1
|
Dautel DR, Champion JA. Protein Vesicles Self-Assembled from Functional Globular Proteins with Different Charge and Size. Biomacromolecules 2020; 22:116-125. [PMID: 32886493 DOI: 10.1021/acs.biomac.0c00671] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein vesicles can be synthesized by mixing two fusion proteins: an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) with a globular, soluble protein fused to a glutamate-rich leucine zipper (ZE). Currently, only fluorescent proteins have been incorporated into vesicles; however, for protein vesicles to be useful for biocatalysis, drug delivery, or biosensing, vesicles must assemble from functional proteins that span an array of properties and functionalities. In this work, the globular protein was systematically changed to determine the effects of the surface charge and size on the self-assembly of protein vesicles. The formation of microphases, which included vesicles, coacervates, and hybrid structures, was monitored at different assembly conditions to determine the phase space for each globular protein. The results show that the protein surface charge has a small effect on vesicle self-assembly. However, increasing the size of the globular protein decreases the vesicle size and increases the stability at lower ZE/ZR molar ratios. The phase diagrams created can be used as guidelines to incorporate new functional proteins into vesicles. Furthermore, this work reports catalytically active enzyme vesicles, demonstrating the potential for the application of vesicles as biocatalysts or biosensors.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Petit P, Antoine M, Ferry G, Boutin JA, Lagarde A, Gluais L, Vincentelli R, Vuillard L. The active conformation of human glucokinase is not altered by allosteric activators. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:929-35. [PMID: 22101819 DOI: 10.1107/s0907444911036729] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/09/2011] [Indexed: 11/10/2022]
Abstract
Glucokinase (GK) catalyses the formation of glucose 6-phosphate from glucose and ATP. A specific feature of GK amongst hexokinases is that it can cycle between active and inactive conformations as a function of glucose concentration, resulting in a unique positive kinetic cooperativity with glucose, which turns GK into a unique key sensor of glucose metabolism, notably in the pancreas. GK is a target of antidiabetic drugs aimed at the activation of GK activity, leading to insulin secretion. Here, the first structures of a GK-glucose complex without activator, of GK-glucose-AMP-PNP and of GK-glucose-AMP-PNP with a bound activator are reported. All these structures are extremely similar, thus demonstrating that binding of GK activators does not result in conformational changes of the active protein but in stabilization of the active form of GK.
Collapse
Affiliation(s)
- Pierre Petit
- BioXtal, PX Unit, c/o AFMB, UMR 6098, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Wu ZL. Phosphatase-coupled universal kinase assay and kinetics for first-order-rate coupling reaction. PLoS One 2011; 6:e23172. [PMID: 21853082 PMCID: PMC3154929 DOI: 10.1371/journal.pone.0023172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Kinases use adenosine-5′-triphosphate (ATP) as the donor substrate and generate adenosine-5′-diphosphate (ADP) as a product. An ADP-based phosphatase-coupled kinase assay is described here. In this assay, CD39L2, a nucleotidase, is added into a kinase reaction to hydrolyze ADP to AMP and phosphate. The phosphate is subsequently detected using malachite green phosphate-detection reagents. As ADP hydrolysis by CD39L2 displays a first-order rate constant, relatively simple equations are derived to calculate the coupling rate and the lagging time of the coupling reaction, allowing one to obtain kinase kinetic parameters without the completion of the coupling reaction. ATP inhibition of CD39L2-catalyzed ADP hydrolysis is also determined for correction of the kinetic data. As examples, human glucokinase, P. chrysogenum APS kinase and human ERK1, kinases specific for sugar, nucleotide and protein respectively, are assayed. To assess the compatibility of the method for high-throughput assays, Z′ factors >0.5 are also obtained for the three kinases.
Collapse
Affiliation(s)
- Zhengliang L Wu
- R&D Systems Inc., Minneapolis, Minnesota, United States of America.
| |
Collapse
|
4
|
Anderson VE, Ruszczycky MW, Harris ME. Activation of oxygen nucleophiles in enzyme catalysis. Chem Rev 2007; 106:3236-51. [PMID: 16895326 DOI: 10.1021/cr050281z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vernon E Anderson
- Department of Biochemistry and the Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
5
|
Smith WE, Langer S, Wu C, Baltrusch S, Okar DA. Molecular Coordination of Hepatic Glucose Metabolism by the 6-Phosphofructo-2-Kinase/Fructose-2,6- Bisphosphatase:Glucokinase Complex. Mol Endocrinol 2007; 21:1478-87. [PMID: 17374851 DOI: 10.1210/me.2006-0356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) and 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBP-2) are each powerful regulators of hepatic carbohydrate metabolism that have been reported to influence each other's expression, activities, and cellular location. Here we present the first physical evidence for saturable and reversible binding of GK to the FBP-2 domain of PFK-2/FBP-2 in a 1:1 stoichiometric complex. We confirmed complex formation and stoichiometry by independent methods including affinity resin pull-down assays and fluorescent resonance energy transfer. All suggest that the binding of GK to PFK-2/FBP-2 is weak. Enzymatic assays of the GK:PFK-2/FBP-2 complex suggest a concomitant increase of the kinase-to-bisphosphatase ratio of bifunctional enzyme and activation of GK upon binding. The kinase-to-bisphosphatase ratio is increased by activation of the PFK-2 activity whereas FBP-2 activity is unchanged. This means that the GK-bound PFK-2/FBP-2 produces more of the biofactor fructose-2,6-bisphosphate, a potent activator of 6-phosphofructo-1-kinase, the committing step to glycolysis. Therefore, we conclude that the binding of GK to PFK-2/FBP-2 promotes a coordinated up-regulation of glucose phosphorylation and glycolysis in the liver, i.e. hepatic glucose disposal. The GK:PFK-2/FBP-2 interaction may also serve as a metabolic signal transduction pathway for the glucose sensor, GK, in the liver. Demonstration of molecular coordination of hepatic carbohydrate metabolism has fundamental relevance to understanding the function of the liver in maintaining fuel homeostasis, particularly in managing excursions in glycemia produced by meal consumption.
Collapse
Affiliation(s)
- W Ed Smith
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, Minnesota 55417, USA
| | | | | | | | | |
Collapse
|
6
|
Kim YB, Kalinowski SS, Marcinkeviciene J. A pre-steady state analysis of ligand binding to human glucokinase: evidence for a preexisting equilibrium. Biochemistry 2007; 46:1423-31. [PMID: 17260972 DOI: 10.1021/bi0617308] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cooperativity with glucose is a key feature of human glucokinase (GK), allowing its crucial role as a glucose sensor in hepatic and pancreatic cells. We studied the changes in enzyme intrinsic tryptophan fluorescence induced by binding of different ligands to this monomeric enzyme using stopped-flow and equilibrium binding methods. Glucose binding data under pre-steady state conditions suggest that the free enzyme in solution is in a preexisting equilibrium between at least two conformers (super-open and open) which differ in their affinity for glucose (Kd* = 0.17 +/- 0.02 mM and Kd = 73 +/- 18 mM). Increasing the glucose concentration changes the ratio of the two conformers, thus yielding an apparent Kd of 3 mM (different from a Km of 7-10 mM). The rates of conformational transitions of free and GK complexed with sugar are slow and during catalysis are most likely affected by ATP binding, phosphate transfer, and product release steps to allow the kcat to be 60 s-1. The ATP analogue PNP-AMP binds to free GK (super-open) and GK-glucose (open) complexes with comparable affinities (Kd = 0.23 +/- 0.02 and 0.19 +/- 0.08 mM, respectively). However, cooperativity with PNP-AMP observed under equilibrium binding conditions in the presence of glucose (Hill slope of 1.6) is indicative of further complex tightening to the closed conformation. Another physiological modulator (inhibitor), palmitoyl-CoA, binds to GK with similar characteristics, suggesting that conformational changes induced upon ligand binding are not restricted by an active site ligand. In conclusion, our data support control of GK activity and Km through the ratio of distinct conformers (super-open, open, and closed) through either substrate or other ligand binding and/or dissociation.
Collapse
Affiliation(s)
- Young B Kim
- Department of Chemical Enzymology, Bristol Myers-Squibb Pharmaceutical Company, Pharmaceutical Research Institute, P.O. Box 5400, Princeton, New Jersey 08543-5400, USA
| | | | | |
Collapse
|
7
|
Affourtit C, Brand MD. Stronger control of ATP/ADP by proton leak in pancreatic beta-cells than skeletal muscle mitochondria. Biochem J 2006; 393:151-9. [PMID: 16137248 PMCID: PMC1383673 DOI: 10.1042/bj20051280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pancreatic beta cells respond to rising blood glucose concentrations by increasing their oxidative metabolism, which leads to an increased ATP/ADP ratio, closure of K(ATP) channels, depolarization of the plasma membrane potential, influx of calcium and the eventual secretion of insulin. Such a signalling mechanism implies that the ATP/ADP ratio is flexible in beta cells (beta-cells), which is in contrast with other cell types (e.g. muscle and liver) that maintain a stable ATP/ADP poise while respiring at widely varying rates. To determine whether this difference in flexibility is accounted for by mitochondrial peculiarities, we performed a top-down metabolic control analysis to quantitatively assess how ATP/ADP is controlled in mitochondria isolated from rat skeletal muscle and cultured beta cells. We show that the ATP/ADP ratio is more strongly controlled (approx. 7.5-fold) by proton leak in beta cells than in muscle. The comparatively high importance of proton leak in beta cell mitochondria (relative to phosphorylation) is evidenced furthermore by its relatively high level of control over membrane potential and overall respiratory activity. Modular-kinetic analysis of oxidative phosphorylation reveals that these control differences can be fully explained by a higher relative leak activity in beta cell mitochondria, which results in a comparatively high contribution of proton leak to the overall respiratory activity in this system.
Collapse
|
8
|
Marotta DE, Anand GR, Anderson TA, Miller SP, Okar DA, Levitt DG, Lange AJ. Identification and characterization of the ATP-binding site in human pancreatic glucokinase. Arch Biochem Biophys 2005; 436:23-31. [PMID: 15752705 DOI: 10.1016/j.abb.2005.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 01/19/2005] [Indexed: 11/25/2022]
Abstract
The central role of human pancreatic glucokinase in insulin secretion and, consequently, in maintenance of blood glucose levels has prompted investigation into identification of ATP-binding site residues and examination of ATP- and glucose-binding interactions. Because glucokinase has been resistant to crystallization, computer generated homology models were developed based on the X-ray crystal structure of the COOH-terminal domain of human brain hexokinase 1 bound to glucose and ADP or glucose and glucose-6-phosphate. Human pancreatic glucokinase mutants were designed based upon these models and on ATPase domain sequence conservation to identify and characterize potential glucose and ATP-binding sites. Specifically, mutants Asp78Ala, Thr82Ala, Lys90Ala, Lys102Ala, Gly227Ala, Thr228Ala, Ser336Leu, Ser411Ala, and Ser411Leu were constructed, expressed, purified, and kinetically characterized under steady-state conditions. Compared to their respective wild type controls, several mutants demonstrated dramatic changes in V(max), cooperativity of glucose binding and S(0.5) for ATP and glucose. Results suggest a role for Asp78, Thr82, Gly227, Thr228, and Ser336 in ATP binding and indicate these residues are essential for glucose phosphorylation by human pancreatic glucokinase.
Collapse
Affiliation(s)
- Diane E Marotta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Miles RD, Iyer PP, Ferry JG. Site-directed mutational analysis of active site residues in the acetate kinase from Methanosarcina thermophila. J Biol Chem 2001; 276:45059-64. [PMID: 11562377 DOI: 10.1074/jbc.m108355200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetate kinase catalyzes the magnesium-dependent transfer of the gamma-phosphate of ATP to acetate. The recently determined crystal structure of the Methanosarcina thermophila enzyme identifies it as a member of the sugar kinase/Hsc70/actin superfamily based on the fold and the presence of five putative nucleotide and metal binding motifs that characterize the superfamily. Residues from four of these motifs in M. thermophila acetate kinase were selected for site-directed replacement and analysis of the variants. Replacement of Asp(148) and Asn(7) resulted in variants with catalytic efficiencies less than 1% of that of the wild-type enzyme, indicating that these residues are essential for activity. Glu(384) was also found to be essential for catalysis. A 30-fold increase in the magnesium concentration required for half-maximal activity of the E384A variant relative to that of the wild type implicated Glu(384) in magnesium binding. The kinetic analysis of variants and structural data is consistent with nonessential roles for active site residues Ser(10), Ser(12), and Lys(14) in catalysis. The results are discussed with respect to the acetate kinase catalytic mechanism and the relationship to other sugar kinase/Hsc70/actin superfamily members.
Collapse
Affiliation(s)
- R D Miles
- Department of Biochemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | | | |
Collapse
|
10
|
Kraakman LS, Winderickx J, Thevelein JM, De Winde JH. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 1999; 343 Pt 1:159-68. [PMID: 10493925 PMCID: PMC1220537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In baker's yeast (Saccharomyces cerevisiae) the hexokinases PI (Hxk1) and PII (Hxk2) are required for triggering of the activation of the Ras-cAMP pathway and catabolite repression. Specifically, Hxk2 is essential for the establishment of glucose repression, whereas either Hxk1 or Hxk2 can sustain fructose repression. Previous studies have suggested that the extent of glucose repression is inversely correlated with hexokinase catalytic activity and hence with an adequate elevation of intracellular sugar phosphate levels. However, several lines of evidence indicate that glucose 6-phosphate is not the trigger of catabolite repression in yeast. In the present study we employed site-directed mutagenesis of amino acids important for the binding of sugar and ATP, for efficient phosphoryl transfer and for the closure of the substrate-binding cleft, to obtain an insight into the structural requirements of Hxk2 for sugar-induced signalling. We show that the ATP-binding Lys-111 is not essential for catalysis in vivo or for signal triggering. Substitution of the catalytic-centre Asp-211 caused loss of catalytic activity, but high-affinity sugar binding was retained. However, this was not sufficient to cause cAMP activation nor catabolite repression. Mutation of Ser-158 abrogated glucose-induced, but not fructose-induced, repression. Moreover, 2-deoxyglucose sustained repression despite an extremely low catalytic activity. We conclude that the establishment of catabolite repression is dependent on the onset of the phosphoryl transfer reaction on hexokinase and is probably related to the stable formation of a transition intermediate and concomitant conformational changes within the enzyme. In contrast, the role of Hxk2 in Ras-cAMP activation seems to be directly connected to its catalytic function. The implications of this model are discussed.
Collapse
Affiliation(s)
- L S Kraakman
- Laboratorium voor Moleculaire Celbiologie, Instituut voor Plantkunde en Microbiologie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | | | |
Collapse
|
11
|
Ardehali H, Printz RL, Whitesell RR, May JM, Granner DK. Functional interaction between the N- and C-terminal halves of human hexokinase II. J Biol Chem 1999; 274:15986-9. [PMID: 10347146 DOI: 10.1074/jbc.274.23.15986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian hexokinases (HKs) I-III are composed of two highly homologous approximately 50-kDa halves. Studies of HKI indicate that the C-terminal half of the molecule is active and is sensitive to inhibition by glucose 6-phosphate (G6P), whereas the N-terminal half binds G6P but is devoid of catalytic activity. In contrast, both the N- and C-terminal halves of HKII (N-HKII and C-HKII, respectively) are catalytically active, and when expressed as discrete proteins both are inhibited by G6P. However, C-HKII has a significantly higher Ki for G6P (KiG6P) than N-HKII. We here address the question of whether the high KiG6P of the C-terminal half (C-half) of HKII is decreased by interaction with the N-terminal half (N-half) in the context of the intact enzyme. A chimeric protein consisting of the N-half of HKI and the C-half of HKII was prepared. Because the N-half of HKI is unable to phosphorylate glucose, the catalytic activity of this chimeric enzyme depends entirely on the C-HKII component. The KiG6P of this chimeric enzyme is similar to that of HKI and is significantly lower than that of C-HKII. When a conserved amino acid (Asp209) required for glucose binding is mutated in the N-half of this chimeric protein, a significantly higher KiG6P (similar to that of C-HKII) is observed. However, mutation of a second conserved amino acid (Ser155), also involved in catalysis but not required for glucose binding, does not increase the KiG6P of the chimeric enzyme. This resembles the behavior of HKII, in which a D209A mutation results in an increase in the KiG6P of the enzyme, whereas a S155A mutation does not. These results suggest an interaction in which glucose binding by the N-half causes the activity of the C-half to be regulated by significantly lower concentrations of G6P.
Collapse
Affiliation(s)
- H Ardehali
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
12
|
Pettigrew DW, Smith GB, Thomas KP, Dodds DC. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily. Arch Biochem Biophys 1998; 349:236-45. [PMID: 9448710 DOI: 10.1006/abbi.1997.0444] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The structures of the sugar kinase/heat shock 70/actin superfamily of enzymes show that the active site is located in a deep cleft between two domains whose relative movement defines a domain closure conformational change thought to be involved in the catalytic and regulatory properties of members of the superfamily. To investigate the role of the domain closure in the regulatory behavior, site-directed mutagenesis is used to alter specific domain-domain interactions in Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase), a member of this superfamily. Two active site aspartate residues are conserved throughout the superfamily, one (Asp245 in glycerol kinase) which is proposed to act as a general base during catalysis and one (Asp10 in glycerol kinase) which interacts with the Mg(II) ion of the bound Mg(II)-nucleotide complex. Each of these residues participates in domain-domain interactions that are mediated by the bound substrates. The enzymes containing the substitutions Asp245 to Asn (D245N) or Asp10 to Asn (D10N) were purified by affinity chromatography, and the effects of the substitutions on the catalytic properties and regulation by the allosteric effectors, fructose 1,6-bisphosphate (FBP), and the glucose-specific phosphocarrier protein, IIIGlc (also known as IIAGlc), were determined. Each of the residues participates in catalysis; kcat/Katp is decreased 300-fold by the D245N substitution and 100-fold by the D10N substitution. Affinity labeling with the glycerol analog 1,3-dichloroacetone shows that the level of activity seen for the D245N mutant enzyme is not due to deamidation of the substituted asparagine. Each of the substitutions has little effect on regulation by FBP and the apparent affinity for IIIGlc, and the D245N substitution does not affect the extent of inhibition by IIIGlc. However, the D10N substitution decreases the maximum extent of inhibition by IIIGlc from 100 to 60%, thus changing the action of IIIGlc to that of a partial inhibitor. The different sensitivities of the extents of FBP and IIIGlc inhibition to perturbation of a domain-domain interaction mediated by Asp10 suggest that the relations of the actions of these allosteric effectors to the domain closure conformational change are different.
Collapse
Affiliation(s)
- D W Pettigrew
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.
| | | | | | | |
Collapse
|
13
|
Ghosh S, Pawelczyk T, Lowenstein JM. Phospholipase C isoforms delta 1 and delta 3 from human fibroblasts. High-yield expression in Escherichia coli, simple purification, and properties. Protein Expr Purif 1997; 9:262-78. [PMID: 9056492 DOI: 10.1006/prep.1996.0682] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase C isoforms delta 1 and delta 3 (PLC delta 1 and delta 3) were expressed in Escherichia coli using the cDNA sequences from human fibroblasts. The enzymes were also expressed with the sequence Met-Gly-His6-Ser-Gly-Leu-Phe-Lys-Arg, a hexahistidine sequence followed by a Kex2 protease cleavage site, denoted as "-H6K2," attached to their amino termini. PLC delta 1, PLC delta 1-H6K2, PLC delta 3, PLC delta 3-H6K2 all expressed in highly active form. The H6K2-bearing isoforms were each purified to homogeneity in a single step, with yields of 90-100%, using agarose-iminodiacetic acid-Ni columns and imidazole buffer as eluting agent. Yields in terms of activity increased as the temperature of expression was decreased. Expression at 16 degrees C for 72 h yielded 33 mg of pure PLC delta 1-H6K2 and 13 mg of pure PLC delta 3-H6K2 per liter of culture. Removal of H6K2 from both isoforms with Kex2 protease resulted in little or no loss of activity. Expression of PLC isoforms bearing -H6K2 at the amino terminus resulted in about 12 times more activity than expression of the isoforms lacking -H6K2. PLC delta 3 is much less stable than PLC delta1. Successful purification and storage of PLC delta 3 depends on a suitable stabilizing medium. Both isoforms require 0.3 microM calcium ion for half-maximum activity. The specific activities of the isoforms expressed with and without -H6K2 are the same, as are their calcium saturation curves.
Collapse
Affiliation(s)
- S Ghosh
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
14
|
Tiedge M, Krug U, Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:175-90. [PMID: 9048894 DOI: 10.1016/s0167-4838(96)00162-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The low-affinity glucose phosphorylating enzyme glucokinase plays a key role in the process of glucose recognition in pancreatic B-cells. To evaluate mechanisms of intrinsic regulation of enzyme activity human pancreatic B-cell and liver glucokinase and for comparison rat liver glucokinase were expressed in E. coli bacteria. A one-step purification procedure through metal chelate affinity chromatography revealed 58 kDa proteins with high specific activities in the range of 50 U/mg protein and K(m) values around 8 mM for the substrate D-glucose with a preference for the alpha-anomer. There were no tissue specific differences, no species differences in the electrophoretic mobility, and no differences of the kinetic properties of these well conserved enzymes. The deletion of the 15 tissue-specific NH2-terminal amino acids of the human glucokinase resulted in a catalytically active enzyme whose kinetic properties were not significantly different from those of the wild-type enzymes. The human and rat glucokinase isoforms were non-competitively inhibited by the sulfhydryl group reagents alloxan and ninhydrin with Ki values in the range of 1 microM. The inhibition of glucokinase enzyme activity was reversed by dithiothreitol with an EC50 value of 9 microM for alloxan and of 50 microM for ninhydrin. D-Glucose provided protection against alloxan-induced inhibition of human and rat glucokinase isoenzymes with half-maximal effective concentrations between 11 and 16 mM. The enzyme inhibition by alloxan was accompanied by a change in the electrophoretic mobility with a second lower molecular 49 kDa glucokinase band which can be interpreted as a compact glucokinase molecule locked by disulfide bonds. Quantification of free sulfhydryl groups revealed an average number of 3.6 free sulfhydryl groups per enzyme molecule for the native human glucokinase isoforms. Alloxan decreased the average number of free sulfhydryl groups to 1.9 per enzyme molecule indicating that more than one SH side group is oxidized by this compound. The extraordinary sensitivity of the SH side groups of the glucokinase may be a possible mechanism of enzyme regulation by interconversion of stable (active) and unstable (inactive) conformations of the enzyme. In pancreatic B-cells the glucose-dependent increase of reduced pyridine nucleotides may stabilize the enzyme in the 58 kDa form and provide optimal conditions for glucose recognition and glucose-induced insulin secretion.
Collapse
Affiliation(s)
- M Tiedge
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | | |
Collapse
|
15
|
Veiga-da-Cunha M, Xu LZ, Lee YH, Marotta D, Pilkis SJ, Van Schaftingen E. Effect of mutations on the sensitivity of human beta-cell glucokinase to liver regulatory protein. Diabetologia 1996; 39:1173-9. [PMID: 8897004 DOI: 10.1007/bf02658503] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human beta-cell glucokinase and its liver counterpart displayed a half-saturating concentration of glucose (S0.5) of about 8 mmol/l and a Hill coefficient of 1.7, and were as sensitive to inhibition by the rat liver regulatory protein as the rat liver enzyme. These results indicate that the N-terminal region of glucokinase, which differs among these three enzymes, is not implicated in the recognition of the regulatory protein. They also suggest that the regulatory protein, or a related protein, could modulate the affinity of glucokinase for glucose in beta cells. We have also tested the effect of several mutations, many of which are implicated in maturity onset diabetes of the young. The mutations affected the affinity for glucose and for the regulatory protein to different degrees, indicating that the binding site for these molecules is different. An Asp158 Ala mutation, found in the expression plasmid previously thought to encode the wild-type enzyme, increased the affinity for glucose by about 2.5-fold without changing the affinity for the regulatory protein. The mutations that were found to decrease the affinity for the regulatory protein (Asn166 Arg. Val203 Ala, Asn204 Gln, Lys414 Ala) clustered in the hinge region of glucokinase and nearby in the large and small domains. These results are in agreement with the concept that part of the binding site for the regulatory protein is situated in the hinge region of this enzyme.
Collapse
Affiliation(s)
- M Veiga-da-Cunha
- Laboratory of Physiological Chemistry, Institute of Cellular and Molecular Pathology, Brusscls, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Kogure K, Yamamoto K, Majima E, Shinohara Y, Yamashita K, Terada H. Alteration of enzyme function of the type II hexokinase C-terminal half on replacements of restricted regions by corresponding regions of glucokinase. J Biol Chem 1996; 271:15230-6. [PMID: 8662949 DOI: 10.1074/jbc.271.25.15230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To know the structural properties responsible for the enzymic activity of the 50-kDa C-terminal half of type II hexokinase (HKII-C) derived from rat hepatoma cell line AH130, we constructed cDNAs of HKII-C and its recombinants in which restricted regions containing highly conserved sequences, referred to as regions 2 and 3, were replaced by the corresponding regions of glucokinase. The binding domains of ATP and glucose were proposed to exist in these regions, respectively. Then, the HKII-C and chimera HKII-Cs were overexpressed in Escherichia coli BL21(DE3)pLysS. They all exhibited hexokinase activity, and their activities were inhibited by glucose-6-phosphate (Glc-6-P) competitively for ATP and uncompetitively for glucose. The replacement of region 2 of HKII-C by the corresponding region of glucokinase increased the affinity for glucose and decreased the affinity for Glc-6-P, but it did not significantly affect the affinity for ATP. In contrast, the replacement of region 3 did not cause an appreciable change in hexokinase activity. These findings suggest that region 2 is associated with the binding of ATP and Glc-6-P, and that the latter binding site is located close to the ATP binding site. In addition, region 2 was suggested to be directly related with the binding of glucose and other hexoses.
Collapse
Affiliation(s)
- K Kogure
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ardehali H, Yano Y, Printz RL, Koch S, Whitesell RR, May JM, Granner DK. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves. J Biol Chem 1996; 271:1849-52. [PMID: 8567628 DOI: 10.1074/jbc.271.4.1849] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian hexokinase (HK) family includes three closely related 100-kDa isoforms (HKI-III) that are thought to have arisen from a common 50-kDa precursor by gene duplication and tandem ligation. Previous studies of HKI indicated that a glucose 6-phosphate (Glu-6-P)-regulated catalytic site resides in the COOH-terminal half of the molecule and that the NH2-terminal half contains only a Glu-6-P binding site. In contrast, we now show that proteins representing both halves of human and rat HKII have catalytic activity and that each is inhibited by Glu-6-P. The intact enzyme and the NH2- and COOH-terminal halves of the enzyme each increase glucose utilization when expressed in Xenopus oocytes. Mutations corresponding to either Asp-209 or Asp-657 in the intact enzyme completely inactivate the NH2- and COOH-terminal half enzymes, respectively. Mutation of either of these sites results in a 50% reduction of activity in the 100-kDa enzyme. Mutation of both sites results in a complete loss of activity. This suggests that each half of the HKII molecule retains catalytic activity within the 100-kDa protein. These observations indicate that HKI and HKII are functionally distinct and have evolved differently.
Collapse
Affiliation(s)
- H Ardehali
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu LZ, Harrison RW, Weber IT, Pilkis SJ. Human beta-cell glucokinase. Dual role of Ser-151 in catalysis and hexose affinity. J Biol Chem 1995; 270:9939-46. [PMID: 7730377 DOI: 10.1074/jbc.270.17.9939] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucokinase is distinguished from yeast hexokinase and low Km mammalian hexokinases by its low affinity for glucose and its cooperative behavior, even though glucose binding residues and catalytic residues are highly conserved in all of these forms of hexokinase. The roles of Ser-151 and Asn-166 as determinants of hexose affinity and cooperative behavior of human glucokinase have been evaluated by site-directed mutagenesis, expression and purification of the wild-type and mutant enzymes, and steady-state kinetic analysis. Mutation of Asn-166 to arginine increased apparent affinity for both glucose and ATP by a factor of 3. Mutation of Ser-151 to cysteine, alanine, or glycine lowered the Km for glucose by factors of 2-, 26-, and 40-fold, respectively, decreased Vmax, abolished cooperativity for glucose, and also decreased Km for mannose and fructose. The Ser-151 mutants had hexose Km values similar to those of yeast hexokinase, hexokinase I, and the recombinantly expressed COOH-terminal half of hexokinase I. However, the Ki values for the competitive inhibitors, N-acetylglucosamine and glucose-6-P, were unchanged, suggesting that Ser-151 is not important for inhibitor binding. Mutation of Ser-151 also increased the Km for ATP about 5-fold and abolished the enzyme's low ATPase activity, which indicates it is essential for ATP hydrolysis. The substrate-induced change in intrinsic fluorescence of S151A occurred at a much lower glucose concentration than that for wild-type enzyme. The results implicate a dual role for Ser-151 as a determinant of hexose affinity and catalysis, exclusive of the glucose-induced conformational change, and suggest that the low hexose affinity of glucokinase is dependent on interaction of Ser-151 with other regions of the protein.
Collapse
Affiliation(s)
- L Z Xu
- Department of Physiology and Biophysics, SUNY at Stony Brook 11794, USA
| | | | | | | |
Collapse
|
19
|
Site-directed mutagenesis studies on the determinants of sugar specificity and cooperative behavior of human beta-cell glucokinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47007-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
|
21
|
Takeda J, Gidh-Jain M, Xu L, Froguel P, Velho G, Vaxillaire M, Cohen D, Shimada F, Makino H, Nishi S. Structure/function studies of human beta-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82456-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Affiliation(s)
- P B Iynedjian
- Division of Clinical Biochemistry, University of Geneva School of Medicine, Switzerland
| |
Collapse
|
23
|
Gidh-Jain M, Takeda J, Xu LZ, Lange AJ, Vionnet N, Stoffel M, Froguel P, Velho G, Sun F, Cohen D. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A 1993; 90:1932-6. [PMID: 8446612 PMCID: PMC45994 DOI: 10.1073/pnas.90.5.1932] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The glycolytic enzyme glucokinase plays an important role in the regulation of insulin secretion and recent studies have shown that mutations in the human glucokinase gene are a common cause of an autosomal dominant form of non-insulin-dependent (type 2) diabetes mellitus (NIDDM) that has an onset often during childhood. The majority of the mutations that have been identified are missense mutations that result in the synthesis of a glucokinase molecule with an altered amino acid sequence. To characterize the effect of these mutations on the catalytic properties of human beta-cell glucokinase, we have expressed native and mutant forms of this protein in Escherichia coli. All of the missense mutations show changes in enzyme activity including a decrease in Vmax and/or increase in Km for glucose. Using a model for the three-dimensional structure of human glucokinase based on the crystal structure of the related enzyme yeast hexokinase B, the mutations map primarily to two regions of the protein. One group of mutations is located in the active site cleft separating the two domains of the enzyme as well as in surface loops leading into this cleft. These mutations usually result in large reductions in enzyme activity. The second group of mutations is located far from the active site in a region that is predicted to undergo a substrate-induced conformational change that results in closure of the active site cleft. These mutations show a small approximately 2-fold reduction in Vmax and a 5- to 10-fold increase in Km for glucose. The characterization of mutations in glucokinase that are associated with a distinct and readily recognizable form of NIDDM has led to the identification of key amino acids involved in glucokinase catalysis and localized functionally important regions of the glucokinase molecule.
Collapse
Affiliation(s)
- M Gidh-Jain
- Department of Physiology and Biophysics, State University of New York, Stony Brook 11794
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Katagiri H, Asano T, Ishihara H, Inukai K, Anai M, Miyazaki J, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y. Nonsense mutation of glucokinase gene in late-onset non-insulin-dependent diabetes mellitus. Lancet 1992; 340:1316-7. [PMID: 1360036 DOI: 10.1016/0140-6736(92)92494-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nonsense mutation at codon 186 in exon 5 of the gene for glucokinase, an enzyme important for glucose-induced insulin secretion, was identified in a Japanese patient with late-onset non-insulin-dependent diabetes mellitus (NIDDM). All affected members of her family were heterozygous for the mutation and had late-onset NIDDM or impaired glucose tolerance, whereas unaffected members showed normal glucose tolerance. The early insulin response to oral glucose was impaired in affected relatives, but was normal in those unaffected. These findings suggest that the glucokinase mutation raises the set-point of pancreatic beta cells for glucose-induced insulin secretion, leading to abnormal glucose tolerance in some patients with late-onset NIDDM.
Collapse
Affiliation(s)
- H Katagiri
- Third Department of Internal Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|