1
|
Gene delivery corrects N-acetylglutamate synthase deficiency and enables insights in the physiological impact of L-arginine activation of N-acetylglutamate synthase. Sci Rep 2021; 11:3580. [PMID: 33574402 PMCID: PMC7878489 DOI: 10.1038/s41598-021-82994-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to urea. N-acetylglutamate synthase (NAGS) catalyzes formation of N-acetylglutamate, an essential allosteric activator of carbamylphosphate synthetase 1. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine, but the physiological significance of NAGS activation by L-arginine has been unknown. The NAGS knockout (Nags−/−) mouse is an animal model of inducible hyperammonemia, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG + Cit). We used adeno associated virus (AAV) based gene transfer to correct NAGS deficiency in the Nags−/− mice, established the dose of the vector needed to rescue Nags−/− mice from hyperammonemia and measured expression levels of Nags mRNA and NAGS protein in the livers of rescued animals. This methodology was used to investigate the effect of L-arginine on ureagenesis in vivo by treating Nags−/− mice with AAV vectors encoding either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine. The Nags−/− mice expressing E354A mNAGS were viable but had elevated plasma ammonia concentration despite similar levels of the E354A and wild-type mNAGS proteins. The corresponding mutation in human NAGS (NP_694551.1:p.E360D) that abolishes binding and activation by L-arginine was identified in a patient with NAGS deficiency. Our results show that NAGS deficiency can be rescued by gene therapy, and suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.
Collapse
|
2
|
Griffin JWD, Bradshaw PC. Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theor Biol Med Model 2019; 16:11. [PMID: 31366360 PMCID: PMC6670211 DOI: 10.1186/s12976-019-0109-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND After proteolysis, the majority of released amino acids from dietary protein are transported to the liver for gluconeogenesis or to peripheral tissues where they are used for protein synthesis and eventually catabolized, producing ammonia as a byproduct. High ammonia levels in the brain are a major contributor to the decreased neural function that occurs in several pathological conditions such as hepatic encephalopathy when liver urea cycle function is compromised. Therefore, it is important to gain a deeper understanding of human ammonia metabolism. The objective of this study was to predict changes in blood ammonia levels resulting from alterations in dietary protein intake, from liver disease, or from partial loss of urea cycle function. METHODS A simple mathematical model was created using MATLAB SimBiology and data from published studies. Simulations were performed and results analyzed to determine steady state changes in ammonia levels resulting from varying dietary protein intake and varying liver enzyme activity levels to simulate liver disease. As a toxicity reference, viability was measured in SH-SY5Y neuroblastoma cells following differentiation and ammonium chloride treatment. RESULTS Results from control simulations yielded steady state blood ammonia levels within normal physiological limits. Increasing dietary protein intake by 72% resulted in a 59% increase in blood ammonia levels. Simulations of liver cirrhosis increased blood ammonia levels by 41 to 130% depending upon the level of dietary protein intake. Simulations of heterozygous individuals carrying a loss of function allele of the urea cycle carbamoyl phosphate synthetase I (CPS1) gene resulted in more than a tripling of blood ammonia levels (from roughly 18 to 60 μM depending on dietary protein intake). The viability of differentiated SH-SY5Y cells was decreased by 14% by the addition of a slightly higher amount of ammonium chloride (90 μM). CONCLUSIONS Data from the model suggest decreasing protein consumption may be one simple strategy to decrease blood ammonia levels and minimize the risk of developing hepatic encephalopathy for many liver disease patients. In addition, the model suggests subjects who are known carriers of disease-causing CPS1 alleles may benefit from monitoring blood ammonia levels and limiting the level of protein intake if ammonia levels are high.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
3
|
Evidence for a role of the ileum in the control of nitrogen homeostasis via the regulation of arginine metabolism. Br J Nutr 2011; 106:227-36. [DOI: 10.1017/s0007114511000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As arginine plays a key role in the regulation of liver ureagenesis, we hypothesised that a modulation of enzymes involved in arginine metabolism within the intestine contributes to the regulation of N homeostasis according to protein supply. Our aim was to study the influence of variations in protein or amino acid (AA) supply on intestinal arginase, glutaminase, ornithine aminotransferase (OAT), argininosuccinate lyase and argininosuccinate synthetase. We evaluated in vivo in rats the responses of these enzymes to short-term (ST, 16 h) and long-term (LT, 15 d) variations in dietary protein (10, 17 or 25 % protein diet). In addition, in order to test whether these responses could involve a direct action of AA on the gene expression and activity of these enzymes, Caco-2/TC7 cells were cultured for 3 d with increasing AA concentrations. In vivo, in the ST, both high- and low-protein diets increased arginase activity in the intestinal mucosa (ST25 %: 46 (sem 2) μmol/g per min and ST10 %: 46 (sem 2) μmol/g per min v. ST17 %: 36 (sem 3) μmol/g per min, P < 0·05). In the LT, OAT expression was increased in the LT10 % group (+277 %, P < 0·05) compared with the LT17 % group. Caco-2/TC7 cells showed inverse relationships between AA supply and arginase (P = 0·058) and OAT (P = 0·035) expressions. The present study demonstrates the regulation of intestinal arginase and OAT expressions in response to protein supply. Our in vitro experiments further indicate a direct AA-induced regulation of the mRNA abundance of these enzymes. In situations of limited protein supply, this regulation would increase intestinal arginine catabolism and, possibly via a decrease in arginine portal release, decrease hepatic AA oxidation, thus promoting N sparing.
Collapse
|
4
|
Nissim I, Horyn O, Nissim I, Daikhin Y, Caldovic L, Barcelona B, Cervera J, Tuchman M, Yudkoff M. Down-regulation of hepatic urea synthesis by oxypurines: xanthine and uric acid inhibit N-acetylglutamate synthase. J Biol Chem 2011; 286:22055-68. [PMID: 21540182 DOI: 10.1074/jbc.m110.209023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with (15)N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent K(m) for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states.
Collapse
Affiliation(s)
- Itzhak Nissim
- Division of Child Development, Rehabilitation Medicine, and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
The 2009 ESPEN Sir David Cuthbertson. Citrulline: A new major signaling molecule or just another player in the pharmaconutrition game? Clin Nutr 2010; 29:545-51. [DOI: 10.1016/j.clnu.2010.07.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 02/05/2023]
|
6
|
Jourdan M, Cynober L, Moinard C, Blanc MC, Neveux N, De Bandt JP, Aussel C. Splanchnic sequestration of amino acids in aged rats: in vivo and ex vivo experiments using a model of isolated perfused liver. Am J Physiol Regul Integr Comp Physiol 2007; 294:R748-55. [PMID: 18056986 DOI: 10.1152/ajpregu.00291.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Splanchnic sequestration of amino acids (SSAA) is a process observed during aging that leads to decreased peripheral amino acid (AA) availability. The mechanisms underlying SSAA remain unknown. The aim of the present study was to determine whether a high-protein diet could increase nitrogen retention in aged rats by saturating SSAA and whether SSAA could be explained by dysregulation of hepatic nitrogen metabolism. Adult and aged male Sprague-Dawley rats were housed in individual metabolic cages and fed a normal-protein (17% protein) or high-protein diet (27%) for 2 wk. Nitrogen balance (NB) was calculated daily. On day 14, livers were isolated and perfused for 90 min to study AA and urea fluxes. NB was lower in aged rats fed a normal-protein diet than in adults, but a high-protein diet restored NB to adult levels. Isolated perfused livers from aged rats showed decreased urea production and arginine uptake, together with a release of alanine (vs. uptake in adult rats) and a hepatic accumulation of alanine. The in vivo data suggest that SSAA is a saturable process that responds to an increase in dietary protein content. The hepatic metabolism of AA in aged rats is greatly modified, and urea production decreases. This result refutes the hypothesis that SSAA is associated with an increase in AA disposal via urea production.
Collapse
Affiliation(s)
- M Jourdan
- Laboratory of Biological Nutrition, René Descartes Paris 5 University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. ACTA ACUST UNITED AC 2007; 24:275-90. [PMID: 17214603 DOI: 10.1111/j.1527-3466.2006.00275.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
L-citrulline is the natural precursor of L-arginine, substrate for nitric oxide synthase (NOS) in the production of NO. Supplemental administration L-arginine has been shown to be effective in improving NO production and cardiovascular function in cardiovascular diseases associated with endothelial dysfunction, such as hypertension, heart failure, atherosclerosis, diabetic vascular disease and ischemia-reperfusion injury, but the beneficial actions do not endure with chronic therapy. Substantial intestinal and hepatic metabolism of L-arginine to ornithine and urea by arginase makes oral delivery very ineffective. Additionally, all of these disease states as well as supplemental L-arginine enhance arginase expression and activity, thus reducing the effectiveness of L-arginine therapy. In contrast, L-citrulline is not metabolized in the intestine or liver and does not induce tissue arginase, but rather inhibits its activity. L-citrulline entering the kidney, vascular endothelium and other tissues can be readily converted to L-arginine, thus raising plasma and tissue levels of L-arginine and enhancing NO production. Supplemental L-citrulline has promise as a therapeutic adjunct in disease states associated with L-arginine deficiencies.
Collapse
Affiliation(s)
- Maritza J Romero
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta GA, USA
| | | | | | | |
Collapse
|
8
|
Ferrer-Lorente R, Fernández-López JA, Alemany M. Estimation of the metabolizable energy equivalence of dietary proteins. Eur J Nutr 2006; 46:1-11. [PMID: 17096078 DOI: 10.1007/s00394-006-0623-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein contributes significantly to the human daily energy budget. The high diversity in composition, digestibility and dietary proportion complicates the estimation of its actual energy contribution. In practical terms we continue using the energy equivalents estimated by Atwater. This results in a persistent source of imprecision in the calculation of dietary energy that at least can be partially corrected. AIM OF THE STUDY We used experimentally obtained data to compute an algorithm that will allow to estimate the gross energy content of a protein which composition is known. The relationship between gross energy (i.e. bomb calorimeter-derived) of protein is not a direct correlate of its metabolic efficacy as energy supplier. Thus we estimated the metabolic energy yield (i.e. ATP equivalents) of amino acid residues, using the data to compute the estimated protein metabolic energy yield. Both approaches were to be used to propose a corrected protein energy equivalence factor that will increase the precision in the calculation of dietary protein energy, especially when information on protein composition is available. METHODS The gross energy content of amino acids was measured with a bomb-calorimeter, and compared with that of glucose. Amino acid estimated metabolizable energy yield, in moles of ATP per mol of amino acid residue, was also calculated. The net heat yield of all amino acids were used to compute the theoretical heat production of albumin, collagen, gelatin and whole rat protein, which gross energy was also measured experimentally. The mean estimated energy yield (both gross and metabolizable) for each amino acid residue were used to compute the theoretical energy of a number of dietary protein sources which composition was available in the literature. RESULTS Calculated energy yield of a few selected proteins coincided with the data directly measured in the bomb calorimeter. The computed gross energy yield and metabolizable energy yield for a number of dietary protein sources was estimated. There were minor differences between both parameters: the proportion of aromatic and branched chain amino acids was the main factor affecting the gross energy yield of a given protein; conversely, the higher proportion of nitrogen, especially, but not exclusively, related to arginine and glycine content correlated with lower metabolizable energy. These parameters, corrected by the gross and metabolizable energy of glucose were used to compute a mean energy equivalence for dietary protein: 19 kJ/g protein (i.e. 4.55 kcal/g protein). This value, higher than the current Atwater factor, does not include protein digestibility (as Atwater value did), but included the cost of nitrogen excretion. CONCLUSIONS The methodology presented allows the approximate calculation of both the purported heat production of a protein (pure or mixture) for which we know its amino acid composition (and even get a good estimate if we only know its proportion of nitrogen), and its metabolic energy equivalence. We also propose the use of a new energy correlate of dietary protein; this can be further tuned if the proportion of nitrogen in the protein is known, and even further if its amino acid composition is available. As a consequence of its application to dietary proteins, their energy yield may be higher than usually considered, which may influence the calculations of energy balance.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Nitrogen-Obesity Group, Department of Nutrition and Food Science, University of Barcelona, Av. Diagonal, 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
9
|
Caldovic L, Lopez GY, Haskins N, Panglao M, Shi D, Morizono H, Tuchman M. Biochemical properties of recombinant human and mouse N-acetylglutamate synthase. Mol Genet Metab 2006; 87:226-32. [PMID: 16321554 DOI: 10.1016/j.ymgme.2005.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 11/21/2022]
Abstract
N-Acetylglutamate synthase (NAGS, EC 2.3.1.1) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetylcoenzyme A. NAG is an obligatory activator of carbamylphosphate I (CPSI), the first and a rate limiting enzyme of ureagenesis. The enzymatic activity of NAGS increases in the presence of arginine. Since the level of NAGS activity depends on the concentrations of two amino acids, glutamate and arginine, and it supplies the essential cofactor for CPSI, NAGS may play an important role in the regulation of ureagenesis. The amino acid sequences of human and mouse NAGS consist of three regions with different degrees of conservation: the mitochondrial targeting signal (MTS), the variable domain, and the conserved domain. Removal of the MTS results in mature NAGS (NAGS-M) while removal of the MTS and the variable domain results in conserved NAGS (NAGS-C). The biochemical properties of purified recombinant human and mouse NAGS-M and NAGS-C were determined in this study with the goal of better understanding the role of the variable domain in NAGS function. The activity of all four proteins doubled in the presence of arginine, while the affinities for substrates changed less than two fold. The turnover numbers of NAGS-C are double those of NAGS-M proteins. Processing of NAGS-M to form NAGS-C results in an enzyme with higher catalytic activity and could play a role in the regulation of NAG production, CPSI function, and urea synthesis.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Children's Research Institute, Children's National Medical Center, The George Washington University, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Nissim I, Luhovyy B, Horyn O, Daikhin Y, Nissim I, Yudkoff M. The role of mitochondrially bound arginase in the regulation of urea synthesis: studies with [U-15N4]arginine, isolated mitochondria, and perfused rat liver. J Biol Chem 2005; 280:17715-24. [PMID: 15753084 DOI: 10.1074/jbc.m500607200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.
Collapse
Affiliation(s)
- Itzhak Nissim
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mouillé B, Robert V, Blachier F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol 2004; 287:G344-51. [PMID: 15064231 DOI: 10.1152/ajpgi.00445.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic high-protein consumption leads to increased concentrations of NH(4)(+)/NH(3) in the colon lumen. We asked whether this increase has consequences on colonic epithelial cell metabolism. Rats were fed isocaloric diets containing 20 (P20) or 58% (P58) casein as the protein source for 7 days. NH(4)(+)/NH(3) concentration in the colonic lumen and in the colonic vein blood as well as ammonia metabolism by isolated surface colonic epithelial cells was determined. After 2 days of consumption of the P58 diet, marked increases of luminal and colonic vein blood NH(4)(+)/NH(3) concentrations were recorded when compared with the values obtained in the P20 group. Colonocytes recovered from the P58 group were characterized at that time and thereafter by an increased capacity for l-ornithine and urea production through arginase (P < 0.05). l-Ornithine was mostly used in the presence of NH(4)Cl for the synthesis of the metabolic end product l-citrulline. After 7 days of the P58 diet consumption, however, the ammonia metabolism into l-citrulline was found lower (P < 0.01) when compared with the values measured in the colonocytes recovered from the P20 group despite any decrease in the related enzymatic activities (i.e., carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase). This decrease was found to coincide with a return of blood NH(4)(+)/NH(3) concentration in colonic portal blood to values close to the one recorded in the P20 group. In response to increased NH(4)(+)/NH(3) concentration in the colon, the increased capacity of the colonocytes to synthesize l-ornithine is likely to correspond to an elevated l-ornithine requirement for the elimination of excessive blood ammonia in the liver urea cycle. Moreover, in the presence of NH(4)Cl, colonocytes diminished their synthesis capacity of l-citrulline from l-ornithine, allowing a lower cellular utilization of this latter amino acid. These results are discussed in relationship with an adaptative process that would be related to both interorgan metabolism and to the role of the colonic epithelium as a first line of defense toward luminal NH(4)(+)/NH(3) concentrations.
Collapse
Affiliation(s)
- Béatrice Mouillé
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | |
Collapse
|
12
|
Caldovic L, Tuchman M. N-acetylglutamate and its changing role through evolution. Biochem J 2003; 372:279-90. [PMID: 12633501 PMCID: PMC1223426 DOI: 10.1042/bj20030002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 01/23/2003] [Accepted: 03/13/2003] [Indexed: 11/17/2022]
Abstract
N -Acetylglutamate (NAG) fulfils distinct biological roles in lower and higher organisms. In prokaryotes, lower eukaryotes and plants it is the first intermediate in the biosynthesis of arginine, whereas in ureotelic (excreting nitrogen mostly in the form of urea) vertebrates, it is an essential allosteric cofactor for carbamyl phosphate synthetase I (CPSI), the first enzyme of the urea cycle. The pathway that leads from glutamate to arginine in lower organisms employs eight steps, starting with the acetylation of glutamate to form NAG. In these species, NAG can be produced by two enzymic reactions: one catalysed by NAG synthase (NAGS) and the other by ornithine acetyltransferase (OAT). In ureotelic species, NAG is produced exclusively by NAGS. In lower organisms, NAGS is feedback-inhibited by L-arginine, whereas mammalian NAGS activity is significantly enhanced by this amino acid. The NAGS genes of bacteria, fungi and mammals are more diverse than other arginine-biosynthesis and urea-cycle genes. The evolutionary relationship between the distinctly different roles of NAG and its metabolism in lower and higher organisms remains to be determined. In humans, inherited NAGS deficiency is an autosomal recessive disorder causing hyperammonaemia and a phenotype similar to CPSI deficiency. Several mutations have been recently identified in the NAGS genes of families affected with this disorder.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Children's Research Institute, Children's National Medical Center, the George Washington University, 111 Michigan Ave NW, Washington, DC 20010, USA
| | | |
Collapse
|
13
|
Nissim I, Horyn O, Daikhin Y, Nissim I, Lazarow A, Yudkoff M. Regulation of urea synthesis by agmatine in the perfused liver: studies with 15N. Am J Physiol Endocrinol Metab 2002; 283:E1123-34. [PMID: 12388162 DOI: 10.1152/ajpendo.00246.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.
Collapse
Affiliation(s)
- Itzhak Nissim
- Children's Hospital of Philadelphia and Division of Child Development and Rehabilitation, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The urea cycle is comprised of five enzymes but also requires other enzymes and mitochondrial amino acid transporters to function fully. The complete urea cycle is expressed in liver and to a small degree also in enterocytes. However, highly regulated expression of several enzymes present in the urea cycle occurs also in many other tissues, where these enzymes are involved in synthesis of nitric oxide, polyamines, proline and glutamate. Glucagon, insulin, and glucocorticoids are major regulators of the expression of urea cycle enzymes in liver. In contrast, the "urea cycle" enzymes in nonhepatic cells are regulated by a wide range of pro- and antiinflammatory cytokines and other agents. Regulation of these enzymes is largely transcriptional in virtually all cell types. This review emphasizes recent information regarding roles and regulation of urea cycle and arginine metabolic enzymes in liver and other cell types.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
15
|
Mouillé B, Morel E, Robert V, Guihot-Joubrel G, Blachier F. Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:401-7. [PMID: 10350656 DOI: 10.1016/s0304-4165(99)00045-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ammonia is present at high concentration in the colon lumen and is considered a colon cancer suspect. Furthermore, ammonia usually eliminated by the liver in the ornithine cycle is considered highly toxic to cerebral function when present in excess in the blood plasma. Therefore, the metabolic pathways involved in ammonia metabolism in colonocytes were studied in the present study. Rat colonocytes were found equipped with low carbamoylphosphate synthase I activity, high ornithine carbamoyltransferase and arginase activities and low argininosuccinate synthase activity. High (10 and 50 mmol/l) NH4Cl concentrations but not low concentrations (1 and 5 mmol/l) were found able to increase respectively 3- and 10-fold the conversion of radioactive L-arginine to L-citrulline. In contrast, very low capacity for L-citrulline conversion to L-arginine is found in colonocytes. It is concluded that an incomplete ornithine cycle is operative in colonocytes which results in ammonia stimulated L-citrulline production. The contribution of this metabolic pathway in relation to ammonia detoxication by colonocytes is discussed.
Collapse
Affiliation(s)
- B Mouillé
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, F-78352, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
16
|
McCauley R, Kong SE, Hall J. Glutamine and nucleotide metabolism within enterocytes. JPEN J Parenter Enteral Nutr 1998; 22:105-11. [PMID: 9527969 DOI: 10.1177/0148607198022002105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutamine has an important role as a source of energy for enterocytes. However, it may also have a key role as a source of nitrogen for the synthesis of nucleotides. The relative contribution of de novo synthesis and salvage pathways seems to be affected by the position of enterocytes within the crypt-villus axis as well as the dietary intake of nucleic acids and glutamine. Nucleotides are especially important to enterocytes during intestinal development, maturation, and repair. Hence an understanding of nucleotide metabolism within enterocytes has important implications regarding both the composition and route of administration of nutrient solutions. Many important questions remain unanswered, in particular: Does glutamine stimulate intestinal de novo pyrimidine synthesis via the action of carbamoyl phosphate synthetase I? Can de novo purine synthesis maintain intestinal purine pools in the absence of dietary nucleic acids? And, what are the specific effects of parenterally administered nucleotides on the metabolism and well-being of enterocytes? A greater understanding of these issues will lead to a more rational approach toward the nutritional modulation of gut dysfunction.
Collapse
Affiliation(s)
- R McCauley
- University Department of Surgery, Royal Perth Hospital, Australia
| | | | | |
Collapse
|
17
|
|
18
|
De Bandt JP, Cynober L, Lim SK, Coudray-Lucas C, Poupon R, Giboudeau J. Metabolism of ornithine, alpha-ketoglutarate and arginine in isolated perfused rat liver. Br J Nutr 1995; 73:227-39. [PMID: 7718542 DOI: 10.1079/bjn19950025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ornithine (Orn; alpha-ketoglutarate (alpha KG) salt) and arginine (Arg) supplementation of enteral diets has been advocated in the treatment of hypercatabolism of trauma patients, but both compounds are subject to extensive hepatic metabolism. To compare the metabolism of these two compounds and to evaluate the possible influence of the alpha KG moiety, livers were perfused with alpha KG, Orn, ornithine alpha-ketoglutarate (OKG) or Arg (n 6 in each group) for 1 h. Arg uptake was nearly fourfold higher than Orn uptake (690 (SD 162) v. 178 (SD 30) nmol/min per g liver), and Orn uptake was not modified by alpha KG. Orn was totally metabolized by the liver, whereas Arg led to Orn release (408 (SD 159) nmol/min per g liver) and a threefold stimulation of urea production (Arg 1.44 (SD 0.22) v. Orn 0.45 (SD 0.09) mumol/min per g liver). alpha KG alone only increased hepatic aspartate uptake but, when associated with Orn as OKG, it led to an increase in glutamate release and in proline content in the liver and to a decrease in proline uptake. From these findings we conclude that (1) Arg load is extensively metabolized by the liver, inducing urea production, (2) in enteral use, Orn supplementation appears preferable to Arg as it is less ureogenic (as also recently demonstrated in vivo in stressed rats receiving isomolar amounts of Arg and Orn), (3) the liver participates in the Orn-alpha KG metabolic interaction, mostly in proline metabolism, which occurs in the splanchnic area.
Collapse
Affiliation(s)
- J P De Bandt
- Laboratoire de Biochimie A, Hôpital Saint Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Castillo L, Ajami A, Branch S, Chapman TE, Yu YM, Burke JF, Young VR. Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism 1994; 43:114-22. [PMID: 8289668 DOI: 10.1016/0026-0495(94)90166-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To explore the response of whole-body arginine metabolism to a change in arginine intake, plasma arginine kinetics were investigated in eight healthy adult men who received an L-amino acid diet supplying an Arg-rich or Arg-free intake for 6 days before undergoing a tracer study on day 7. The tracer protocol lasted for 8 hours. For the first 3 hours subjects remained in the postabsorptive (fasted) state, and during the following 5 hours they consumed small meals at 30-minute intervals. Primed continuous intravenous infusions of L-[guanidino-13C]arginine, L-[5,5,5-2H3]leucine, and [15N2]urea were administered to estimate plasma amino acid fluxes and the rate of urea production. For the fasted and fed states, plasma arginine fluxes (mumol.kg-1.h-1, mean +/- SD) were 69 +/- 8 and 87 +/- 12 (P < .01), respectively, for the Arg-rich diet and 63 +/- 14 and 51 +/- 7 (P < .01, from Arg-rich) for the Arg-free diet. Compared with the Arg-rich results, fed-state plasma arginine and ornithine concentrations were decreased (P < .01) and citrulline concentration was increased (P < .01) during the Arg-free diet period. Leucine fluxes and rates of urea production did not differ between the diet groups. The lower fed-state arginine flux in subjects receiving the Arg-free compared with the Arg-rich diet appears to be entirely due to the decreased rate of entry of arginine from the intestine in the former group.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Castillo
- Laboratory of Human Nutrition and the Clinical Research Center, Massachusetts Institute of Technology, Cambridge 02149
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Arginine and ornithine are precursors of nitric oxide and polyamines, respectively. These metabolites intimately participate in permeability and adaptive responses of the gut. The liver possesses high arginase activity as an intrinsic part of urea synthesis and would consume most of the portal supply of dietary arginine. The gut reduces this possibility by converting dietary arginine to citrulline, which effectively bypass the liver and is resynthesized to arginine in the kidney. Dietary ornithine supplementation, in the form of ornithine alpha-ketoglutarate (OKG) can be considered as an arginine precursor. Several supplement studies have shown both amino acids to promote growth hormone and insulin secretion with anabolic effects in postoperative patients. Their intermediary metabolites (for example, glutamine, proline) may also be of benefit in trauma metabolism. Specific effects of either amino acid on the gut are poorly reported. One recent animal study showed improved morphology after OKG administration, perhaps through increased polyamine secretion. Generation of nitric oxide from arginine has two facets. Excess production from high dose arginine potentiated the effects of experimentally induced sepsis, whereas low doses improved survival. These considerations suggest that the role of enteral diet supplementation with arginine or OKG should be urgently examined for any benefits it may have on mucosal barrier function.
Collapse
Affiliation(s)
- L Cynober
- Laboratoire de Biochimie, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
21
|
Blachier F, M'Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:109-17. [PMID: 8365397 DOI: 10.1111/j.1432-1033.1993.tb18122.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The capacity for L-arginine metabolism was studied in villus enterocytes isolated from pigs at birth, after 2-8 days suckling and after weaning. Immediately after birth, enterocytes were able to convert 1 mM L-citrulline, 2 mM L-glutamine or 1 mM L-ornithine to L-arginine. In 2-8-day-old animals, the net production of L-arginine from L-citrulline (2.00 +/- 0.45 nmol x 10(6) cells-1 x 30 min-1), or from L-ornithine (0.29 +/- 0.06 nmol x 10(6) cells-1 x 30 min-1) was similar to the values obtained at birth. Furthermore, 40% of L-arginine synthetized de novo from L-citrulline were released into the incubation medium. In 2-8-day-old animals, the production of L-arginine from L-glutamine represented only 5% of the production at birth (the latter being 0.73 +/- 0.15 nmol x 10(6) cells-1 x 30 min-1). In enterocytes isolated from post-weaned pigs, no significant production of L-arginine from either L-glutamine or L-ornithine was detected. In contrast, although the L-arginine production from L-citrulline was very low in post-weaned animals, it was significantly enhanced in the presence of L-glutamine, representing 23% of the production measured in suckling animals. The capacity of enterocytes to cleave L-arginine to L-ornithine and urea was very limited at birth, but was increased more than threefold in 2-day-old animals. This was concomitant with a marked increase in arginase activity. In post-weaned animals, the flux through arginase in intact enterocytes, and the arginase activity were both threefold higher than in 2-8-day-old animals. It is concluded that enterocytes isolated from neonatal pigs exhibit the capacity for a net production of L-arginine since the metabolism of this amino acid is oriented to anabolism rather than catabolism. The results are discussed in relation to L-arginine metabolism in the neonatal liver.
Collapse
Affiliation(s)
- F Blachier
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
22
|
Ewart HS, Brosnan JT. Rapid activation of hepatic glutaminase in rats fed on a single high-protein meal. Biochem J 1993; 293 ( Pt 2):339-44. [PMID: 8343112 PMCID: PMC1134364 DOI: 10.1042/bj2930339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report that hepatic glutaminase is rapidly activated in rats fed on a single high-protein (60% casein) meal. Rats previously fed on a normal-protein (15% casein) diet for 3-4 days were given a high-protein meal for 2 h. The high-protein meal increased the rate of flux through glutaminase in intact liver mitochondria nearly 3-fold (20.6 +/- 1.7 nmol/min per mg of protein versus 7.5 +/- 2.9 nmol/min per mg of protein) at a P(i) concentration of 10 mM. The activation of flux through glutaminase by a high-protein meal involved an increased sensitivity of glutaminase to P(i), an activator of the enzyme. The Ka for P(i) was 1.0 mM and 24.1 mM in mitochondria from rats fed on the high-protein and normal-protein meals respectively. We measured the concentration of P(i) in the mitochondrial matrix and found that it did not differ in mitochondria from rats fed on the high-protein and normal-protein meals, suggesting that the effect of the high-protein meal on the P(i)-sensitivity of glutaminase was not due to a change in the distribution of P(i) across the mitochondrial inner membrane. Glutaminase activity was measured by using mitochondrial membranes from frozen-thawed mitochondria. Glutaminase activity and its dependence on P(i) were similar for preparations from rats fed on high-protein and normal-protein meals. These findings show that hepatic glutaminase is stimulated rapidly by a high-protein meal. This is part of the physiological hepatic response to increased protein intake which permits the liver to cope with the influx of glutamine occurring at this time.
Collapse
Affiliation(s)
- H S Ewart
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | |
Collapse
|
23
|
Maggini S, Stoecklin-Tschan FB, Mörikofer-Zwez S, Walter P. New kinetic parameters for rat liver arginase measured at near-physiological steady-state concentrations of arginine and Mn2+. Biochem J 1992; 283 ( Pt 3):653-60. [PMID: 1590754 PMCID: PMC1130935 DOI: 10.1042/bj2830653] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cytosolic cell-free system from rat liver containing the last three enzymes of the urea cycle, a number of cofactors and the substrates aspartate and citrulline was shown to synthesize urea at near-physiological rates ranging between 0.40 and 1.25 mumol/min per g of liver. This system was used to determine the kinetic parameters for arginase. With saturating amounts of Mn2+ (30 microM), arginine remained at a steady-state concentration of 5-35 microM depending on the aspartate and citrulline supply. Vmax. at micromolar arginine concentrations was between 1.10 and 1.25 mumol/min per g of liver, the K0.5 (arginine) between 6.0 and 6.5 microM and positive co-operativity was observed (Hill coefficient 2). Omission of Mn2+ caused a significant accumulation of arginine during the incubation, suggesting a regulatory effect of arginase. Under these conditions, Vmax. was 1.10-1.65 mumol/min per g of liver and the Km (arginine) increased up to 14.4-21.1 microM. The apparent Ka for Mn2+ in the presence of physiological concentrations of ATP, Mg2+ and arginine was calculated to be maximally 8 microM. Initial-velocity experiments with millimolar arginine concentrations as the direct substrate gave the following results, which are in good agreement with literature data. In the absence of Mn2+, Vmax. was 71.3 mumol/min per g of liver and the Km (arginine) 1.58 mM. With 30 microM-Mn2+, Vmax. was 69.4 mumol/min per g of liver and the Km (arginine) decreased to 0.94 mM. On the basis of our results, we propose the presence of high-affinity and low-affinity sites for arginine on rat liver arginase and postulate that alterations in arginase activity arising from changes in the concentration of arginine and of the cofactor Mn2+ may contribute to the regulation of ureagenesis in vivo.
Collapse
Affiliation(s)
- S Maggini
- Department of Biochemistry, University of Basel, Switzerland
| | | | | | | |
Collapse
|
24
|
Wakabayashi Y, Iwashima A, Yamada E, Yamada R. Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. II. N-acetylglutamate synthase. Arch Biochem Biophys 1991; 291:9-14. [PMID: 1929439 DOI: 10.1016/0003-9861(91)90098-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe here a concise assay procedure for N-acetylglutamate (AGA) synthase (AGAS) and its application to an extensive study of tissue distribution of AGAS activity. Crude mitochondria from several tissues were incubated in a pair of assay mixtures with [14C]glutamate in the absence and presence of acetyl-CoA at 15 degrees C for 10 min. Anionic components including [14C]AGA were first isolated from glutamate by a cation exchanger column. In order to remove anionic contaminants such as succinate, the AGA was converted to glutamate enzymatically by aminoacylase, and then the glutamate was isolated by cation exchange chromatography and counted. Recoveries were corrected individually. The difference between the pair incubations was taken as the activity. An extensive survey of AGAS activity in rats showed that, although the liver expressed the highest activity, the small intestine, testis, lung and submaxillary gland also exhibited considerable activity. Sexual differences in activity were not found in the liver and small intestine. We also detected activity in the human small intestine for the first time. Optimization of incubation temperature and time and the presence of arginine in an assay mixture was essential and we demonstrated that the AGAS reaction with crude mitochondria as an enzyme source was unstable without arginine and at higher temperatures. This procedure appears suitable for studying the physiological and nutritional role of AGAS in non-hepatic tissues. In the accompanying paper we applied this procedure to study the ontogeny of AGAS in developing rat tissues.
Collapse
Affiliation(s)
- Y Wakabayashi
- Department of Biochemistry, Kyoto Prefectural University of Medicine, Japan
| | | | | | | |
Collapse
|