
- 2 Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine , Bronx, New York
| | - Yongmei Zhao
- 2 Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine , Bronx, New York
| | - Lingguang Cai
- 2 Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine , Bronx, New York
| | - Hye J Heo
- 3 Department of Obstetrics and Gynecology, NYU Winthrop Hospital , Mineola, New York
| | - John M Greally
- 1 Department of Genetics and Center for Epigenomics, Albert Einstein College of Medicine , Bronx, New York.,4 Department of Pediatrics (Genetics), Albert Einstein College of Medicine , Bronx, New York
| | - Francine Hughes
- 5 Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, NYU Langone Medical Center , New York, New York
| |
Collapse
|
4
|
Selby-Pham SNB, Cottrell JJ, Dunshea FR, Ng K, Bennett LE, Howell KS. Dietary Phytochemicals Promote Health by Enhancing Antioxidant Defence in a Pig Model. Nutrients 2017; 9:E758. [PMID: 28708113 PMCID: PMC5537872 DOI: 10.3390/nu9070758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phytochemical-rich diets are protective against chronic diseases and mediate their protective effect by regulation of oxidative stress (OS). However, it is proposed that under some circumstances, phytochemicals can promote production of reactive oxygen species (ROS) in vitro, which might drive OS-mediated signalling. Here, we investigated the effects of administering single doses of extracts of red cabbage and grape skin to pigs. Blood samples taken at baseline and 30 min intervals for 4 hours following intake were analyzed by measures of antioxidant status in plasma, including Trolox equivalent antioxidant capacity (TEAC) and glutathione peroxidase (GPx) activity. In addition, dose-dependent production of hydrogen peroxide (H₂O₂) by the same extracts was measured in untreated commercial pig plasma in vitro. Plasma from treated pigs showed extract dose-dependent increases in non-enzymatic (plasma TEAC) and enzymatic (GPx) antioxidant capacities. Similarly, extract dose-dependent increases in H₂O₂ were observed in commercial pig plasma in vitro. The antioxidant responses to extracts by treated pigs were highly correlated with their respective yields of H₂O₂ production in vitro. These results support that dietary phytochemicals regulate OS via direct and indirect antioxidant mechanisms. The latter may be attributed to the ability to produce H₂O₂ and to thereby stimulate cellular antioxidant defence systems.
Collapse
Affiliation(s)
- Sophie N B Selby-Pham
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3010, Australia.
| | - Jeremy J Cottrell
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ken Ng
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Louise E Bennett
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3010, Australia.
| | - Kate S Howell
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
5
|
El-Shorbagy HM. Potential anti-genotoxic effect of sodium butyrate to modulate induction of DNA damage by tamoxifen citrate in rat bone marrow cells. Cytotechnology 2017; 69:89-102. [PMID: 27905024 PMCID: PMC5264625 DOI: 10.1007/s10616-016-0039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Sodium butyrate (SB) is one of the histone deacetylase inhibitors (HDACi's) that is recently evidenced to have a prooxidant activity and an ability to reduce hydrogen peroxide-induced DNA damage. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen citrate (TC), which exerts well established oxidative and genotoxic effects, thus the basic objective of this study is to determine whether SB could ameliorate or curate tamoxifen citrate-induced oxidative DNA damage and genotoxic effect in vivo through up-regulation of some antioxidant enzymes. The individual and combined effects of SB and TC have been examined on rat bone marrow cells, using Micronucleus assays (MN), Comet assay, DNA fragmentation, expression of some antioxidant genes using Real time-PCR and finally, oxidative stress analysis. SB significantly increased the mitotic activity (P < 0.05), while TC induced marked micronuclei and oxidative DNA damage, in the SB post-treatment group, the combination of SB (300 mg/kg) and TC (40 mg/kg) was able to decrease the induction of MN and oxidative DNA damage through up-regulation of Cat, Sod and Gpx1 genes significantly at (P < 0.05) more efficiently than that in the SB pre-treatment one. Therefore, we postulate that SB can be used therapeutically in combination with TC treatment to modulate TC genotoxic effect by reducing its oxidative stress, and thus being an appropriate agonist agent to combine with TC than each compound alone.
Collapse
|
6
|
Bilan DS, Shokhina AG, Lukyanov SA, Belousov VV. [Main Cellular Redox Couples]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:385-402. [PMID: 26615634 DOI: 10.1134/s1068162015040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Collapse
|
7
|
Liu F, Gao T, Ye Z, Yang D, Wang Z, Li G. An electrochemical method to assay human 8-oxoguanine DNA glycosylase 1. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL. Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 2013; 156:262-70. [PMID: 24214856 DOI: 10.1007/s12011-013-9857-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/30/2013] [Indexed: 01/04/2023]
Abstract
The potential mechanism of high glucose-induced cardiomyocyte apoptosis and selenium's protective effects were investigated in this study. Myocytes isolated from neonate rats were cultured in high-glucose medium (25.5 mmol/L glucose) to mimic sustained hyperglycemia. Before high-glucose incubation, myocytes were pretreated by sodium selenite solution. Cell apoptosis was evaluated by annexin V/propidium iodide (PI) staining and caspase activation. Expression of Toll-like receptor 4 (TLR-4) and myeloid differentiation factor 88 (MyD-88) was examined at both mRNA and protein levels. The intracellular reactive oxygen species (ROS) production and glutathione peroxidase (GPx) activity in myocytes were also detected. We found high glucose-induced cell apoptosis and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling, accompanied by increased production of ROS. Selenium pretreatment attenuated apoptosis in high glucose-incubated myocytes, and mechanically, this protective effect was found to be associated with attenuating oxidative status by increasing activity of GPx, decreasing the generation of ROS, as well as inhibition of the activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling in myocytes. These results suggest that activation of TLR-4/MyD-88 signaling pathway plays an important role in high glucose-induced cardiomyocyte apoptosis. Additionally, by modulating TLR-4/MyD-88 signaling pathway, which is linked to ROS formation, selenium exerts its antioxidative and antiapoptotic effects in high glucose-incubated myocytes.
Collapse
Affiliation(s)
- Zhong-Wei Liu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | | | | | | | | | | |
Collapse
|
9
|
Shokrzadeh M, Ahangar N, Abdollahi M, Shadboorestan A, Omidi M, Payam SH. Potential chemoprotective effects of selenium on diazinon-induced DNA damage in rat peripheral blood lymphocyte. Hum Exp Toxicol 2013; 32:759-65. [DOI: 10.1177/0960327112468179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to investigate the protective effects of selenium (Se) against genotoxicity induced by diazinon (DZN) in rat peripheral blood lymphocytes by micronucleus (MN) test. Animals were concurrently administered intraperitoneally with DZN in proper solvent (20 mg/kg body weight (b.w.)) and Se at three different doses (0.5, 1, and 2 mg/kg b.w.) for 30 consecutive days. The positive control group received DZN at the same dose without Se. After 24 h of last injection, 0.5 ml blood of each rat was received and cultured in culture medium for 44 h. The lymphocyte cultures were mitogenically stimulated with cytochalasin B to allow the evaluation of number of MNs in cytokinesis-blocked binucleated cells. Incubation of lymphocytes with DZN induced additional genotoxicity and is shown by increase in MNs frequency in human lymphocytes. Se at low dose of 0.5 mg/kg had a maximum effect and significantly reduced the MNs frequency in cultured lymphocytes ( p < 0.0001) that reduced the frequency of MN from 12.78 ± 0.24% for DZN group to 4.40 ± 0.36. The present study revealed that Se particularly at low doses has a potent antigenotoxic effect against DZN -induced toxicity in rats, which may be due to the scavenging of free radicals and increased antioxidant status.
Collapse
Affiliation(s)
- M. Shokrzadeh
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - N. Ahangar
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - M. Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - A. Shadboorestan
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - M. Omidi
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - S.S Hosseini Payam
- Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| |
Collapse
|
10
|
Venegas C, García JA, Escames G, Ortiz F, López A, Doerrier C, García-Corzo L, López LC, Reiter RJ, Acuña-Castroviejo D. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 2012; 52:217-27. [PMID: 21884551 DOI: 10.1111/j.1600-079x.2011.00931.x] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied the subcellular levels of melatonin in cerebral cortex and liver of rats under several conditions. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondrion vary over a 24-hr cycle, although these variations do not exhibit circadian rhythms. The cell membrane has the highest concentration of melatonin followed by mitochondria, nucleus, and cytosol. Pinealectomy significantly increased the content of melatonin in all subcellular compartments, whereas luzindole treatment had little effect on melatonin levels. Administration of 10 mg/kg bw melatonin to sham-pinealectomized, pinealectomized, or continuous light-exposed rats increased the content of melatonin in all subcellular compartments. Melatonin in doses ranging from 40 to 200 mg/kg bw increased in a dose-dependent manner the accumulation of melatonin on cell membrane and cytosol, although the accumulations were 10 times greater in the former than in the latter. Melatonin levels in the nucleus and mitochondria reached saturation with a dose of 40 mg/kg bw; higher doses of injected melatonin did not further cause additional accumulation of melatonin in these organelles. The results suggest some control of extrapineal accumulation or extrapineal production of melatonin and support the existence of regulatory mechanisms in cellular organelles, which prevent the intracellular equilibration of the indolamine. Seemingly, different concentrations of melatonin can be maintained in different subcellular compartments. The data also seem to support a requirement of high doses of melatonin to obtain therapeutic effects. Together, these results add information that assists in explaining the physiology and pharmacology of melatonin.
Collapse
Affiliation(s)
- Carmen Venegas
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Stein K, Borowicki A, Scharlau D, Schettler A, Scheu K, Obst U, Glei M. Effects of synbiotic fermentation products on primary chemoprevention in human colon cells. J Nutr Biochem 2011; 23:777-84. [PMID: 21840698 DOI: 10.1016/j.jnutbio.2011.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 02/28/2011] [Accepted: 03/30/2011] [Indexed: 01/12/2023]
Abstract
The consumption of synbiotics, a mixture of probiotics and indigestible food constituents such as dietary fiber, has been reported to reduce colon cancer risk. We investigated the effects of fermented wheat aleurone enriched with the probiotics Lactobacillus rhamnosus GG/Bifidobacterium animalis supsp. lactis on the gene expression and functional end points related to cellular defence in HT29 and primary human colon cells. Aleurone was digested and fermented in vitro with/without probiotics. The resulting fermentation supernatants (fs) were analyzed for concentrations of deoxycholic acid and ammonia. The cells were treated with the fs, and effects on gene expression of catalase, GSTP1 and SULT2B1, enzyme activity of catalase and glutathione S-transferase as well as H₂O₂-induced DNA damage were examined. Fermentation of aleurone reduced deoxycholic acid concentration by 84%, while the probiotics enhanced this effect. Ammonia was increased by fs aleurone, whereas a reduction occurred by the addition of L. rhamnosus GG/B. animalis supsp. lactis 12. GSTP1 expression tended to result in an increase by the fs aleurone in both cell types, whereas the probiotics could not additionally increase the effect. Catalase was not modulated by fs aleurone enriched with probiotics. Only in HT29 cells, expression of SULT2B1 was enhanced by fs aleurone. Enzyme activity of catalase and glutathione S-transferase was induced (2-3.6 fold, 72 h) in HT29 cells only. Addition of probiotics had no influence on this effect. In HT29 cells, a reduced H₂O₂-induced DNA damage by the fs aleurone after 48 h, enhanced by the addition of probiotics, was detected. The observed effects could improve detoxification of xenobiotics and therefore may lower colon cancer risk.
Collapse
Affiliation(s)
- Katrin Stein
- Department of Nutritional Toxicology, Institute for Nutrition, Biological-Pharmaceutical Faculty, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hydrogen peroxide probes directed to different cellular compartments. PLoS One 2011; 6:e14564. [PMID: 21283738 PMCID: PMC3024970 DOI: 10.1371/journal.pone.0014564] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 12/09/2010] [Indexed: 12/17/2022] Open
Abstract
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells.
Collapse
|
13
|
Abstract
Many nuclear proteins contain thiols, which undergo reversible oxidation and are critical for normal function. These proteins include enzymes, transport machinery, structural proteins, and transcription factors with conserved cysteine in zinc fingers and DNA-binding domains. Uncontrolled oxidation of these thiols causes dysfunction, and two major thiol-dependent antioxidant systems provided protection. The redox states of these systems, including the small redox active protein thioredoxin-1 (Trx1) and the abundant, low molecular weight thiol antioxidant glutathione (GSH), in nuclei provide means to quantify nuclear redox conditions. Redox measurements are obtained under conditions with excess thiol-reactive reagents. Here we describe a suite of methods to measure nuclear redox state, which include a redox Western blot technique to quantify the redox state of Trxl, a biotinylated iodoacetamide (BIAM) method for thioredoxin reductase-1 (TrxR1), GSH redox measurement using total protein S-glutathionylation, and a redox isotope-coded affinity tag (ICAT) method for measuring oxidation of specific cysteines in high-abundance nuclear proteins.
Collapse
|
14
|
Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells. Br J Nutr 2010; 104:1101-11. [DOI: 10.1017/s0007114510001881] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1·4- to 3·7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.
Collapse
|
15
|
Markovic J, García-Gimenez JL, Gimeno A, Viña J, Pallardó FV. Role of glutathione in cell nucleus. Free Radic Res 2010; 44:721-33. [DOI: 10.3109/10715762.2010.485989] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
KUMAR APUNEETH, CHOUGALA MALLIKARJUN, NANDINI C, SALIMATH P. EFFECT OF BUTYRIC ACID SUPPLEMENTATION ON SERUM AND RENAL ANTIOXIDANT ENZYME ACTIVITIES IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. J Food Biochem 2010. [DOI: 10.1111/j.1745-4514.2009.00284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Abedelahi A, Salehnia M, Allameh AA, Davoodi D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod 2010; 25:977-85. [PMID: 20139425 DOI: 10.1093/humrep/deq002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of sodium selenite (SS) on reactive oxygen species (ROS) production, total antioxidant capacity (TAC) and glutathione peroxide (GPx) activity of cultured pre-antral follicles derived from vitrified and non-vitrified ovarian tissue. METHODS Immature mouse ovaries were vitrified, and mechanically isolated pre-antral follicles from vitrified and non-vitrified samples were cultured in TCM 199 medium supplemented with different concentrations (0, 5 and 10 ng/ml) of SS. Follicular, oocyte and embryo development was assessed. In parallel, ROS, TAC and GPx levels were analyzed after 0, 12, 24, 48, 72 and 96 h of culture. RESULTS Development rates of follicles, oocytes and embryos were significantly higher in SS-supplemented groups (P < 0.005). ROS production was increased, and TAC levels and GPx activities were decreased after 24 h of culture of pre-antral follicles in vitrified and non-vitrified groups, whereas in the presence of SS, ROS production was decreased and TAC levels and selenium-dependent GPx-specific activities were increased after 96 h of culture. Vitrified and non-vitrified samples responded in a similar manner. CONCLUSION SS caused an increase in follicular TAC level and GPx activity and a decrease in ROS level, thus improving the in vitro development of follicles.
Collapse
Affiliation(s)
- A Abedelahi
- Department of Anatomy, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Červinková Z, Křiváková P, Lábajová A, Roušar T, Lotková H, Kučera O, Endlicher R, Červinka M, Drahota Z. Mechanisms participating in oxidative damage of isolated rat hepatocytes. Arch Toxicol 2008; 83:363-72. [DOI: 10.1007/s00204-008-0385-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
|
19
|
Hurst R, Elliott RM, Goldson AJ, Fairweather-Tait SJ. Se-methylselenocysteine alters collagen gene and protein expression in human prostate cells. Cancer Lett 2008; 269:117-26. [DOI: 10.1016/j.canlet.2008.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/16/2022]
|
20
|
Ganapathy E, Peramaiyan R, Rajasekaran D, Venkataraman M, Dhanapal S. Modulatory effect of naringenin on N-methyl-N'-nitro-N-nitrosoguanidine- and saturated sodium chloride-induced gastric carcinogenesis in male Wistar rats. Clin Exp Pharmacol Physiol 2008; 35:1190-6. [PMID: 18565195 DOI: 10.1111/j.1440-1681.2008.04987.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Naringenin is a flavanone that is believed to have many biological actions, including as an anti-oxidant, free radical scavenger and an antiproliferative agent. The global incidence of gastric carcinoma is increasing rapidly, more than for any other cancer. Therefore, in the present study, we tested the effects of naringenin on gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and saturated sodium chloride (S-NaCl) in rats. Male Wistar rats were divided into five groups and treated over a period of 20 weeks as follows: (i) a control group given corn oil (1 mL/rat, p.o.) daily 20 weeks; (ii) 200 mg/kg, p.o., MNNG on Days 0 and 14 with S-NaCl (1 mL/rat) administered twice a week for the first 3 weeks; (iii) 200 mg/kg, p.o., MNNG on Days 0 and 14, with naringenin (200 mg/kg, p.o., daily) treatment for the entire 20 weeks; (iv) 200 mg/kg, p.o., MNNG on Days 0 and 14, with naringenin treatment (200 mg/kg, p.o., daily) initiated from 6 to 20 weeks; (v) 200 mg/kg, p.o., naringenin alone daily for 20 weeks. In Group II rats in which gastric cancer was inducted with MNNG and S-NaCl, there was a significant increase in hydrogen peroxide and lipid peroxidation levels, with decreases in reduced glutathione, oxidized glutathione, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase. In addition, in Group II rats with gastric cancer, there were significant increases in the activity of cytochrome P450, cytochrome b(5) and NADPH cytochrome c reductase, with concomitant decreases in the activity of the phase II enzymes glutathione S-transferase and UDP-glucuronosyl transferase. Naringenin treatment (Groups III and IV) restored enzyme activity to near control levels. These results indicate that naringenin has a chemopreventive action against MNNG-induced gastric carcinoma in experimental rats.
Collapse
Affiliation(s)
- Ekambaram Ganapathy
- Department of Medical Biochemistry, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | | | |
Collapse
|
21
|
Abstract
Ageing is a process involving morphological and physiological modifications that gradually appear with time and lead to death. Given the heterogeneous nature of the process among individuals and among the different organs, tissues, and systems in the same individual, the concept of <<biological age>> has been developed. The search for parameters that enable us to evaluate biological age--and therefore longevity--and the analysis of the efficacy of strategies to retard the ageing process are the objectives of gerontology. At present, one of the most important theories of ageing is the <<oxidative-inflammatory>> theory. Given that immune cell function is an excellent marker of health, we review the concepts that enable different functional and oxidative stress parameters in immune cells to be identified as markers of biological age and longevity. None of these parameters is universally accepted as a biomarker of ageing, although they are becoming increasingly important.
Collapse
|
22
|
Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta Gen Subj 2008; 1780:1273-90. [PMID: 18267127 DOI: 10.1016/j.bbagen.2008.01.011] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/21/2022]
Abstract
Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease.
Collapse
Affiliation(s)
- Young-Mi Go
- Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
23
|
Bracht K, Liebeke M, Ritter CA, Grünert R, Bednarski PJ. Correlations between the activities of 19 standard anticancer agents, antioxidative enzyme activities and the expression of ATP-binding cassette transporters: comparison with the National Cancer Institute data. Anticancer Drugs 2007; 18:389-404. [PMID: 17351391 DOI: 10.1097/cad.0b013e3280140001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this work was to determine the functional activities of four different antioxidative enzymes (glutathione reductase, glutathione-S-transferase, glutathione peroxidase, thioredoxin reductase) and the protein expression of three ATP-binding cassette transporters (P-glycoprotein, multidrug resistance protein 1, multidrug resistance protein 2) in a panel of 14 human cancer cell lines. Enzyme activities and transporter expression were then correlated with the in-vitro cytotoxic activities (GI50 values) of 19 standard antitumor drugs. Analogous data from the National Cancer Institute were used for comparison. The GI50 values of the platinum complexes, alkylating agents, antimetabolites, topoisomerase inhibitors and antimitotic drugs were determined by crystal violet or 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide assay. Standard enzymatic assays employed to measure the glutathione peroxidase, glutathione-S-transferase, glutathione reductase and thioredoxin reductase activities. The protein expression of the ATP-binding cassette transporter proteins was investigated by the Western-blot method. The delta method was used to normalize the data before bivariant correlation analysis. Only a few correlations between enzyme and cytotoxic activities of the antitumor agents were found. The GI50 values for melphalan and camptothecin correlated positively with the activity of glutathione-S-transferase, whereas GI50 values for methotrexate correlated positively with the cellular activities of both glutathione reductase and thioredoxin reductase. A significant correlation between glutathione reductase and thioredoxin reductase activities was found in our panel of cell lines. Neither P-glycoprotein nor multidrug resistance protein 2 expression could be detected by Western blot analysis in any cell lines investigated, but multidrug resistance protein 1 was consistently observed in all but four lines. Multidrug resistance protein 1 expression correlates positively with the GI50 values of several drugs, e.g. vinblastine and etoposide, and negatively with the GI50 values of 5-fluorouracil. The results confirm the complexity of resistance to antitumor agents and show that the GSH-thioredoxin system alone is not a good indication of intrinsic resistance for many of these anticancer drugs.
Collapse
Affiliation(s)
- Karin Bracht
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | | | | | | |
Collapse
|
24
|
Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 2006; 46:215-34. [PMID: 16402904 DOI: 10.1146/annurev.pharmtox.46.120604.141122] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New methods to measure thiol oxidation show that redox compartmentation functions as a mechanism for specificity in redox signaling and oxidative stress. Redox Western analysis and redox-sensitive green fluorescent proteins provide means to quantify thiol/disulfide redox changes in specific subcellular compartments. Analyses using these techniques show that the relative redox states from most reducing to most oxidizing are mitochondria > nuclei > cytoplasm > endoplasmic reticulum > extracellular space. Mitochondrial thiols are an important target of oxidant-induced apoptosis and necrosis and are especially vulnerable to oxidation because of the relatively alkaline pH. Maintenance of a relatively reduced nuclear redox state is critical for transcription factor binding in transcriptional activation in response to oxidative stress. The new methods are applicable to a broad range of experimental systems and their use will provide improved understanding of the pharmacologic and toxicologic actions of drugs and toxicants.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Medicine and Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
25
|
Fimognari C, Berti F, Cantelli-Forti G, Hrelia P. Effect of sulforaphane on micronucleus induction in cultured human lymphocytes by four different mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:260-7. [PMID: 15957190 DOI: 10.1002/em.20156] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Isothiocyanates (ITCs) are commonly found in cruciferous vegetables. A variety of biological activities have been ascribed to ITCs, such as inhibition of cytochrome P450 enzymes and induction of phase II enzymes in animal models. ITCs are also able to block cell-cycle progression and induce apoptosis in human cancer cells in vitro. In this study, we evaluated the ability of the ITC sulforaphane to protect cultured human lymphocytes from micronucleus (MN) induction by four different mutagens: ethyl methanesulfonate (EMS), vincristrine (VIN), H(2)O(2) and mitomycin C (MMC). To understand the mechanisms of action of sulforaphane, the cultures were treated with the compound before, during and after treatment with the mutagens; in addition, the cultures were evaluated for the induction of apoptosis. Up to 10 microM, sulforaphane was non-genotoxic by itself, while 30 microM sulforaphane reduced the replicative index of the cells by more than 60%. Moreover, 1-10 microM sulforaphane reduced the MN frequency induced by EMS, VIN, H(2)O(2) and MMC in at least one of the treatment protocols; it had no effect on H(2)O(2)-MN induction in the post-treatment protocol, and it increased MN induction by MMC in the pre-treatment protocol. Apoptosis was produced in the cultures treated with sulforaphane alone. The fraction of apoptotic cells was increased after co- or post-treatment with sulforaphane and EMS and MMC, suggesting that sulforaphane-mediated apoptosis may remove highly damaged cells induced by these agents. Other mechanisms are involved in the anti-genotoxic activity of sulforaphane against VIN and H(2)O(2). Taken together, our findings indicate that under certain conditions sulforaphane possesses anti-genotoxic activity in vitro and that further studies are warranted to characterize this property in vivo.
Collapse
|
26
|
Scotti C, Iamele L, Alessandrini A, Vannini V, Cazzalini O, Lazzè MC, Melli R, Savio M, Pizzala R, Stivala LA, Biglieri S, Tomasi A, Bianchi L. Lack of molecular relationships between lipid peroxidation and mitochondrial DNA single strand breaks in isolated rat hepatocytes and mitochondria. Mitochondrion 2005; 2:361-73. [PMID: 16120333 DOI: 10.1016/s1567-7249(03)00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 12/04/2002] [Accepted: 12/16/2002] [Indexed: 01/20/2023]
Abstract
We investigated the molecular relationships between lipid peroxidation and mitochondrial DNA (mtDNA) single strand breaks (ssb) in isolated rat hepatocytes and mitochondria exposed to tert-butylhydroperoxide (TBH). Our results show that mtDNA ssb induced by TBH are independent of lipid peroxidation and dependent on the presence of iron and of hydroxyl free radicals. These data contribute to the definition of the mechanisms whereby mtDNA ssb are induced and provide possible molecular targets for the prevention of this kind of damage in vivo.
Collapse
Affiliation(s)
- Claudia Scotti
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Generale, Università di Pavia, Piazza Botta 10, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Glutathione is the most abundant of the low-molecular-mass molecules that provide reducing equivalents that protect cells from oxidative stress. We used immunoelectron microscopy to investigate glutathione distribution in normal and oxidatively stressed cells. Here, for the first time, we show that reduced glutathione is distributed relatively evenly throughout the cell, with the exception of the lumen of the rough endoplasmic reticulum, where little is detected. Oxidant exposure, either to 0.1 mM diamide or ethycrinic acid, eventually caused cellular glutathione depletion. However, despite entering a cell within seconds, both oxidants required hours to dramatically affect glutathione levels in the majority of cells in a population. Interestingly, cells within a homogeneous cell line population lost glutathione at different rates. Structural changes associated with oxidative stress, such as increased vacuolization and membrane blebbing, were correlated with glutathione depletion. Oxidant-exposed cells that appeared normal had higher glutathione levels than those within the same population that appeared stressed. The last reserves of cellular glutathione were found within mitochondria.
Collapse
Affiliation(s)
- Jeffrey G Ault
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
28
|
Yang J, Klaidman LK, Chang ML, Kem S, Sugawara T, Chan P, Adams JD. Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav 2002; 73:901-10. [PMID: 12213537 DOI: 10.1016/s0091-3057(02)00939-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND PURPOSE Nicotinamide protects against brain damage in ischemia-reperfusion. However, the dosage and time of treatment require clarification. It is also not clear if nicotinamide can protect against both necrosis and apoptosis. METHODS Dose-response and time-effect studies were designed. Transient focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 min. Different doses of nicotinamide were injected upon reperfusion. In time-effect studies, 500 mg/kg nicotinamide was administered at different times after the onset of reperfusion. Neurological finding scores were recorded. Infarct volumes were measured. RESULTS In contrast to controls, neurological deficit scores and infarct volumes were greatly reduced by treatment with nicotinamide. The ED(50) of nicotinamide was 239+/-79 mg/kg (P=.95). It was found that nicotinamide injected during the first 6 h of reperfusion could effectively inhibit the development of brain damage. The optimal dose of nicotinamide was 500 mg/kg and gave a maximal response. CONCLUSIONS Poly(ADP-ribose) polymerase (PARP) plays a key role in DNA repair in stroke. Excessive PARP activity consumes NAD leading to energy depletion and neuronal damage. As an inhibitor of PARP, nicotinamide promotes the supply of energy. The results suggest that early application of nicotinamide at a suitable dosage significantly ameliorates necrotic and apoptotic brain injury after focal ischemia-reperfusion.
Collapse
Affiliation(s)
- Jun Yang
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 508, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Fernández-Bañares F, Cabré E, Esteve M, Mingorance MD, Abad-Lacruz A, Lachica M, Gil A, Gassull MA. Serum selenium and risk of large size colorectal adenomas in a geographical area with a low selenium status. Am J Gastroenterol 2002; 97:2103-8. [PMID: 12190184 DOI: 10.1111/j.1572-0241.2002.05930.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Selenium is a fundamental nutrient to human health that might have anticarcinogenic effects. Previous studies have assessed the possible relationship of selenium status to colorectal adenomas with controversial results. We primarily aimed to assess the relationship of serum selenium status with the presence of large size colorectal adenomas in subjects living in a poor selenium region. The serum selenium status in colorectal cancer was also evaluated. METHODS Serum selenium levels were measured in 28 patients with large size sporadic adenomatous polyps, 24 patients with colorectal adenocarcinomas, and 35 age-matched healthy individuals. A logistic regression analysis was performed to assess the relationship of serum selenium to colorectal adenomatous polyps after adjusting for confounding variables (age, sex, smoking habit, and alcohol drinking). RESULTS Among subjects aged < or = 60 yr, mean serum selenium levels were significantly lower in both patient groups (adenoma, 57.9 +/- 4.3 microg/L; cancer, 43.7 +/- 6.6 microg/L) than in healthy controls (88.9 +/- 8 microg/L) (p = 0.0001). There were no difference among subjects > 60 yr old. A significant inverse association between selenium status and the diagnosis of large size adenomatous polyps after adjusting for confounding variables was found (adjusted p = 0.029). Subjects with higher selenium status (> or = 75th percentile value of 82.11 microg/L) had a lower probability (OR = 0.17, 95% CI = 0.03-0.84) to be in the adenoma group than subjects with lower selenium status (< 82.11 microg/L). This association was more marked in subjects aged < or = 60 yr (adjusted p value = 0.04, OR = 0.08, 95% CI = 0.007-0.91), and was not significant in older subjects. CONCLUSIONS Results suggest that high selenium status may decrease the risk of large size adenomas in a low selenium region, and that this preventive effect seems to be exclusive to subjects < or = 60 yr. These results will need to be confirmed in additional epidemiological studies before recommending selenium supplementation in patients with colon adenomas.
Collapse
Affiliation(s)
- F Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nyberg-Swenson BE. Is molecular oxygen, O(2), the reactive radical behind oxidations of (aut)oxidable agents to which the bases of DNA belong? Med Hypotheses 2002; 58:203-12. [PMID: 12018971 DOI: 10.1054/mehy.2001.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transfer of charges to reducible oxygen plays a basic role in the supply of energy to living organisms. These electron transfer (ET) reactions may be performed by selenium (Se) enzymes and autoxidable agents. Among the molecules which have satisfactory structures for this purpose are (hypo)xanthine, dopamine (DA), serotonin, arginine, creatine, thyroid hormones T(2)/T(3)/T(4) and the bases of DNA. Single-strand DNA breaks may be initiated by these reactions to yield the bases for the transfer of charges. But a high rate of DNA single-strand breaks may be caused by destructive oxidations. If the activity of the O(2) protective enzymes (Se enzymes such as gluthatione peroxidase (Gpx), superoxide dismutase (SOD) and catalase) is limited, the oxygen species H(2)O(2), O(2)(-) and OH generate free O(2). I believe that randomized oxidations are performed by the radical O(2) (two unshared orbitals) when it is not enzyme protected. Among the substances exposed to oxidation are the autoxidable agents. Are the bases of DNA and RNA to be included in these, taking part in ET reactions?
Collapse
|
31
|
Hansen JM, Harris KK, Philbert MA, Harris C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther 2002; 300:768-76. [PMID: 11861780 DOI: 10.1124/jpet.300.3.768] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalidomide produces numerous birth defects, the most notable being phocomelia. Mechanisms behind thalidomide-induced malformations have not been fully elucidated, although recent evidence suggests a role for reactive oxygen species. A thalidomide-resistant (rat) and -sensitive (rabbit) species were used to compare potential inherent differences related to oxidative stress that may provide a more definitive understanding of mechanisms of thalidomide embryopathy. Limb bud cells (LBCs) were removed from the rat and rabbit embryo, dissociated, and plated in culture for 24 h. A fluorescence (6-carboxy-2',7'-dichlorofluorescin diacetate; DCF) assay for oxidative stress was used with varying concentrations of thalidomide (5-100 microM). Thalidomide (100 microM) showed a 6-fold greater production of oxidative stress in rabbit cultures than in rat. Lower concentrations (50 and 25 microM) also showed a significant increase in reactive oxygen species. Confocal microscopy revealed DCF fluorescence preferentially in rabbit LBC nuclei compared with the uniform distribution of DCF fluorescence in rat LBC. Localization of glutathione (GSH) was determined using 5-chloromethylfluorescein diacetate fluorescent confocal microscopy. In rat cultures, significant thalidomide-induced GSH depletion was detected in the cytosol but the nuclei maintained its GSH content, but rabbit LBC showed significant GSH depletion in both compartments. GSH depletion was confirmed by high-performance liquid chromatography analysis. These observations provide evidence that thalidomide preferentially produces oxidative stress in the thalidomide-sensitive species but not the thalidomide-resistant species. Nuclear GSH content in the rabbit LBC is selectively modified and indicates a shift in the nuclear redox environment. Redox shifts in the nucleus may result in the misregulation of transcription factor/DNA interactions and cause defective growth and development.
Collapse
Affiliation(s)
- Jason M Hansen
- University of Michigan, Department of Environmental Health Sciences Toxicology Program, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
32
|
Curcio C, Baqui MM, Salvatore D, Rihn BH, Mohr S, Harney JW, Larsen PR, Bianco AC. The human type 2 iodothyronine deiodinase is a selenoprotein highly expressed in a mesothelioma cell line. J Biol Chem 2001; 276:30183-7. [PMID: 11425850 DOI: 10.1074/jbc.c100325200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Types 1 and 3 iodothyronine deiodinases are known to be selenocysteine-containing enzymes. Although a putative human type 2 iodothyronine deiodinase (D2) gene (hDio2) encoding a similar selenoprotein has been identified, basal D2 activity is not selenium (Se)-dependent nor has D2 been labeled with (75)Se. A human mesothelioma cell line (MSTO-211H) has recently been shown to have approximately 40-fold higher levels of hDio2 mRNA than mesothelial cells. Mesothelioma cell lysates activate thyroxine (T(4)) to 3,5,3'-triiodothyronine with typical characteristics of D2 such as low K(m) (T(4)), 1.3 nm, resistance to propylthiouracil, and a short half-life ( approximately 30 min). D2 activity is approximately 30-fold higher in Se-supplemented than in Se-depleted medium. An antiserum prepared against a peptide deduced from the Dio2 mRNA sequence precipitates a (75)Se protein of the predicted 31-kDa size from (75)Se-labeled mesothelioma cells. Bromoadenosine 3'5' cyclic monophosphate increases D2 activity and (75)Se-p31 approximately 2.5-fold whereas substrate (T(4)) reduces both D2 activity and (75)Se-p31 approximately 2-3-fold. MG132 or lactacystin (10 microm), inhibitors of the proteasome pathway by which D2 is degraded, increase both D2 activity and (75)Se-p31 3-4-fold and prevent the loss of D2 activity during cycloheximide or substrate (T(4)) exposure. Immunocytochemical studies with affinity-purified anti-hD2 antibody show a Se-dependent increase in immunofluorescence. Thus, human D2 is encoded by hDio2 and is a member of the selenodeiodinase family accounting for its highly catalytic efficiency in T(4) activation.
Collapse
Affiliation(s)
- C Curcio
- Department of Medicine, Thyroid Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Guidarelli A, Fiorani M, Cantoni O. Calcium-dependent mitochondrial formation of species promoting strand scission of genomic DNA in U937 cells exposed to tert-butylhydroperoxide: the role of arachidonic acid. Free Radic Res 2000; 33:477-87. [PMID: 11200081 DOI: 10.1080/10715760000301021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801-806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.
Collapse
Affiliation(s)
- A Guidarelli
- Istituto di Farmacologia e Farmacognosia and Centro di Farmacologia Oncologica Sperimentale, Università di Urbino, Italy
| | | | | |
Collapse
|
34
|
Dierickx PJ, Nuffel GV, Alvarez I. Glutathione protection against hydrogen peroxide, tert-butyl hydroperoxide and diamide cytotoxicity in rat hepatoma-derived Fa32 cells. Hum Exp Toxicol 1999; 18:627-33. [PMID: 10557015 DOI: 10.1191/096032799678839482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
1. Several ozonides, peroxides and aldehydes are formed during ozone therapy, recently introduced in medicine. tert-Butyl hydroperoxide (t-BHP), H2O2 and diamide were investigated as model substrate in rat hepatoma-derived Fa32 cells. 2. The cytotoxicity was measured by the neutral red uptake inhibition assay after 1 h or 24 h treatment. The relative toxicities were quantified by the determination of the NI50. This is the concentration of test compound required to induce an inhibition of 50% in neutral red uptake as compared to the control cells. All test chemicals were more toxic after 24 h than after 1 h. 3. The influence of the glutathione (GSH) alteration on the cytotoxicity was measured by treating the cells with 2-oxo-4-thiazolidine carboxylic acid (OTC) or L-buthionine sulfoximine (BSO). OTC increased the endogenous GSH content in the cells. BSO pretreatment strongly decreased the NI50 of the three chemicals. OTC pretreatment increased the NI50 of H2O2 but not of t-BHP and diamide. This can be explained by the strong GSH-depletion after 1 h by t-BHP and diamide, which contrasted with a weak GSH-depletion by H2O2 after the same time period. 4. The three test chemicals increased the endogenous GSH content after 24 h. t-BHP and H2O2, but not diamide, increased the total GSH transferase (GST) activity. Several alterations of the GST subunits were observed. Most striking was the increase of class alpha GST subunits, also for diamide. 5. Since H2O2 and t-BHP are ozone metabolites thought to be responsible for the therapeutic effects of well-dosed ozone, the results show that Fa32 cells can be used as a valuable alternative model system for studying the effects encountered in human ozone therapy.
Collapse
Affiliation(s)
- P J Dierickx
- Scientific Institute of Public Health, Afdeling Toxikologie, Wytsmantraat 14, B-1050 Brussel, Belgium
| | | | | |
Collapse
|
35
|
Sestili P, Brambilla L, Cantoni O. Rotenone and pyruvate prevent the tert-butylhydroperoxide-induced necrosis of U937 cells and allow them to proliferate. FEBS Lett 1999; 457:139-43. [PMID: 10486581 DOI: 10.1016/s0014-5793(99)01027-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exposure of U937 cells to tert-butylhydroperoxide (tB-OOH) led to cyclosporin A-sensitive mitochondrial membrane permeability transition and necrosis. Pyruvate and rotenone, which increase mitochondrial NADH via different mechanisms, prevented these responses and the cells which received these treatments proliferated with kinetics similar to those observed in untreated cells. In contrast with these results, cells rescued by cyclosporin A were unable to proliferate. Thus, mitochondrial NADH plays a pivotal role in preventing upstream events which result in the onset of mitochondrial membrane permeability transition and death in cells exposed to tB-OOH. These events appear to be critical for recovery of the ability of the cells to proliferate.
Collapse
Affiliation(s)
- P Sestili
- Instituto di Farmacologia e Farmacognosia, Università di Urbino, Italy
| | | | | |
Collapse
|
36
|
Korzets A, Chagnac A, Weinstein T, Ori Y, Malachi T, Gafter U. H2O2 induces DNA repair in mononuclear cells: evidence for association with cytosolic Ca2+ fluxes. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 133:362-9. [PMID: 10218767 DOI: 10.1016/s0022-2143(99)90067-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA repair systems are induced whenever DNA is damaged. Reactive oxygen species (ROS) are generated, in vivo, in the tissues as a result of regular cellular metabolism or after exposure to oxidizing agents, such as ultraviolet (UV) irradiation. It has been suggested that ROS mediate DNA damage. The objectives of the study were as follows: (1) to investigate whether hydrogen peroxide (H2O2), the commonly occurring cellular ROS, induces DNA repair as a response to the damage it probably causes; (2) to evaluate whether H2O2-induced DNA repair, if present, is signaled through a Ca2(+)-dependent pathway via the tyrosine kinase signal transduction. H2O2 was found to induce DNA repair in human peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. The recovery of RNA synthesis, which occurred after DNA repair, confirmed that transcribable DNA was repaired. The inhibition of tyrosine kinase activity by genistein reduced the DNA repair significantly. Furthermore, H2O2 caused a dose-dependent significant rise in cytosolic calcium ((Ca2+)i). H2O2 also induced a small rise in (Ca2+)i of cytosolic Ca2(+)-depleted cells, probably reflecting the release of Ca2+ from internal stores. Genistein inhibited both Ca2+ influx and Ca2+ release from internal stores. In summary, H2O2 induced a DNA repair synthesis that was in part Ca2+ dependent and signaled via tyrosine kinase. The changes in DNA repair paralleled changes in (Ca2+)i. The H2O2-induced (Ca2+)i rise was mostly the result of influx, but to some degree it was also due to the translocation of Ca2+ from internal stores.
Collapse
Affiliation(s)
- A Korzets
- Department of Nephrology, Rabin Medical Center, Petah-Tikva, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Abrahamse SL, Pool-Zobel BL, Rechkemmer G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis 1999; 20:629-34. [PMID: 10223191 DOI: 10.1093/carcin/20.4.629] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Short chain fatty acids (SCFA) are considered to be beneficial fermentation products in the gut by exerting trophic effects in non-transformed colon cells and by slowing proliferation and enhancing differentiation in colonic tumour cells. We have studied the further effects of SCFA on cellular events of early carcinogenesis, genotoxicity and cytotoxicity in rat distal colon cells. Cytotoxicity was assessed by measuring trypan blue exclusion and by determining the H2O2-induced changes in intracellular calcium concentration ([Ca2+]i) using a fluorospectrophotometer and the calcium-sensitive fluorescent dye Fura-2. The microgel electrophoresis technique (COMET assay) was used to assess oxidative DNA damage. Individual SCFA and physiological SCFA mixtures were investigated for their potential to prevent DNA and cell damage induced by H2O2. For this, freshly isolated colon cells were treated with H2O2 (100-500 microM) and 6.25 mM SCFA. We have found 100-500 microM H2O2 to cause a fast initial increase in [Ca2+]i, whereafter the levels gradually further increased. Addition of SCFA did not affect [Ca2+]i nor did it reduce the H2O2-induced increase in [Ca2+]i. Butyrate and acetate were able to reduce the induction of DNA damage by 100, 200 and 500 microM H2O2, respectively. In contrast, i-butyrate and propionate were ineffective. The degree of reduction of DNA damage for the two protective SCFA was similar. Physiological mixtures containing acetate, propionate and butyrate in ratios of 41:21:38 or 75:15:10 that are expected to arise in the colon after fermentation of resistant starches and pectin, respectively, did not show significant antigenotoxic effects. The major difference between butyrate and acetate, on one hand, and i-butyrate and propionate, on the other hand, is that the former compounds are utilized best as energy sources by the colon cells. Therefore, our results on antigenotoxicity coupled with the findings on [Ca2+]i homeostasis indicate that molecular effects on the energy system render these non-transformed, freshly isolated colon cells to be less susceptible to H2O2.
Collapse
Affiliation(s)
- S L Abrahamse
- Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Kim YK, Ko SH, Woo JS, Lee SH, Jung JS. Difference in H2O2 toxicity between intact renal tubules and cultured proximal tubular cells. Biochem Pharmacol 1998; 56:489-95. [PMID: 9763225 DOI: 10.1016/s0006-2952(98)00186-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to examine the response to H2O2 and t-butylhydroperoxide (t-BHP) in various in vitro model systems of renal proximal tubules: rabbit renal cortical slices, freshly isolated rabbit proximal tubules, rabbit primary cultured proximal tubular cells, and opossum kidney (OK) cells. t-BHP increased lactate dehydrogenase release and lipid peroxidation in a concentration-dependent manner over the concentration range of 0.2 to 3 mM in cortical slices, whereas H2O2 caused a similar concentration-dependent increase in both parameters at 5-100 mM. The sensitivity of isolated tubules to both peroxides was similar to that of cortical slices. In primary cultured cells and OK cells, however, the cytotoxicity of H2O2 was identical to that of t-BHP. The cytotoxicity of t-BHP was not different among all the systems examined. The specific activity of catalase in cortical slices was similar to that of isolated tubules, but it was much higher than that of primary cultured cells or opossum kidney cells. Glutathione (GSH) peroxidase activity was not different among all the systems examined. The expression of catalase mRNA in cortical slices and isolated tubules was higher than that in primary cultured cells, whereas those of superoxide dismutase, glutathione peroxidase, or beta-actin were not different among the systems. These results indicate that intact proximal tubules are more resistant to H2O2 than are cultured proximal tubular cells, and the resistance is due to a higher specific activity of catalase resulting from the increased expression of its mRNA.
Collapse
Affiliation(s)
- Y K Kim
- Department of Physiology, College of Medicine, Pusan National University, Korea
| | | | | | | | | |
Collapse
|
39
|
Møller P, Wallin H. Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat Res 1998; 410:271-90. [PMID: 9630671 DOI: 10.1016/s1383-5742(97)00041-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species are formed constantly in living organisms, as products of the normal metabolism, or as a result of many different environmental influences. Here we review the knowledge of formation of DNA damage, the mutations caused by reactive oxygen species and the role of the excision repair processes, that protect the organism from oxidative DNA damage. In particular, we have focused on recent studies that demonstrate the important role of nucleotide excision repair. We propose two major roles of nucleotide excision repair as 1) a backup when base excision repair of small oxidative lesions becomes saturated, and as 2) a primary repair pathway for DNA damage produced by lipid peroxidation products.
Collapse
Affiliation(s)
- P Møller
- National Institute of Occupational Health, Lerso Parkallé 105, DK-2100 Copenhagen O, Denmark.
| | | |
Collapse
|
40
|
Psathakis D, Wedemeyer N, Oevermann E, Krug F, Siegers CP, Bruch HP. Blood selenium and glutathione peroxidase status in patients with colorectal cancer. Dis Colon Rectum 1998; 41:328-35. [PMID: 9514428 DOI: 10.1007/bf02237487] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE It is still controversial whether a low selenium level and a reduced activity of the selenium-dependent enzyme, glutathione peroxidase, in blood are associated with an increased risk and poor prognosis of cancer in humans. This study evaluates whether colorectal cancer patients have lower serum selenium and glutathione peroxidase levels than a gender-matched and age-matched control group and whether there is a correlation to clinical data and prognosis. METHODS In a retrospective study, serum selenium and glutathione peroxidase activity of 106 patients with colorectal cancer were determined. Clinical data were provided by our long-term follow-up program for colorectal cancer patients. RESULTS Patients with a selenium level <70 microg/l had a significantly lower mean survival time and a lower cumulative cancer-related survival rate than patients with a selenium level >70 microg/l (P = 0.0009). When considering the different tumor stages, a decline of the mean selenium level in the T4 carcinoma group was found in the analysis of variance (P < 0.05). The lowest selenium level was found for patients with advanced tumor disease and in a preoperative situation, ie., high tumor burden. In comparison with the control group, the cancer group showed a significant reduction of serum glutathione peroxidase activity (P < 0.01) but no significant difference in selenium level. CONCLUSIONS These results support the hypothesis of an association between low selenium level and advanced tumor disease. From our data, it cannot be decided whether this phenomenon is more likely to be a consequence or a causative factor for development and course of the disease.
Collapse
Affiliation(s)
- D Psathakis
- Department of Surgery, University of Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Guidarelli A, Cattabeni F, Cantoni O. Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radic Res 1997; 26:537-47. [PMID: 9212348 DOI: 10.3109/10715769709097825] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The results presented in this study point out the existence of similarities as well as differences in the DNA-damaging effects of organic vs. inorganic hydroper-oxides in human myeloid leukemia U937 cells. On the one hand, the formation of DNA single strand breaks (SSBs) induced by either hydrogen peroxide (H2O2) or tert-butylhydroperoxide (tBu-OOH) was prevented by iron chelators, was not affected by antioxidants or glucose omission before and during peroxide exposure and was enhanced by prior catalase depletion. Furthermore, H2O2- and tBu-OOH-induced DNA strand scission were also detected after treatment at 0 degree C. On the other hand, H2O2, but not tBu-OOH or cumene hydroperoxide (cum-OOH), produced DNA strand scission in isolated nuclei and post-lysed DNA samples. In addition, lowering the basal intracellular calcium concentration with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) markedly reduced the DNA-damaging efficiency of tBu-OOH while promoting only a slight decline in the number of DNA SSBs induced by H2O2. Taken together, these results are consistent with the commonly held theory that DNA damage caused by H2O2 is mediated by the formation of hydroxyl radicals. tBu-OOH-induced DNA single strand breakage appears to involve both the formation of H2O2 and a rise in cytosolic calcium ions.
Collapse
Affiliation(s)
- A Guidarelli
- Istituto di Farmacologia e Farmacognosia, Università di Urbino, Italy
| | | | | |
Collapse
|
42
|
Pool-Zobel BL, Leucht U. Induction of DNA damage by risk factors of colon cancer in human colon cells derived from biopsies. Mutat Res 1997; 375:105-15. [PMID: 9202721 DOI: 10.1016/s0027-5107(97)00006-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to increase the understanding of the factors responsible for causing human colon cancer, a technique was developed to detect genotoxic effects of chemicals in human colon cells. Risk factors suspected to be associated with the aetiology of human colon cancer were subsequently investigated: the method is based on the measurement of DNA damage in primary cells freshly isolated from human colon biopsies with the single cell microgel ectrophoresis technique ('Comet Assay'). 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methyl-3H-imidazo[4,5f]quinoline (IQ), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), dinitrosocaffeidine (DNC) lithocholic acid (LCA), hydrogen peroxide (H2O2) and benzo[a]pyrene (B[a]P) were investigated for their genotoxic and cytotoxic effects following 30 min incubation with colon cells of human, and for comparative purposes also of the rat colon. The nitrosamides (MNNG, DNC) were very genotoxic in human colon cells. MNNG was more genotoxic in human than in rat colon cells. In contrast, the rat colon carcinogens PhIP and IQ were not genotoxic in human colon cells. PhIP did induce DNA damage in rat colon cells, which correlates to its capacity of inducing tumors in this animal tissue. LCA was toxic (rat > human) and concomitantly caused DNA damage in higher concentrations. The widespread contaminant B[a]P was not genotoxic in colon cells of either species using this system. H2O2 was found to be a potent genotoxic agent to both rat and human colon cells (human > rat). In summary, those compounds chosen as representatives of endogenously formed risk factors (MNNG, H2O2, LCA) have a higher toxic and/or genotoxic potency in human colon tissue than in rat colon. They are also more effective in this system than the contaminants tested so far (B[a]P, PhIP, IQ). The newly developed technique is rapid and yields relevant results. It is a novel and useful approach to assess different chemical compounds for genotoxic activities in tumour target tissues of the human.
Collapse
Affiliation(s)
- B L Pool-Zobel
- Institute for Nutritional Physiology, Federal Research Center for Nutrition, Karlsruhe, Germany
| | | |
Collapse
|
43
|
Zhang ZH, Kimura M, Itokawa Y. Inhibitory effect of selenium and change of glutathione peroxidase activity on rat glioma. Biol Trace Elem Res 1996; 55:31-8. [PMID: 8971352 DOI: 10.1007/bf02784166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The inhibitory effect of selenium (Se) and change of glutathione peroxidase activity during the development of brain tumors was investigated in Wistar rats. Four rat groups classified to match by age and weight were fed a diet containing 0, 0.5, 2.0, and 4.0 micrograms Se/g. After 6 wk, the rats were injected with 3 x 10(6) C6 cells into the right frontal lobe parenchyma. Survival was significantly longer in the 0.5 and 2.0 micrograms Se/g groups than in the Se-free and 4.0 micrograms Se/g groups. The activity of glutathione peroxidase after development of tumors was significantly higher in the high Se group at 18 and 30 d.
Collapse
Affiliation(s)
- Z H Zhang
- Department of Social Medicine, Graduate School of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
44
|
Mallery SR, Bailer RT, Hohl CM, Ng-Bautista CL, Ness GM, Livingston BE, Hout BL, Stephens RE, Brierley GP. Cultured AIDS-related Kaposi's sarcoma (AIDS-KS) cells demonstrate impaired bioenergetic adaptation to oxidant challenge: implication for oxidant stress in AIDS-KS pathogenesis. J Cell Biochem 1995; 59:317-28. [PMID: 8567750 DOI: 10.1002/jcb.240590304] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its recognition as the most prevalent HIV associated cancer, speculation still abounds regarding the pathogenesis of AIDS-related Kaposi's sarcoma (AIDS-KS). However, it has been established that both cytokines, e.g. IL-6, and HIV-associated products, e.g., Tat, are integral in AIDS-KS cellular proliferation. Further, both experimental and clinical evidence is accumulating to link reactive oxygen intermediates (ROI) with both cytokine induction (primarily via nuclear factor-kappa B[NF-kappa B] dependent routes) as well as the subsequent cytokine, tumor necrosis factor alpha (TNF alpha) stimulation of HIV replication. Features of AIDS-KS patients, such as retention of phagocytes, presence of sustained immunostimulation, and a frequent history of KS lesions arising at traumatized sites, make oxidant stress a viable clinical factor in AIDS-KS development. Time course nucleotide profile analyses show that AIDS-KS cells have an inherent, statistically significant, biochemical deficit, even prior to oxidant stress, due to 1) a more glycolytic bioenergetic profile, resulting in lower levels of high energy phosphates (impairing capacity for glutathione [GSH] synthesis and DNA repair); 2) lower levels of NADPH (compromising the activities of GSSG reductase and peroxidase function of catalase); and 3) reduced levels of GSH (impeding both GSH peroxidase and GSH-S-transferases). Following exposure to physiologically relevant levels of H2O2, only the human microvascular endothelial cells (a putative AIDS-KS progenitor cell) responded with bioenergetic adaptations that reflected co-ordination of energy generating and cytoprotective pathways, e.g., retention of the cellular energy charge, increased NAD+, and an accentuation of the ATP, NADPH, and total adenine nucleotide differences relative to AIDS-KS cells. Also, some of the AIDS-KS strains retained intracellular GSSG subsequent to oxidant challenge, inviting the formation of deleterious protein mixed disulfides. While the results of our study address some AIDS-KS issues, they also raise an etiological question, i.e., Does the inability to tolerate oxidant stress arise in conjunction with AIDS-KS neoplastic development, or is it pre-existing in the population at risk? Regardless, use of antioxidant therapy (low risk/ potentially high benefit) in both the "at risk" population as well as in those individuals with active disease may prove a useful preventative and/or treatment modality.
Collapse
Affiliation(s)
- S R Mallery
- Department of Dentistry, College of Dentistry, Ohio State University, Columbus 43210-1241, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Thomas M, Nicklee T, Hedley DW. Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study. Br J Cancer 1995; 72:45-50. [PMID: 7599065 PMCID: PMC2034154 DOI: 10.1038/bjc.1995.275] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The intracellular distribution of glutathione (GSH) was measured by a quantitative image cytometry method, using the sulphydryl-reactive agent mercury orange. This readily forms fluorescent adducts with GSH and other non-protein sulphydryls (NPSH), but reacts much more slowly with protein sulphydryls. Under optimum staining conditions mean integrated mercury orange fluorescence per cell was closely correlated with a standard biochemical assay for GSH. Use of the DNA dye DAPI as a counterstain allowed measurement of nuclear NPSH. The mean nuclear-cytoplasmic ratio was 0.57 +/- 0.05. Isolation of nuclei under aqueous conditions resulted in the loss of approximately 90% of mercury orange fluorescence, compared with nuclear fluorescence from intact cells, suggesting that background labelling of protein sulphydryls or other macromolecules is low. Depletion of GSH with N-ethylmaleimide or diethylmaleate decreased mercury orange fluorescence in the nucleus and cytoplasm to a similar extent. In contrast, mercury orange fluorescence in the nucleus was much more resistant to DL-buthionine-S,R-sulphoximine (BSO) depletion than that in the cytoplasm. This finding is compatible with a distinct pool of GSH in the nucleus that is comparatively resistant to BSO depletion. Alternatively, the retention of fluorescence in the nucleus following GSH depletion by BSO treatment might be due to accumulation of cysteine. These findings have implications for cancer treatment since the level of NPSH in the nucleus might be a more important determinant of resistance to DNA-damaging agents than that in cytoplasm. The image cytometry method described here is quantitative, allows a measure of tumour cell heterogeneity and can be applied to small biopsy samples obtained by fine-needle aspiration. Thus it appears suitable for prospective clinical studies in cancer patients, and for monitoring the effects of GSH-depleting agents used as adjuncts to cancer chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- M Thomas
- Department of Oncologic Pathology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada
| | | | | |
Collapse
|
46
|
Howie AF, Walker SW, Akesson B, Arthur JR, Beckett GJ. Thyroidal extracellular glutathione peroxidase: a potential regulator of thyroid-hormone synthesis. Biochem J 1995; 308 ( Pt 3):713-7. [PMID: 8948423 PMCID: PMC1136783 DOI: 10.1042/bj3080713] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human thyrocytes were found to synthesize and secrete the selenoenzyme extracellular glutathione peroxidase (E-GPX), a process which was controlled by the Ca2+/phosphoinositol second-messenger cascade. The potential involvement of thyroidal E-GPX in the regulation of thyroid-hormone synthesis and in the protection of the thyrocyte from peroxidative damage is discussed.
Collapse
Affiliation(s)
- A F Howie
- Cellular Endocrinology Unit, University Department of Clinical Biochemistry, Royal Infirmary, Edinburgh, U.K
| | | | | | | | | |
Collapse
|
47
|
Sandström BE. Effects of quin2 acetoxymethyl ester on H2O2-induced DNA single-strand breakage in mammalian cells: H2O2-concentration-dependent inhibition of damage and additive protective effect with the hydroxyl-radical scavenger dimethyl sulphoxide. Biochem J 1995; 305 ( Pt 1):181-5. [PMID: 7826327 PMCID: PMC1136447 DOI: 10.1042/bj3050181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cell-membrane-permeable calcium probe quin2 acetoxymethyl ester (quin2 AM) was ineffective, in comparison with o-phenanthroline, in protecting cells against H2O2-induced DNA single-strand breakage at H2O2 concentrations of about, and higher than, 0.5 mM. The present study shows that quin2 actually potentiated intracellular DNA damage at high H2O2 concentrations. H2O2-induced DNA breakage appeared within 5 min after exposure, and quin2 affected the induction of DNA breaks at both 0 degree C and 37 degrees C. Aurintricarboxylic acid, an endonuclease inhibitor, or a decrease in extracellular Ca2+, did not reduce DNA damage. These facts strongly suggest that the breaks were not produced by a Ca(2+)-dependent nuclease. We showed previously that, in the presence of Fe3+ and H2O2, quin2 strongly potentiated the formation of oxidizing species as well as plasmid DNA breakage, and, as could be expected for a transition-metal chelator, quin2 inhibited the Fenton reaction when Cu2+ was tested instead of Fe3+ [Sandström, Granström and Marklund (1994) Free Radicals Biol. Med. 16, 177-185]. In the present work with cultured cells, titration with quin2 AM showed that, despite the fact that Cu2+ has a three-to-four-orders-of-magnitude higher affinity for quin2 than has Fe3+, both inhibition and potentiation of H2O2-induced DNA damage occurred at quin2 AM concentrations of about 100 nM. Thus inhibition appeared not to involve Cu2+. The combination of quin2 AM and dimethyl sulphoxide (DMSO) gave an additive effect on H2O2-induced DNA damage compared with the effect of quin2 AM or DMSO alone, whereas the combination of o-phenanthroline and DMSO gave about the same effect as o-phenanthroline alone. In conclusion, our results do not support a role for Ca2+ in the inhibiting effect of quin2 on H2O2-induced DNA damage. Instead, it is likely that inhibition and potentiation by quin2 involves interaction with Fe ions.
Collapse
Affiliation(s)
- B E Sandström
- Division of Ionizing Radiation and Fallout, National Defence Research Establishment (FOA), Umeå, Sweden
| |
Collapse
|
48
|
Mallery SR, Ng-Bautista CL, Lantry LE, Ness GM, Hegtvedt AK, Lazo A, Bailer RT, Hout BL, Stephens RE, Brierley GP. Cultured AIDS-related Kaposi's sarcoma cells retain a proliferative bioenergetic profile but demonstrate reduced cytoprotective capabilities. J Cell Biochem 1994; 56:568-81. [PMID: 7890815 DOI: 10.1002/jcb.240560418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Features of AIDS-related Kaposi's sarcoma (AIDS-KS), such as the multifocal presentation at mucosal and epidermal sites subjected to trauma, suggest that AIDS-KS is initially a reactive hyperplasia that subsequently progresses to a neoplasia. It is recognized that there is an association between sustained inflammatory states and the subsequent development of neoplasia (e.g., ulcerative colitis/colonic adenocarcinoma). Furthermore, patients who develop AIDS-KS experience both a constant immune stimulation due to sustained high levels of virus-induced cytokines and, because of a sparing effect on their phagocytic cells, retention of the phagocytic inflammatory response. A component of phagocytic activation is the initiation of the oxidative burst, resulting in the generation of reactive oxygen species (ROS), which can be mutagenic to host cells if released beyond the phagolysosome and not inactivated. Our results demonstrate that cultured AIDS-KS cells possess decreased cytoprotective capabilities. Relative to either dermal fibroblasts, or human microvascular endothelial cells (HMECs), AIDS-KS cells contained significantly lower levels of glutathione, a tripeptide integral in both cytoprotection and maintenance of cellular thiol status. While HMECs increased catalase activity during culture in the cytokine-rich KS milieu (control medium supplemented with conditioned medium from MOT, an HTLV II-infected cell line), AIDS-KS cells demonstrated reduced catalase function under these conditions. Furthermore, HMEC cultures showed an inherent biochemical responsiveness, by increasing catalase activity following exposure to exogenous H2O2. In contrast, the catalase activity of AIDS-KS cells decreased following H2O2 challenge. Our results show that an inherent deficiency in cellular cytoprotection is present in AIDS-KS cells and suggest that oxidant stress may function in the development and progression of AIDS-KS.
Collapse
Affiliation(s)
- S R Mallery
- Department of Dentistry, College of Dentistry, Ohio State University, Columbus 43210-1241
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Watson AJ, Askew JN, Sandle GI. Characterisation of oxidative injury to an intestinal cell line (HT-29) by hydrogen peroxide. Gut 1994; 35:1575-81. [PMID: 7828976 PMCID: PMC1375615 DOI: 10.1136/gut.35.11.1575] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reactive oxygen metabolites have been implicated in causing epithelial cell injury in colonic inflammation. A model of oxidant injury in intestinal epithelial cells has been developed in which HT-29-18-C1 cells are injured with graded concentrations of hydrogen peroxide and characterised by the MTT test. The MTT test was validated as a cytotoxicity assay and has a similar sensitivity to hydrogen peroxide induced injury as the assay of intracellular adenosine triphosphate. Exposure to a range of hydrogen peroxide concentrations (0.05-20 mM) for varying duration (5-120 min) showed that injury was dependent on time and concentration. The median lethal dose (LD50) for one hour exposure to hydrogen peroxide was approximately 0.1 mM. Injury from hydrogen peroxide was only partially reversible as determined by the MTT test and assay of cellular proliferation by crystal violet staining. There was an exponential loss of hydrogen peroxide when incubated with HT-29-18-C1 cells (t1/2 35 min). Experiments with 0.5 mg/ml aminotriazole and 0.5-2 mM buthionine sulphoximine suggested hydrogen peroxide breakdown was predominantly caused by catalase rather than glutathione peroxidase. Injury resulting from 1 mM hydrogen peroxide could be reduced by either coincubation of cells with 1,10-phenanthroline, an Fe2+ chelator, or preincubation with deferoxamine, and Fe3+ chelator, suggesting the participation of Fe2+ and Fe3+ in hydrogen peroxide induced injury. In conclusion, hydrogen peroxide induces injury in HT-29-18-C1 cells both directly and by generation of the hydroxyl radical.
Collapse
Affiliation(s)
- A J Watson
- Department of Medicine, Hope Hospital, University of Manchester
| | | | | |
Collapse
|
50
|
Altman SA, Zastawny TH, Randers L, Lin Z, Lumpkin JA, Remacle J, Dizdaroglu M, Rao G. tert.-butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat Res 1994; 306:35-44. [PMID: 7512201 DOI: 10.1016/0027-5107(94)90165-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
tert.-Butyl hydroperoxide has been utilized to study the effect of oxidative stress on living cells; however, its effect on DNA bases in cells has not been characterized. In the present work, we have investigated DNA base damage in mammalian cells exposed to this organic hydroperoxide. SP2/0 derived murine hybridoma cells were treated with 4 concentrations of tert.-butyl hydroperoxide for varying periods of time. Chromatin was isolated from treated and control cells and subsequently analyzed by gas chromatography-mass spectrometry with selected-ion monitoring for DNA base damage. Quantification of damaged DNA bases was achieved by isotope-dilution mass spectrometry. The amounts of 8 products were significantly higher than control levels in cells treated with tert.-butyl hydroperoxide at a concentration range of 0.01-0.1 mM. At concentrations from 1.0 to 10 mM, product formation was inhibited and the amounts of products were similar to those in control cells. The bimodal nature of the dose-response may be qualitatively analogous to previous reports of bimodal killing of E. coli bacteria by hydrogen peroxide. The nature of the identified DNA base lesions suggests the involvement of the hydroxyl radical in their formation. tert.-Butyl hydroperoxide is known to produce the tert.-butoxyl radical in reactions with metal ions. However, it is unlikely that the tert.-butoxyl radical produces these DNA lesions. It is suggested that DNA base damage arises from tert.-butyl hydroperoxide-mediated oxidative stress in cells, resulting in formation of hydroxyl radicals in close proximity to DNA. The inhibition of product formation at high concentrations of tert.-butyl hydroperoxide may be explained by the scavenging of tert.-butoxyl radical by tert.-butyl hydroperoxide resulting in inhibition of oxidative stress. The plausibility of the scavenging mechanism was evaluated with a mathematical simulation of the dose-response for DNA damage in solutions containing hydrogen peroxide. The simulation model predicted a bimodal dose-response which agreed qualitatively with the results in this study and with other in vivo and in vitro studies reported in the literature.
Collapse
Affiliation(s)
- S A Altman
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County 21228
| | | | | | | | | | | | | | | |
Collapse
|