1
|
Javid S, Ather H, Hani U, Siddiqua A, Asif Ansari SM, Shanmugarajan D, Yogish Kumar H, Arivuselvam R, Purohit MN, Kumar BRP. Discovery of Novel Myristic Acid Derivatives as N-Myristoyltransferase Inhibitors: Design, Synthesis, Analysis, Computational Studies and Antifungal Activity. Antibiotics (Basel) 2023; 12:1167. [PMID: 37508263 PMCID: PMC10376843 DOI: 10.3390/antibiotics12071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, N-Myristoyltransferase (NMT) has been identified as a new target for the treatment of fungal infections. It is observed that at present, there are increased rates of morbidity and mortality due to fungal infections. Hence, a series of novel myristic acid derivatives were designed via molecular docking studies and ADMET studies by targeting NMT (N-Myristoyltransferase). The designed myristic acid derivatives were synthesized by converting myristic acid into myristoyl chloride and coupling it with aryl amines to yield corresponding myristic acid derivatives. The compounds were purified and characterized via FTIR, NMR and HRMS spectral analyses. In this study, we carried out a target NMT inhibition assay. In the NMT screening assay results, the compounds 3u, 3m and 3t showed better inhibition compared to the other myristic acid derivatives. In an in vitro antifungal evaluation, the myristic acid derivatives were assessed against Candida albicans and Aspergillus niger strains by determining their minimal inhibitory concentrations (MIC50). The compounds 3u, 3k, 3r and 3t displayed superior antifungal capabilities against Candida albicans, and the compounds 3u, 3m and 3r displayed superior antifungal capabilities against Aspergillus niger compared to the standard drug FLZ (fluconazole). Altogether, we identified a new series of antifungal agents.
Collapse
Affiliation(s)
- Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysore 570 015, Karnataka, India
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| | - Rajaguru Arivuselvam
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysore, JSS Academy of Higher Education & Research, Mysore 570 015, Karnataka, India
| |
Collapse
|
2
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
3
|
Biochemical characterization of bovine brain myristoyl-CoA:protein N-myristoyltransferase type 2. J Biomed Biotechnol 2009; 2009:907614. [PMID: 19746168 PMCID: PMC2737134 DOI: 10.1155/2009/907614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 11/18/2022] Open
Abstract
Protein N-myristoylation is a lipidic modification which refers to the covalent attachment of myristate, a 14-carbon saturated fatty acid, to the N-terminal glycine residue of a number of mammalian, viral, and fungal proteins. In this paper, we have cloned the gene coding for myristoyl-CoA:protein N-myristoyltransferase (NMT) from Bos tarus brain. The open reading frame codes for a 410-amino-acid protein and overexpressed in Escherichia coli. Kinetic studies suggested that bovine brain NMT2 and human NMT1 show significant differences in their peptide substrate specificities. The metal ion Ca(2+) had stimulatory effects on NMT2 activity while Mn(2+) and Zn(2+) inhibited the enzyme activity. In addition, NMT2 activity was inhibited by various organic solvents and other detergents while NMT1 had a stimulatory effect. Biochemical characterization suggested that both forms of NMT have unique characteristics. Further analysis towards functional role NMT2 will lead the development of therapeutic target for the progression of various diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases.
Collapse
|
4
|
Lakshmikuttyamma A, Selvakumar P, Tuchek J, Sharma RK. Myristoyltransferase and calcineurin: Novel molecular therapeutic target for epilepsy. Prog Neurobiol 2008; 84:77-84. [DOI: 10.1016/j.pneurobio.2007.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/08/2007] [Accepted: 09/24/2007] [Indexed: 11/30/2022]
|
5
|
Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK. Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 2007; 46:1-36. [PMID: 16846646 DOI: 10.1016/j.plipres.2006.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the second leading cause of malignant death, and better preventive strategies are needed. The treatment of colonic cancer remains difficult because of the lack of effective chemotherapeutic agents; therefore it is important to continue to search for cellular functions that can be disrupted by chemotherapeutic drugs resulting in the inhibition of the development and progression of cancer. The current knowledge of the modification of proteins by myristoylation involving myristoyl-CoA: protein N-myristoyltransferase (NMT) is in its infancy. This process is involved in the pathogenesis of cancer. We have reported for the first time that NMT activity and protein expression were higher in human colorectal cancer, gallbladder carcinoma and brain tumors. In addition, an increase in NMT activity appeared at an early stage in colonic carcinogenesis. It is conceivable therefore that NMT can be used as a potential marker for the early detection of cancer. These observations lead to the possibility of developing NMT specific inhibitors, which may be therapeutically useful. We proposed that HSC70 and/or enolase could be used as an anticancer therapeutic target. This review summarized the status of NMT in cancer which has been carried in our laboratory.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|
6
|
Rudnick DA, McWherter CA, Gokel GW, Gordon JI. MyristoylCoA:protein N-myristoyltransferase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:375-430. [PMID: 8322618 DOI: 10.1002/9780470123133.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D A Rudnick
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
7
|
Selvakumar P, Smith-Windsor E, Bonham K, Sharma RK. N-myristoyltransferase 2 expression in human colon cancer: cross-talk between the calpain and caspase system. FEBS Lett 2006; 580:2021-6. [PMID: 16530191 DOI: 10.1016/j.febslet.2006.02.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/07/2006] [Accepted: 02/28/2006] [Indexed: 11/21/2022]
Abstract
A number of viral and eukaryotic proteins which undergo a lipophilic modification by the enzyme N-myristoyltransferase (NMT: NMT1 and NMT2) are required for signal transduction and regulatory functions. To investigate whether NMT2 contributes to the pathogenesis of colorectal carcinoma, we observed a higher expression of NMT2 in most of the cases of cancerous tissues compared to normal tissues (84.6% of cases; P < 0.05) by Western blot analysis. Furthermore, protein-protein interaction of NMTs revealed that m-calpain interacts with NMT1 while caspase-3 interacts with NMT2. Our findings provide the first evidence of higher expression of NMT2 in human colorectal adenocarcinomas and the interaction of both forms of NMT with various signaling molecules.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
8
|
Selvakumar P, Lakshmikuttyamma A, Charavaryamath C, Singh B, Tuchek J, Sharma RK. Expression of myristoyltransferase and its interacting proteins in epilepsy. Biochem Biophys Res Commun 2005; 335:1132-9. [PMID: 16129091 DOI: 10.1016/j.bbrc.2005.07.190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/21/2005] [Indexed: 11/23/2022]
Abstract
N-Myristoylation is a co-translational, irreversible addition of a fatty acyl moiety to the amino terminus of many eukaryotic cellular proteins. This modification is catalyzed by N-myristoyltransferase (NMT) and is recognized to be a widespread and functionally important modification of proteins. The myristoylated Src family kinases are involved in various signaling cascades, including the N-methyl-d-aspartate receptor functions. We examined the expression of NMT and its interacting proteins to gain further insight into the mechanisms in epileptic fowl. Higher expression of NMT1 and NMT2 was observed in carrier and epileptic fowl whereas expression of heat shock cognate protein 70, an inhibitor of NMT, was lower. Furthermore, protein-protein interaction of NMT with m-calpain, caspase-3, and p53 was established. The interaction of NMT2 with caspase-3 and p53 was weak in epileptic fowl compared with normal chicks while the interaction of NMT1 with m-calpain was weak in epileptics. Understanding the regulation of NMT by specific inhibitors may help us to control the action of this enzyme on its specific substrates and may lead to improvements in the management of various neurological disorders like Alzheimer's disease, ischemia, and epilepsy.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology, College of Medicine and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|
9
|
Lu Y, Selvakumar P, Ali K, Shrivastav A, Bajaj G, Resch L, Griebel R, Fourney D, Meguro K, Sharma RK. Expression of N-myristoyltransferase in human brain tumors. Neurochem Res 2005; 30:9-13. [PMID: 15756927 DOI: 10.1007/s11064-004-9680-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-myristoylation is a process of covalent irreversible protein modification that promotes association of proteins with membranes. Based on our previous findings of elevated N-myristoyltransferase (NMT) activity in colonic epithelial neoplasms that appears at an early stage in colonic carcinogenesis, together with elevated NMT expression in human colorectal and gallbladder carcinomas, we investigated NMT activity and protein expression of NMT1 and NMT2 in human brain tumors and documented elevated NMT activity and higher protein expressions. For the first time, we have demonstrated that NMT has the potential to be used as a marker of human brain tumors. However, further studies with larger number of patients are required to establish its role as a complementary diagnostic tool. This finding has significant implications for further understanding of biological mechanisms involved in tumorigenesis, as well as for diagnosis and therapy of human brain tumors.
Collapse
Affiliation(s)
- Yanjie Lu
- Department of Pathology, College of Medicine, University of Saskatchew, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pasha MK, Dimmock JR, Hollenberg MD, Sharma RK. Enhanced activity of human N-myristoyltransferase by dimethyl sulfoxide and related solvents in the presence of serine/threonine-containing peptide substrates. Biochem Pharmacol 2002; 64:1461-7. [PMID: 12417259 DOI: 10.1016/s0006-2952(02)01412-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human N-myristoyltransferase (hNMT) activity was found to be stimulated several-fold by DMSO and its analogues in the presence of serine-containing peptide substrates. DMSO caused a concentration-dependent 10-fold stimulation of hNMT activity in the presence of a pp60(src)-derived peptide substrate (Gly-Ser-Ser-Lys-Ser-Lys-Pro-Lys-Arg). However, the stimulation of hNMT activity was not observed by DMSO when a cyclic AMP (cAMP)-dependent protein kinase-derived Ser-free peptide substrate (Gly-Asn-Ala-Ala-Ala-Ala-Lys-Lys-Arg-Arg) was used. These findings suggested that the effect of DMSO is on the substrate rather than on the enzyme. When a MARCKS (myristoylated alanine-rich C-kinase substrate)-derived peptide substrate (Gly-Ala-Gln-Phe-Ser-Lys-Thr-Ala-Arg-Arg) and the M2 gene segment of the reovirus type 3 peptide substrate (Gly-Asn-Ala-Ser-Ser-Ile-Lys-Lys-Lys) were used, hNMT activity was increased by approximately 8.5- and 7-fold, respectively. Dimethyl sulfone (20%) increased hNMT activity between 2.5- and 3.5-fold in the presence of pp60(src), MARCKS, and M2 gene segment peptides. Dimethyl formamide (20%) increased the hNMT activity by 8.5-, 8.5-, 5.5- and 3.5-fold when pp60(src), MARCKS, M2, and cAMP-dependent protein kinase-derived peptide substrates were used, respectively. Acetone (20%) also increased the hNMT activity by 20-fold in the presence of the pp60(src) peptide substrate. Dimethyl ammonium chloride (20%) caused about 6.5- and 2.5-fold increases in the hNMT activity in the presence of the pp60(src) and cAMP-dependent protein kinase-derived peptide substrates, respectively. Infrared spectroscopy showed a decreased intensity in the band at 3500-3600cm(-1) when the infrared spectrum of the pp60(src)-derived peptide was determined in the presence of DMSO. These results suggest the involvement of hydrogen bonding between the heteroatoms of the organic molecules and the hydrogen atoms of the free hydroxyl groups of the serine/threonine-containing peptide substrates. Such interactions appear to enhance the activity of hNMT towards its serine-containing substrates.
Collapse
Affiliation(s)
- Mohammed Khysar Pasha
- Health Research Division, Department of Pathology, College of Medicine, and Cancer Research Unit, Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 4H4
| | | | | | | |
Collapse
|
11
|
Rajala RV, Dehm S, Bi X, Bonham K, Sharma RK. Expression of N-myristoyltransferase inhibitor protein and its relationship to c-Src levels in human colon cancer cell lines. Biochem Biophys Res Commun 2000; 273:1116-20. [PMID: 10891381 DOI: 10.1006/bbrc.2000.3066] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier, we have reported that N-myristoyltransferase (NMT) activity is higher in colonic epithelial neoplasms than in normal appearing colonic tissue and that increase in NMT activity appears at an early stage in colonic carcinogenesis [Magnuson, B., Raju, R. V. S., Moyana, T. N., and Sharma, R. K. (1995) J. Natl. Cancer Inst. 87, 1630-1635]. In this study, we demonstrate increased NMT mRNA in well-differentiated adenocarcinomas. NMT and c-Src mRNA levels were generally elevated in a subset of human colon cancer cell lines. Western blotting analysis employing N-myristoyltransferase inhibitory protein (NIP(71)) antibody demonstrated low levels of NIP(71) in high-expressing c-Src cell lines and high levels of NIP(71) in low-expressing c-Src cell lines. Interestingly, down regulation of c-Src by antisense expression in the HT-29 cell line resulted in increased expression of NIP(71), suggesting c-Src may negatively regulate NIP(71) expression. Furthermore, this is the first study demonstrating the expression of NIP(71) in human colon cancer cell lines and a possible relationship to colon carcinogenesis.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, S7N 4H4, Canada
| | | | | | | | | |
Collapse
|
12
|
González G, Spinelli P, Lorenzo C, Hellman U, Nieto A, Willis A, Salinas G. Molecular characterization of P-29, a metacestode-specific component of Echinococcus granulosus which is immunologically related to, but distinct from, antigen 5. Mol Biochem Parasitol 2000; 105:177-84. [PMID: 10693741 DOI: 10.1016/s0166-6851(99)00166-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work the characterization of P-29, a novel 29 kDa antigen from Echinococcus granulosus is reported. E. granulosus was identified while looking for parasite antigens distinct from those present in hydatid cyst fluid. A monoclonal antibody (mAb 47H.PS) prepared against protoscolex components revealed that P-29 is localized to the tegument and rostellum of protoscoleces, and to the germinal layer of the cyst, but it is absent in hydatid cyst fluid or adult worm extracts. Several internal fragments of P-29 showed sequence identity to the amino acid sequence encoded by Eg6, a partial gene sequence reported to code for an epitope of antigen 5 (Ag5), one of the major diagnostic antigens of the parasite. We confirmed that Eg6 encodes a sub-fragment of P-29 by mapping the epitope of mAb 47H.PS, and isolating the full length P-29 cDNA. Since Eg6 had been, postulated to encode a fragment of Ag5, we specifically studied the relationship of P-29 and Ag5 by: (i) examining the cross-reactivity displayed by different mAbs; (ii) comparison of their peptide finger prints; and (iii) a comparative study of their diagnostic value. Our results prove unequivocally that P-29 and Ag5 are immunologically related, but different proteins, raising several questions on the current knowledge of Ag5.
Collapse
Affiliation(s)
- G González
- Cátedra de Inmunología-Facultad de Química, Montevideo, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Myristoylation refers to the co-translational addition of a myristoyl group to an amino-terminal glycine residue of a protein by an ubiquitously distributed enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97). This review describes the basic enzymology, molecular cloning and regulation of NMT activity in various pathophysiological processes such as colon cancer and diabetes.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology and Saskatoon Cancer Centre, College of Medicine, Royal University Hospital, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Raju RV, Datla RS, Sharma RK. Genomic organization of human myristoyl-CoA: protein N-myristoyltransferase-1. Biochem Biophys Res Commun 1999; 257:284-8. [PMID: 10198204 DOI: 10.1006/bbrc.1999.0439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myristoylation is a biochemical modification of proteins in which the lipid myristate becomes covalently bound to various cellular, viral, and oncoproteins catalyzed by a monomeric enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT). This modification is important for the biological activity of several proteins, especially the regulation of several oncoproteins involved in various types of cancers. Complementary DNA encoding human NMT-1 (hNMT-1) has been previously reported; however, the genomic organization of hNMT-1 has not been available. Attempts to amplify genomic fragments corresponding to hNMT-1 cDNA sequence yielded only one fragment. We have searched databases using both the cDNA and sequence of one of the intron sequence and this identified a human BAC clone sequence from chromosome 17. Alignment of hNMT-1 cDNA coding information on human chromosome 17 resulted in the complete structural identity of 23,960 bp of the hNMT-1 gene. The hNMT-1 gene is composed of 11 exons and 10 introns with consensus GT/AG boundaries. Finally, we show that 140 bp from the 5' end of recently reported full-length cDNA of hNMT-1 was not part of this genomic region raising the possibility for posttranscriptional modification in generating larger transcripts likely by trans splicing. Further, the availability of this genomic sequence will assist in unraveling the molecular basis for several observed NMT isoforms.
Collapse
Affiliation(s)
- R V Raju
- Saskatoon Cancer Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4H4, Canada.
| | | | | |
Collapse
|
15
|
DeMar JC, Rundle DR, Wensel TG, Anderson RE. Heterogeneous N-terminal acylation of retinal proteins. Prog Lipid Res 1999; 38:49-90. [PMID: 10396602 DOI: 10.1016/s0163-7827(98)00020-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J C DeMar
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
16
|
Raju RV, Kakkar R, Datla RS, Radhi J, Sharma RK. Myristoyl-coA:protein N-myristoyltransferase from bovine cardiac muscle: molecular cloning, kinetic analysis, and in vitro proteolytic cleavage by m-calpain. Exp Cell Res 1998; 241:23-35. [PMID: 9633510 DOI: 10.1006/excr.1998.4021] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the attachment of myristate onto the amino terminal glycine residue of select polypeptides. Cardiac tissue expresses high levels of cAMP-dependent protein kinase whose catalytic subunit is myristoylated; however, cardiac muscle extracts were found to contain low NMT activities. Northern blot analysis of bovine heart poly(A)+ RNA probed with bovine spleen NMT cDNA revealed a 1.7-kb mRNA. Western blot analysis of cardiac muscle extracts with human NMT antibody indicated a prominent immunoreactive band with a molecular mass of 50 kDa. The expression of mRNA and protein levels in cardiac muscle is not correlated with NMT activities, suggesting the presence of regulators of the enzyme activity. We have isolated the cDNA encoding bovine cardiac muscle NMT (cNMT) by reverse transcription polymerase chain reaction. The single long open reading frame of 1248 bp of bovine cNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The cDNA clone expressed in Escherichia coli resulted in the production of functionally active 50-kDa NMT. Ultrastructural and immunolocalization of NMT utilizing the immunogold labeling technique demonstrated cytoplasmic distribution with occasional mitochondrial and myofilaments localization of the NMT antibody. Cardiac muscle NMT has a higher affinity for myristoyl-CoA than toward palmitoyl-CoA. Substrate specificity indicated that cNMT has a higher affinity toward pp60src and M2 gene segment of reovirus type 3-derived peptide substrates than toward cAMP-dependent protein kinase-derived peptide. Primary translational product of cNMT sequence contained several regions rich in proline, glutamic acid, serine, and threonine, which are known as "PEST" regions. PEST-FIND analysis of the amino acid sequences indicated eight PEST regions were present in the cNMT. These PEST regions are suggested to be recognized by specific proteases, particularly Ca(2+)-dependent neutral proteases, calpains, which are responsible for the degradation of PEST-containing proteins. We have demonstrated the abolishment of NMT activity and NMT protein degradation in vitro by m-calpain. The proteolysis of cNMT by m-calpain and the abolishment of NMT activity was prevented by the calpain inhibitor, calpastatin. These observations indicate that calpains may regulate NMT activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
17
|
DeMar JC, Anderson RE. Identification and quantitation of the fatty acids composing the CoA ester pool of bovine retina, heart, and liver. J Biol Chem 1997; 272:31362-8. [PMID: 9395466 DOI: 10.1074/jbc.272.50.31362] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several proteins found in retinal photoreceptor cells (guanylate cyclase activating protein, protein kinase A, recoverin, and transducin) are N-terminally modified with the fatty acids 12:0, 14:0, 14:1n-9, and 14:2n-6, whereas similar proteins in other tissues contain only 14:0. It has been hypothesized that the acyl-CoA pool of the retina contains amounts of 12:0, 14:1n-9, and 14:2n-6 elevated over 14:0, in comparison to other tissues, and this accounts for the specificity of N-terminal fatty acylation. To test this hypothesis, we performed fatty acid analysis on total acyl-CoAs purified from bovine retina (light-adapted), heart, and liver. We also examined the N- and S-linked fatty acid composition of the total protein pools from these tissues. Acyl-CoAs were prepared from heart, liver, and retina and separated by high performance liquid chromatography (HPLC). Identities of peaks were based on HPLC of standard 12:0, 14:0, 14:1n-9, and 14:2n-6 CoAs. Total protein was subjected to base hydrolysis followed by acidic methanolysis to release S- and N-linked fatty acids, respectively, and fatty acid phenacyl esters were prepared for HPLC analysis. Retina had levels of 12:0 (2.7 +/- 2.1%), 14:1n-9 (2.9 +/- 2.2%), and 14:2n-6 (1.6 +/- 0.7%) CoAs below that of 14:0 CoA (7.0 +/- 1.8%). Likewise, heart levels of 14:2n-6 CoA (3.7 +/- 0.1%) were near and 12:0 (2.6 +/- 0. 6%) and 14:1n-9 (0.7 +/- 0.3%) CoAs were below that of 14:0 CoA (3.8 +/- 1.0%). Liver had levels of 12:0 (16.1 +/- 5.7%) and 14:2n-6 (8.1 +/- 1.2%) CoAs above and 14:1n-9 CoA (1.2 +/- 0.6%) below that of 14:0 CoA (5.9 +/- 0.8%). Fatty acid analysis of total protein showed that all tissues contained S-linked 16:0, 18:0, and 18:1n-9. Retina proteins contained N-linked 14:0, 14:1n-9, and 14:2n-6, whereas heart and liver had only 14:0. Our findings do not support the hypothesis that the CoA ester pool of the retina is enriched with 12:0, 14:1n-9, and 14:2n-6 over 14:0, in comparison to other tissues. This suggests that alternative models must be considered for the regulation of N-terminal fatty acylation of proteins in photoreceptor cells.
Collapse
Affiliation(s)
- J C DeMar
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
18
|
Raju RV, Anderson JW, Datla RS, Sharma RK. Molecular cloning and biochemical characterization of bovine spleen myristoyl CoA:protein N-myristoyltransferase. Arch Biochem Biophys 1997; 348:134-42. [PMID: 9390183 DOI: 10.1006/abbi.1997.0333] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. We have isolated full-length cDNA encoding bovine spleen NMT (sNMT). The single long open reading frame of 1248 bp of sNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The protein coding sequence was expressed in Escherichia coli resulting in the production of functionally active 50-kDa NMT. Deletion mutagenesis showed that the C-terminus is essential for activity whereas up to 52 amino acids can be deleted from the N-terminus without affecting the function. One of the N-terminal deletions resulted in threefold higher NMT activity. Genomic Southern analysis indicated the presence of two strong hybridizing bands with three different restriction enzyme digests suggesting the possibility of two copies of the NMT gene in the bovine genome. RNA blot hybridization analysis of total cellular RNA prepared from bovine brain, heart, spleen, lung, liver, kidney, and skeletal muscle probed with bovine sNMT cDNA revealed a single 1.7-kb mRNA. Western blot analysis of various bovine tissues with human NMT peptide antibody indicated a common prominent immunoreactive band with an apparent molecular mass of 48.5-50 kDa in all tissues. Additional immunoreactive bands were observed in brain (84 and 50 kDa), lung (58 kDa), and skeletal muscle (58 kDa). Activity measurements demonstrated that brain contained the highest NMT activity followed by spleen, lung, kidney, heart, skeletal muscle, pancreas, and liver. It appears therefore that mRNA and protein expression do not correlate with NMT activity, suggesting the presence of regulators of the enzyme activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
19
|
Glover CJ, Hartman KD, Felsted RL. Human N-myristoyltransferase amino-terminal domain involved in targeting the enzyme to the ribosomal subcellular fraction. J Biol Chem 1997; 272:28680-9. [PMID: 9353336 DOI: 10.1074/jbc.272.45.28680] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-Myristoyltransferase (NMT) catalyzes the cotranslational acylation with myristic acid of the NH2-terminal glycines of a number of cellular and viral proteins. Most of the in vitro NMT activity (60-85%) in isoosmotic cell homogenates of human lymphoblastic leukemia (i.e. CEM and MOLT-4) and cervical carcinoma (i.e. HeLa) cells was shown to be associated with the ribosomal subcellular fractions by differential centrifugation. Also found in the ribosomal fractions was a approximately 60-kDa protein that was specifically immunoblotted with an anti-human NMT (hNMT) peptide antibody. This approximately 60-kDa protein was stable in the presence of proteolytic enzyme inhibitors but was gradually converted into a approximately 46-kDa species when stored in the absence of protease inhibitors. Sucrose density gradient centrifugation of the ribosomal fraction resulted in the hNMT activity sedimenting exactly coincident with the 260 nm absorption profile and exhibiting A260/A280 absorption ratios >1.8, indicating an association of NMT with putative ribosomal particle(s)/subunit(s). The subcellular targeting of hNMT was also examined by immunoblotting subcellular fractions from HeLa cells transfected with plasmids containing FLAG epitope-tagged hNMT inserts corresponding either to the originally assigned hNMT gene or to an alternative open reading frame initiated from an in-frame start site upstream from the assumed hNMT start site. Anti-FLAG immunoblotting of cells transfected with a plasmid containing the larger insert revealed FLAG-NMT primarily in the ribosomal fraction with an apparent molecular mass similar to the approximately 60-kDa native hNMT. In contrast, immunoblotting of cells transfected with a plasmid containing the smaller insert identified a approximately 50-kDa FLAG-NMT predominantly in the cytosolic fraction. An analysis of mixtures of CEM ribosomes and serial dilutions of purified recombinant FLAG-NMTs demonstrated that the approximately 60-kDa FLAG-NMT binds ribosomes with higher affinity than the approximately 50-kDa FLAG-NMT. These in vivo and in vitro subcellular targeting and recombinant expression experiments identify a native hNMT that is 10-12 kDa larger than the enzyme predicted by the originally assigned hNMT gene and which is apparently translated from an alternative up-stream start site. The data also indicate that although the unique NH2-terminal residues encoded by this larger open reading frame are not required for in vitro catalytic activity, they do provide signal(s) involved in targeting hNMT to the ribosomal subcellular fraction where cotranslational N-myristoylation occurs.
Collapse
Affiliation(s)
- C J Glover
- Developmental Therapeutic Program, Division of Cancer Treatment, Diagnosis, and Centers, NCI-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
20
|
Raju RV, Kakkar R, Radhi JM, Sharma RK. Biological significance of phosphorylation and myristoylation in the regulation of cardiac muscle proteins. Mol Cell Biochem 1997; 176:135-43. [PMID: 9406155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Post-translational modification has long been recognized as a way in which the properties of proteins may be subtly altered after synthesis of the polypeptide chain is complete. Amongst the moieties most commonly encountered covalently attached to proteins are oligosaccharides, phosphate, acetyl, formyl and nucleosides. Protein phosphorylation and dephosphorylation is one of the most prevalent and best understood modifications employed in cellular regulation. The bovine heart calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPEDE) can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme's affinity for Ca2+ and calmodulin (CaM). The phosphorylation of CaMPDE is blocked by Ca2+ and CaM and reversed by the CaM-dependent phosphatase (calcineurin). The dephosphorylation is accompanied by an increase in the affinity of the phosphodiesterase for CaM. Analysis of the complex regulatory properties of CaMPDE has led to the suggestion that fluxes of cAMP and Ca2+ during cell activations are closely coupled and that the CaMPDE play a key role in the signal coupling phenomenon. The high molecular weight calmodulin binding protein (HMWCaMBP) was phosphorylated by cAMP-dependent protein kinase. Phosphorylation of HMWCBP was higher in the absence of Ca2+/CaM then in the presence of Ca2+/CaM and reversed by the CaM-dependent phosphatase. Recently, it has become apparent that the binding of myristate to proteins is also widespread in eukaryotic cells and viruses and certainly is of great importance to the correct functioning of an organism. Myristoyl CoA:protein N-myristoyltransferase (NMT) catalyses the attachment of myristate to the amino-terminal glycine residue of various signal transduction proteins. Cardiac tissue express high levels of cAMP-dependent protein kinase whose catalytic subunit is myristoylated. The subcellular localization of bovine cardiac muscle NMT indicated a majority of the activity was localized in cytoplasm. Under native conditions the enzyme exhibited an apparent molecular mass of 50 kDa. Recovery of NMT activity, from both cytosol and particulate fractions, was found to be higher than the total activity in crude homogenates, suggesting that particulate fraction may contain an inhibitory activity towards NMT. Research in our laboratory has been focusing on the covalent modification of proteins and regulation of various signal transduction proteins. This special review is designed to summarize some aspects of the current work on co- and post-translational modification of proteins in cardiac muscle.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
21
|
Raju RV, Moyana TN, Sharma RK. N-Myristoyltransferase overexpression in human colorectal adenocarcinomas. Exp Cell Res 1997; 235:145-54. [PMID: 9281363 DOI: 10.1006/excr.1997.3679] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modification of proteins by myristoylation has been proposed as a chemotherapeutic target against colon cancer because it is important in the function of various signal transduction proteins. Recently we reported that the enzyme that catalyzes this modification, N-myristoyltransferase (NMT), is elevated in colorectal adenocarcinomas [Magnuson, B. A., Raju, R. V. S., Moyana, T. N., and Sharma, R. K. (1995) J. Natl. Cancer. Inst. 87, 1630-1635]. The purpose of the present study was to investigate whether the elevated activity of NMT in colorectal adenocarcinomas is due to an increase in the production of NMT or a change in the structure of the preexisting enzyme. The expression of NMT in normal colonic mucosa and adenocarcinomas from human colorectal surgical specimens was studied by immunoblotting, and its localization was confirmed by immunohistochemistry. The molecular weight of NMT was determined by fast protein liquid chromatography. In both normal mucosa and colorectal adenocarcinomas, NMT with a molecular mass of 48.5 kDa was identified with anti-human NMT and anti-peptide antibody. However, the expression of NMT was found to be higher in the colorectal tumors. This finding was further confirmed by immunohistochemical studies which showed stronger cytoplasmic staining in the tumors. These findings represent the first description of NMT overexpression in colorectal adenocarcinomas. This has implications with regard to (i) the design of chemotherapeutic drugs and (ii) prognosis, for instance, in monitoring colorectal cancer recurrence or metastases.
Collapse
Affiliation(s)
- R V Raju
- Saskatoon Cancer Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4H4, Canada
| | | | | |
Collapse
|
22
|
Ntwasa M, Egerton M, Gay NJ. Sequence and expression of Drosophila myristoyl-CoA: protein N-myristoyl transferase: evidence for proteolytic processing and membrane localisation. J Cell Sci 1997; 110 ( Pt 2):149-56. [PMID: 9044045 DOI: 10.1242/jcs.110.2.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme N-myristoyl transferase transfers the 14 carbon fatty acid myristate to an N-terminal glycine residue in a small subset of cytoplasmic proteins. Many myristoyl proteins are components of cellular signalling pathways, some of which play important roles during embryonic development, for example protein kinase A. Thus, the function of N-myristoyl transferase is probably essential for embryogenesis and it is of some interest to study the enzyme in an organism with well understood developmental biology. In this paper we report the purification of a processed form of the Drosophila enzyme from peripheral membrane fractions of embryos by affinity chromatography to a protein containing leucine rich repeats. We have also isolated the Drosophila N-myristoyl transferase gene and determined its nucleotide sequence. The predicted amino acid sequence of the Drosophila enzyme is closely related to that of mammalian and fungal N-myristoyl transferases and residues essential for enzyme function are conserved. Our findings indicate that a fraction of Drosophila NMT is bound to the membrane and they are consistent with recent results for the human enzyme. We suggest that N-myristoyl transferase may be recruited to the membrane as part of a translational complex, perhaps by binding to p34 ribosome binding protein, a leucine rich repeat receptor of the microsomal membranes. We have also studied the expression pattern of the gene in the embryo by northern blot analysis and in situ hybridization. The transcripts appear to be uniformly distributed in the pre-cellular embryo but at later stages the RNA is barely detectable with these methods. However, from about stage 14, high levels of transcript are detected in a small number of randomly distributed cells of the central and peripheral nervous system.
Collapse
Affiliation(s)
- M Ntwasa
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
23
|
Abstract
N-myristoylation is an acylation process absolutely specific to the N-terminal amino acid glycine in proteins. This maturation process concerns about a hundred proteins in lower and higher eukaryotes involved in oncogenesis, in secondary cellular signalling, in infectivity of retroviruses and, marginally, of other virus types. Thy cytosolic enzyme responsible for this activity, N-myristoyltransferase (NMT), studied since 1987, has been purified from different sources. However, the studies of the specificities of the various NMTs have not progressed in detail except for those relating to the yeast cytosolic enzyme. Still to be explained are differences in species specificity and between various putative isoenzymes, also whether the data obtained from the yeast enzyme can be transposed to other NMTs. The present review discusses data on the various addressing processes subsequent to myristoylation, a patchwork of pathways that suggests myristoylation is only the first step of the mechanisms by which a protein associates with the membrane. Concerning the enzyme itself, there are evidences that NMT is also present in the endoplasmic reticulum and that its substrate specificity is different from that of the cytosolic enzyme(s). These differences have major implications for their differential inhibition and for their respective roles in several pathologies. For instance, the NMTs from mammalians are clearly different from those found in several microorganisms, which raises the question whether the NMT may be a new targets for fungicides. Finally, since myristoylation has a central role in virus maturation and oncogenesis, specific NMT inhibitors might lead to potent antivirus and anticancer agents.
Collapse
Affiliation(s)
- J A Boutin
- Département de Chemie des Peptides, Institut de Recherches Servier 11, Suresnes, France
| |
Collapse
|
24
|
Magnuson BA, Raju RV, Sharma RK. Distribution of myristoyl-CoA:protein N-myristoyl transferase activity in rabbit intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1300:119-24. [PMID: 8652637 DOI: 10.1016/0005-2760(95)00240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myristoyl-CoA:protein N-myristoyl transferase (NMT) attaches the fatty acid, myristate, to the amino-terminal glycine residue of various proteins involved in cellular regulation and/or signal transduction. We report differences in the activity and properties of NMT in New Zealand rabbit small intestine, ascending colon and descending colon. The mucosa of the small intestine, ascending colon and descending colon was assayed for NMT activity using peptides of known myristoylated proteins (pp60src and catalytic subunit of cAMP dependent protein kinase). Total NMT activity per gram tissue was 5-fold higher in the small intestine and 1.5-fold higher in the ascending colon than in the descending colon. Smooth muscle from the colon also contained low levels of NMT activity. NMT activity was 2- to 3-fold higher in the particulate fraction than in the cytosolic fraction of the mucosa in the descending colon. The apparent molecular mass of NMT in the intestine mucosa was 78 kDa.
Collapse
Affiliation(s)
- B A Magnuson
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
25
|
Raju RV, Datla RS, Sharma RK. Expression of human N-myristoyltransferase in Escherichia coli. Comparison with N-myristoyltransferases expressed in different tissues. Mol Cell Biochem 1996; 155:69-76. [PMID: 8717441 DOI: 10.1007/bf00714335] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myristoyl CoA:protein N-myristoyltransferase catalyzes the addition of myristate to the amino-terminal glycine residue of a number of eukaryotic proteins. Escherichia coli transformed with human NMT expression construct produced high levels of N-myristoyltransferase. Using the combination of ammonium sulfate precipitation, chromatography on SP-Sepharose fast flow and fast protein liquid chromatography on Mono-S, the enzyme was purified more than 100 fold with 40% yield. The hNMT fusion protein exhibited an apparent molecular weight of 53 kDa on SDS-polyacrylamide gel electrophoresis. Upon cleavage by the Enterokinase [(Asp)4-Lys], the hNMT exhibited an apparent molecular mass of 49 kDa without loss of catalytic activity. The hNMT activity could be greatly activated severalfold with the use of Tris, SDS, ethanol and acetonitrile. The catalytic activity of hNMT was potently inhibited in a concentration dependent manner by NIP71, a bovine brain NMT inhibitory protein with a half maximal inhibition of 31.0 nM. The E. coli expressed hNMT was homogeneous and showed enzyme activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology and Saskatoon Cancer Centre, University of Saskatchewan, Canada
| | | | | |
Collapse
|
26
|
Glover CJ, Felsted RL. Identification and characterization of multiple forms of bovine brain N-myristoyltransferase. J Biol Chem 1995; 270:23226-33. [PMID: 7559471 DOI: 10.1074/jbc.270.39.23226] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
N-Myristoyltransferase (NMT) catalyzes the co-translational addition of myristic acid to the N-terminal glycine of many cellular, viral, and fungal proteins which are essential to normal cell functioning and/or are potential therapeutic targets. We have found that bovine brain NMT exists as a heterogeneous mixture of interconvertible high molecular mass multimers involving approximately 60-kDa NMT subunit(s). Gel filtration chromatography of partially purified NMT at low to moderate ionic strength yields NMT activity eluting as 391 +/- 52 and 126 +/- 17 kDa peaks as well as activity which profiles the protein fractions and likely results from NMT nonspecifically associating with background proteins and/or column matrix. Chromatography in 1 M NaCl causes 100% of this activity to elute as a single peak of approximately 391 kDa. Subsequent treatment of the approximately 391 kDa activity peak with an NMT peptide reaction product (i.e. N-myristoyl-peptide) results in approximately 75% of the activity re-eluting as a approximately 126-kDa peak in 1 M NaCl. Rechromatography also yields small amounts of a approximately 50-kDa NMT monomer which increases with prior storage at 4 degrees C. Up to 5 NMT subunits were identified by SDS-polyacrylamide gel electrophoresis and specific immunoblotting with a human NMT peptide antibody and by cofactor-dependent chemical cross-linking with an 125I-peptide substrate of NMT. The prominent 60 kDa and minor 57-, 53-, 49-, and 47-kDa NMT immunoblotted subunits co-migrate with five of nine silver-stained proteins in an enzyme preparation purified > 7,000-fold with approximately 50% yield by selective elution from octyl-agarose with the myristoyl-CoA analog, S-(2-ketopentadecyl)-CoA. Storage at 4 degrees C also leads to conversion of the larger NMT subunit(s) into 49 and 47 kDa forms with no loss of NMT activity. These results identify two interconvertible forms of NMT in bovine brain that result from NMT subunit multimerization and/or complex formation with other cellular proteins. The data also identify a fully active NMT monomer which arises from subunit proteolysis. This study thus reveals a previously unappreciated level of NMT complexity which may have important mechanistic and/or regulatory significance for N-myristoylation in mammalian cells.
Collapse
Affiliation(s)
- C J Glover
- Laboratory of Biological Chemistry, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
27
|
Raju RV, Magnuson BA, Sharma RK. Mammalian myristoyl CoA: protein N-myristoyltransferase. Mol Cell Biochem 1995; 149-150:191-202. [PMID: 8569729 DOI: 10.1007/bf01076577] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myristoyl CoA:Protein N-myristoyltransferase (NMT) is the enzyme which catalyses the covalent transfer of myristate from myristoyl CoA to the amino-terminal glycine residue of protein substrates. Although NMT is ubiquitous in eukaryotic cells, the enzyme levels and cellular distribution vary among tissues. In this article, we describe the properties of mammalian NMT(s) with reference to subcellular distribution, molecular weights, substrate specificity and the possible involvement of NMT in pathological processes. The cytosolic fraction of bovine brain contains majority of NMT activity. In contrast, rabbit colon and rat liver NMT activity was predominantly particulate. Regional differences in NMT activity have been observed in both rabbit intestine and bovine brain. Results from our laboratory along with the existing knowledge, provide evidence for the existence of tissue specific isozymes of NMT.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
28
|
Abstract
N-Myristoyl-CoA:protein N-myristoyltransferase (NMT) is the enzyme that catalyses the transfer of myristate from myristoyl-CoA to the N-terminal glycine of protein substrates. NMT was highly purified from bovine brain by procedures involving sequential column chromatography on DEAE-Sepharose CL-6B, phosphocellulose, hydroxylapatite, and mono S and mono Q f.p.l.c.. The highly purified NMT (termed NMT.II) possessed high specific activity with peptide substrates derived from the N-terminal sequences of the cAMP-dependent protein kinase and pp60src (29,800 and 47,600 pmol N-myristoylpeptide formed/min/mg, respectively), intermediate activity with a peptide based on the N-terminal sequence of a viral structural protein (microliter) (M2; 17,300 pmol N-myristoylpeptide formed/min/mg) and very low activity with a peptide derived from the N-terminal sequence of myristoylated alanine-rich C-kinase substrate (MARCKS; 1500 pmol myristoylpeptide formed/min/mg). An NMT protein inhibitor (NIP71) isolated from the particulate fraction of bovine brain (King MJ and Sharma RK: Biochem J 291:635-639, 1993) potently inhibited highly purified NMT activity (IC50 23.7 nM). A minor NMT activity (NMT.PU; 30% total NMT activity), which failed to bind to phosphocellulose, was insensitive to NIP71 inhibition. Inhibition of NMT was observed to be via mixed inhibition with respect to both the myristoyl-CoA and peptide substrates with NIP71 having an apparent higher affinity for NMT than the NMT.myristoyl.CoA complex. Inhibition by NIP71 at subsaturating concentrations of myristoyl-CoA and peptide resulted in a sigmoidal pattern of inhibition indicating that bovine brain possesses a potent and delicate on/off switch to control NMT activity.
Collapse
Affiliation(s)
- M J King
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
29
|
McIlhinney RA, Patel PB, McGlone K. Characterization of a polyhistidine-tagged form of human myristoyl-CoA: protein N-myristoyltransferase produced in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:137-46. [PMID: 8200338 DOI: 10.1111/j.1432-1033.1994.tb18851.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme myristoyl-CoA:protein N-myristoyltransferase is responsible for the attachment of a myristoyl group to the N-terminal glycine of a number of cell, viral and fungal proteins. In order to overcome the difficulties of purification of this enzyme from tissue sources, we have produced an N-terminally polyhistidine-tagged version of the enzyme and expressed this in Escherichia coli. The resulting enzyme has a molecular mass of 53 kDa and is fully active showing the expected specificity for myristic acid and causing the N-terminal myristoylation of both synthetic peptide and protein substrates in vitro. The enzyme exhibits a broad pH optimum peaking at a pH of 8.0 and has a Km for myristoyl-CoA of 7.6 microM. The two synthetic peptide substrates based on the N-terminal sequence of the catalytic subunit of protein kinase A (GNAAAARR) and of p60src (GSSKSKPKDPSQRRRY) have different kinetic parameters with Km values of 115.2 microM and 44.2 microM and Vmax values of 95 and 120 nmol.min-1.mg-1, respectively. The expressed enzyme is partially inhibited (50%) by iodoacetamide at 5 mM and fully inhibited by diethylpyrocarbonate at 10 mM. This latter inhibition can be prevented by including histidine in the incubation of the enzyme and inhibitor. Antisera raised to synthetic peptides based on sequences derived from the N- and C- terminus of the human enzyme reacted with the expressed protein on Western blots, but only the N-terminal sequence reacted with the native protein suggesting that the C-terminus may be not be accessible. The enzyme can catalyse the removal of a myristoyl group from myristoylated peptides but does so only in the presence of added coenzyme A.
Collapse
Affiliation(s)
- R A McIlhinney
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, England
| | | | | |
Collapse
|
30
|
Purification and properties of bovine spleen N-myristoyl-CoA protein:N-myristoyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Lodge J, Johnson R, Weinberg R, Gordon J. Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42038-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|