1
|
Pulvirenti F, Cinicola BL, Ferrari S, Guadagnolo D, Sculco E, Capponi M, Loffredo L, Sciannamea M, Insalaco A, Quinti I, De Benedetti F, Zicari AM. Case Report: Interindividual variability and possible role of heterozygous variants in a family with deficiency of adenosine deaminase 2: are all heterozygous born equals? Front Immunol 2023; 14:1156689. [PMID: 37207212 PMCID: PMC10188974 DOI: 10.3389/fimmu.2023.1156689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a rare systemic autoinflammatory disease, typically with autosomal recessive inheritance, usually caused by biallelic loss of function mutations in the ADA2 gene. The phenotypic spectrum is broad, generally including fever, early-onset vasculitis, stroke, and hematologic dysfunction. Heterozygous carriers may show related signs and symptoms, usually milder and at an older age. Here we describe the case of two relatives, the proband and his mother, bearing an ADA2 homozygous pathogenic variant, and a heterozygous son. The proband was a 17-year-old boy with intermittent fever, lymphadenopathies, and mild hypogammaglobulinemia. He also had sporadic episodes of aphthosis, livedo reticularis and abdominal pain. Hypogammaglobulinemia was documented when he was 10 years old, and symptoms appeared in his late adolescence. The mother demonstrated mild hypogammaglobulinemia, chronic pericarditis since she was 30 years old and two transient episodes of diplopia without lacunar lesions on MRI. ADA2 (NM_001282225.2) sequencing identified both mother and son as homozygous for the c.1358A>G, p.(Tyr453Cys) variant. ADA2 activity in the proband and the mother was 80-fold lower than in the controls. Clinical features in both patients improved on anti-tumor necrosis factor therapy. An older son was found to be heterozygous for the same mutation post-mortem. He died at the age of 12 years due to a clinical picture of fever, lymphadenitis, skin rash and hypogammaglobulinemia evolving toward fatal multiorgan failure. Biopsies of skin, lymph nodes, and bone marrow excluded lymphomas and vasculitis. Despite being suspected of symptomatic carrier, the contribution of an additional variant in compound heterozygosity, or further genetic could not be ruled out, due to poor quality of DNA samples available. In conclusion, this familiar case demonstrated the wide range of phenotypic variability in DADA2. The search for ADA2 mutations and the assessment of ADA2 activity should be considered also in patients with the association of hypogammaglobulinemia and inflammatory conditions, also with late presentation and in absence of vasculitis. Furthermore, the clinical picture of the deceased carrier suggests a possible contribution of heterozygous pathogenic variants to inflammation.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Bianca Laura Cinicola,
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Guo H, Wang S, Xie A, Sun W, Wei C, Xian S, Yin H, Li M, Sun H, Li H, Meng T, Zhang J, Huang Z. Ral GEF with the PH Domain and SH3 Binding Motif 1 Regulated by Splicing Factor Junction Plakoglobin and Pyrimidine Metabolism Are Prognostic in Uterine Carcinosarcoma. DISEASE MARKERS 2021; 2021:1484227. [PMID: 34745385 PMCID: PMC8568522 DOI: 10.1155/2021/1484227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023]
Abstract
Uterine carcinosarcoma (UCS) is a highly invasive malignant tumor that originated from the uterine epithelium. Many studies suggested that the abnormal changes of alternative splicing (AS) of pre-mRNA are related to the occurrence and metastasis of the tumor. This study investigates the mechanism of alternative splicing events (ASEs) in the tumorigenesis and metastasis of UCS. RNA-seq of UCS samples and alternative splicing event (ASE) data of UCS samples were downloaded from The Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases, several times. Firstly, we performed the Cox regression analysis to identify the overall survival-related alternative splicing events (OSRASEs). Secondly, a multivariate model was applied to approach the prognostic values of the risk score. Afterwards, a coexpressed network between splicing factors (SFs) and OSRASEs was constructed. In order to explore the relationship between the potential prognostic signaling pathways and OSRASEs, we fabricated a network between these pathways and OSRASEs. Finally, validations from multidimension platforms were used to explain the results unambiguously. 1,040 OSRASEs were identified by Cox regression. Then, 6 OSRASEs were incorporated in a multivariable model by Lasso regression. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve was 0.957. The risk score rendered from the multivariate model was corroborated to be an independent prognostic factor (P < 0.001). In the network of SFs and ASEs, junction plakoglobin (JUP) noteworthily regulated RALGPS1-87608-AT (P < 0.001, R = 0.455). Additionally, RALGPS1-87608-AT (P = 0.006) showed a prominent relationship with distant metastasis. KEGG pathways related to prognosis of UCS were selected by gene set variation analysis (GSVA). The pyrimidine metabolism (P < 0.001, R = -0.470) was the key pathway coexpressed with RALGPS1. We considered that aberrant JUP significantly regulated RALGPS1-87608-AT and the pyrimidine metabolism pathway might play a significant part in the metastasis and prognosis of UCS.
Collapse
Affiliation(s)
- Hongjun Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| | - Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Aiqing Xie
- School of Ocean and Earth Science, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhuizi Sun
- Department of Gynaecology, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Chenlu Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| | - Shuyuan Xian
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Mingxiao Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| | - Hanlin Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| | - Hong Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Zongqiang Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China
| |
Collapse
|
4
|
Vai S, Marin E, Cosso R, Saettini F, Bonanomi S, Cattoni A, Chiodini I, Persani L, Falchetti A. A Novel Germline Mutation of ADA2 Gene in Two "Discordant" Homozygous Female Twins Affected by Adenosine Deaminase 2 Deficiency: Description of the Bone-Related Phenotype. Int J Mol Sci 2021; 22:8331. [PMID: 34361096 PMCID: PMC8348276 DOI: 10.3390/ijms22158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Adenosine Deaminase 2 Deficiency (DADA2) syndrome is a rare monogenic disorder prevalently linked to recessive inherited loss of function mutations in the ADA2/CECR1 gene. It consists of an immune systemic disease including autoinflammatory vasculopathies, with a frequent onset at infancy/early childhood age. DADA2 syndrome encompasses pleiotropic manifestations such as stroke, systemic vasculitis, hematologic alterations, and immunodeficiency. Although skeletal abnormalities have been reported in patients with this disease, clear information about skeletal health, with appropriate biochemical-clinical characterization/management, its evolution over time and any appropriate clinical management is still insufficient. In this paper, after a general introduction shortly reviewing the pathophysiology of Ada2 enzymatic protein, its potential role in bone health, we describe a case study of two 27 year-old DADA2 monozygotic female twins exhibiting bone mineral density and bone turnover rate abnormalities over the years of their clinical follow-up.
Collapse
Affiliation(s)
- Silvia Vai
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (S.V.); (E.M.); (I.C.); (L.P.)
| | - Erika Marin
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (S.V.); (E.M.); (I.C.); (L.P.)
| | - Roberta Cosso
- IRCCS, Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy;
| | - Francesco Saettini
- Department of Pediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, 20100 Monza, Italy; (F.S.); (S.B.); (A.C.)
| | - Sonia Bonanomi
- Department of Pediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, 20100 Monza, Italy; (F.S.); (S.B.); (A.C.)
| | - Alessandro Cattoni
- Department of Pediatrics, Università degli Studi di Milano-Bicocca, Fondazione MBBM, San Gerardo Hospital, 20100 Monza, Italy; (F.S.); (S.B.); (A.C.)
| | - Iacopo Chiodini
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (S.V.); (E.M.); (I.C.); (L.P.)
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (S.V.); (E.M.); (I.C.); (L.P.)
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Alberto Falchetti
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (S.V.); (E.M.); (I.C.); (L.P.)
- IRCCS, Istituto Auxologico Italiano, San Giuseppe Hospital, 28824 Verbania, Italy;
| |
Collapse
|
5
|
Costa L, de Souza A, Scholl J, Figueiró F, Battastini A, Jaques JDS, Zanoelo F. Biochemical characterization of adenosine deaminase (CD26; EC 3.5.4.4) activity in human lymphocyte-rich peripheral blood mononuclear cells. Braz J Med Biol Res 2021; 54:e10850. [PMID: 34037096 PMCID: PMC8148981 DOI: 10.1590/1414-431x2020e10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The conversion of adenosine to inosine is catalyzed by adenosine deaminase (ADA) (EC 3.5.4.4), which has two isoforms in humans (ADA1 and ADA2) and belongs to the zinc-dependent hydrolase family. ADA modulates lymphocyte function and differentiation, and regulates inflammatory and immune responses. This study investigated ADA activity in lymphocyte-rich peripheral blood mononuclear cells (PBMCs) in the absence of disease. The viability of lymphocyte-rich PBMCs isolated from humans and kept in 0.9% saline solution at 4-8°C was analyzed over 20 h. The incubation time and biochemical properties of the enzyme, such as its Michaelis-Menten constant (Km) and maximum velocity (Vmax), were characterized through the liberation of ammonia from the adenosine substrate. Additionally, the presence of ADA protein on the lymphocyte surface was determined by flow cytometry using an anti-CD26 monoclonal human antibody, and the PBMCs showed long-term viability after 20 h. The ADA enzymatic activity was linear from 15 to 120 min of incubation, from 2.5 to 12.5 µg of protein, and pH 6.0 to 7.4. The Km and Vmax values were 0.103±0.051 mM and 0.025±0.001 nmol NH3·mg-1·s-1, respectively. Zinc and erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) inhibited enzymatic activity, and substrate preference was given to adenosine over 2'-deoxyadenosine and guanosine. The present study provides the biochemical characterization of ADA in human lymphocyte-rich PBMCs, and indicates the appropriate conditions for enzyme activity quantification.
Collapse
Affiliation(s)
- L.R. Costa
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Campo Grande, MS, Brasil
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular-SBBq, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - A.K.Y. de Souza
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Campo Grande, MS, Brasil
| | - J.N. Scholl
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - F. Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.M.O. Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica, Instituto de Ciências Básicas e da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - J.A. dos Santos Jaques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Campo Grande, MS, Brasil
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular-SBBq, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - F.F. Zanoelo
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Campo Grande, MS, Brasil
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular-SBBq, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| |
Collapse
|
6
|
Silva D, Moreira D, Cordeiro-da-Silva A, Quintas C, Gonçalves J, Fresco P. Intracellular adenosine released from THP-1 differentiated human macrophages is involved in an autocrine control of Leishmania parasitic burden, mediated by adenosine A 2A and A 2B receptors. Eur J Pharmacol 2020; 885:173504. [PMID: 32858046 DOI: 10.1016/j.ejphar.2020.173504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Leishmania infected macrophages have conditions to produce adenosine. Despite its known immunosuppressive effects, no studies have yet established whether adenosine alter Leishmania parasitic burden upon macrophage infection. This work aimed at investigating whether endogenous adenosine exerts an autocrine modulation of macrophage response towards Leishmania infection, identifying its origin and potential pharmacological targets for visceral leishmaniasis (VL), using THP-1 differentiated macrophages. Adenosine deaminase treatment of infected THP-1 cells reduced the parasitic burden (29.1 ± 2.2%, P < 0.05). Adenosine A2A and A2B receptor subtypes expression was confirmed by RT-qPCR and by immunocytochemistry and their blockade with selective adenosine A2A and A2B antagonists reduced the parasitic burden [14.5 ± 3.1% (P < 0.05) and 12.3 ± 3.1% (P < 0.05), respectively; and 24.9 ± 2.8% (P < 0.05), by the combination of the two antagonists)], suggesting that adenosine A2 receptors are tonically activated in infected THP-1 differentiated macrophages. The tonic activation of adenosine A2 receptors was dependent on the release of intracellular adenosine through equilibrative nucleoside transporters (ENT1/ENT2): NBTI or dipyridamole reduced (~25%) whereas, when ENTs were blocked, adenosine A2 receptor antagonists failed to reduce and A2 agonists increase parasitic burden. Effects of adenosine A2 receptors antagonists and ENT1/2 inhibitor were prevented by L-NAME, indicating that nitric oxide production inhibition prevents adenosine from increasing parasitic burden. Results suggest that intracellular adenosine, released through ENTs, elicits an autocrine increase in parasitic burden in THP-1 macrophages, through adenosine A2 receptors activation. These observations open the possibility to use well-established ENT inhibitors or adenosine A2 receptor antagonists as new therapeutic approaches in VL.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Diana Moreira
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, Sirago G, Unger LW, Iglesias-Romero AB, Ramshorn K, Haag LM, Saveljeva S, Ebel JF, Rosenstiel P, Kaneider NC, Lee JC, Lawley TD, Bradley A, Dougan G, Modis Y, Griffin JL, Kaser A. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020; 180:278-295.e23. [PMID: 31978345 PMCID: PMC6978800 DOI: 10.1016/j.cell.2019.12.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5′-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling. An unbiased LC-MS screen reveals FAMIN as a purine nucleoside enzyme FAMIN combines adenosine phosphorylase with ADA-, PNP-, and MTAP-like activities FAMIN enables a purine nucleotide cycle (PNC) preventing cytoplasmic acidification The FAMIN-dependent PNC balances the glycolysis-mitochondrial redox interface
Collapse
Affiliation(s)
- M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rodrigo Pereira de Almeida Rodrigues
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Muhammad N Md-Ibrahim
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephanie Reikine
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Giuseppe Sirago
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ana Belén Iglesias-Romero
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katharina Ramshorn
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lea-Maxie Haag
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Jana-Fabienne Ebel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
8
|
Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J 2020; 34:7253-7264. [PMID: 32367579 PMCID: PMC7383733 DOI: 10.1096/fj.202000654r] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is potentially the fastest available option in the race to identify safe and efficacious drugs that can be used to prevent and/or treat COVID‐19. By describing the life cycle of the newly emergent coronavirus, SARS‐CoV‐2, in light of emerging data on the therapeutic efficacy of various repurposed antimicrobials undergoing testing against the virus, we highlight in this review a possible mechanistic convergence between some of these tested compounds. Specifically, we propose that the lysosomotropic effects of hydroxychloroquine and several other drugs undergoing testing may be responsible for their demonstrated in vitro antiviral activities against COVID‐19. Moreover, we propose that Niemann‐Pick disease type C (NPC), a lysosomal storage disorder, may provide new insights into potential future therapeutic targets for SARS‐CoV‐2, by highlighting key established features of the disorder that together result in an “unfavorable” host cellular environment that may interfere with viral propagation. Our reasoning evolves from previous biochemical and cell biology findings related to NPC, coupled with the rapidly evolving data on COVID‐19. Our overall aim is to suggest that pharmacological interventions targeting lysosomal function in general, and those particularly capable of reversibly inducing transient NPC‐like cellular and biochemical phenotypes, constitute plausible mechanisms that could be used to therapeutically target COVID‐19.
Collapse
Affiliation(s)
- Rami A Ballout
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Lipoproteins and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michael I Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Allen SP, Hall B, Castelli LM, Francis L, Woof R, Siskos AP, Kouloura E, Gray E, Thompson AG, Talbot K, Higginbottom A, Myszczynska M, Allen CF, Stopford MJ, Hemingway J, Bauer CS, Webster CP, De Vos KJ, Turner MR, Keun HC, Hautbergue GM, Ferraiuolo L, Shaw PJ. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain 2020; 142:586-605. [PMID: 30698736 PMCID: PMC6391613 DOI: 10.1093/brain/awy353] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
- Correspondence to: Dr Scott Allen Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK E-mail:
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Ryan Woof
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Eirini Kouloura
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Monika Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Chloe F Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Matthew J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Jordan Hemingway
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, West Wing Level 6, Oxford, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, UK
| |
Collapse
|
10
|
Wyant GA, Abu-Remaileh M, Frenkel EM, Laqtom NN, Dharamdasani V, Lewis CA, Chan SH, Heinze I, Ori A, Sabatini DM. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 2018; 360:751-758. [PMID: 29700228 DOI: 10.1126/science.aar2663] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The lysosome degrades and recycles macromolecules, signals to the master growth regulator mTORC1 [mechanistic target of rapamycin (mTOR) complex 1], and is associated with human disease. We performed quantitative proteomic analyses of rapidly isolated lysosomes and found that nutrient levels and mTOR dynamically modulate the lysosomal proteome. Upon mTORC1 inhibition, NUFIP1 (nuclear fragile X mental retardation-interacting protein 1) redistributes from the nucleus to autophagosomes and lysosomes. Upon these conditions, NUFIP1 interacts with ribosomes and delivers them to autophagosomes by directly binding to microtubule-associated proteins 1A/1B light chain 3B (LC3B). The starvation-induced degradation of ribosomes via autophagy (ribophagy) depends on the capacity of NUFIP1 to bind LC3B and promotes cell survival. We propose that NUFIP1 is a receptor for the selective autophagy of ribosomes.
Collapse
Affiliation(s)
- Gregory A Wyant
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evgeni M Frenkel
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nouf N Laqtom
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vimisha Dharamdasani
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Zhong XZ, Zou Y, Sun X, Dong G, Cao Q, Pandey A, Rainey JK, Zhu X, Dong XP. Inhibition of Transient Receptor Potential Channel Mucolipin-1 (TRPML1) by Lysosomal Adenosine Involved in Severe Combined Immunodeficiency Diseases. J Biol Chem 2017; 292:3445-3455. [PMID: 28087698 DOI: 10.1074/jbc.m116.743963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Impaired adenosine homeostasis has been associated with numerous human diseases. Lysosomes are referred to as the cellular recycling centers that generate adenosine by breaking down nucleic acids or ATP. Recent studies have suggested that lysosomal adenosine overload causes lysosome defects that phenocopy patients with mutations in transient receptor potential channel mucolipin-1 (TRPML1), a lysosomal Ca2+ channel, suggesting that lysosomal adenosine overload may impair TRPML1 and then lead to subsequent lysosomal dysfunction. In this study, we demonstrate that lysosomal adenosine is elevated by deleting adenosine deaminase (ADA), an enzyme responsible for adenosine degradation. We also show that lysosomal adenosine accumulation inhibits TRPML1, which is rescued by overexpressing ENT3, the adenosine transporter situated in the lysosome membrane. Moreover, ADA deficiency results in lysosome enlargement, alkalinization, and dysfunction. These are rescued by activating TRPML1. Importantly, ADA-deficient B-lymphocytes are more vulnerable to oxidative stress, and this was rescued by TRPML1 activation. Our data suggest that lysosomal adenosine accumulation impairs lysosome function by inhibiting TRPML1 and subsequently leads to cell death in B-lymphocytes. Activating TRPML1 could be a new therapeutic strategy for those diseases.
Collapse
Affiliation(s)
| | | | - Xue Sun
- Departments of Physiology and Biophysics; Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130024 Jilin, China
| | | | - Qi Cao
- Departments of Physiology and Biophysics
| | - Aditya Pandey
- Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K Rainey
- Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130024 Jilin, China
| | | |
Collapse
|
12
|
Altered microRNA expression and pre-mRNA splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection. Sci Rep 2016; 6:24964. [PMID: 27102525 PMCID: PMC4840452 DOI: 10.1038/srep24964] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular regulatory mechanisms of host responses to Mycobacterium avium subsp. paratuberculosis (MAP) infection during the early subclinical stage are still not clear. In this study, surgically isolated ileal segments in newborn calves (n = 5) were used to establish in vivo MAP infection adjacent to an uninfected control intestinal compartment. RNA-Seq was used to profile the whole transcriptome (mRNAs) and the microRNAome (miRNAs) of ileal tissues collected at one-month post-infection. The most related function of the differentially expressed mRNAs between infected and uninfected tissues was “proliferation of endothelial cells”, indicating that MAP infection may lead to the over-proliferation of endothelial cells. In addition, 46.2% of detected mRNAs displayed alternative splicing events. The pre-mRNA of two genes related to macrophage maturation (monocyte to macrophage differentiation-associated) and lysosome function (adenosine deaminase) showed differential alternative splicing events, suggesting that specific changes in the pre-mRNA splicing sites may be a mechanism by which MAP escapes host immune responses. Moreover, 9 miRNAs were differentially expressed after MAP infection. The integrated analysis of microRNAome and transcriptome revealed that these miRNAs might regulate host responses to MAP infection, such as “proliferation of endothelial cells” (bta-miR-196 b), “bacteria recognition” (bta-miR-146 b), and “regulation of the inflammatory response” (bta-miR-146 b).
Collapse
|
13
|
Shi L, Ryan GJ, Bhamidi S, Troudt J, Amin A, Izzo A, Lenaerts AJ, McNeil MR, Belisle JT, Crick DC, Chatterjee D. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Tuberculosis (Edinb) 2014; 94:525-30. [PMID: 25037320 DOI: 10.1016/j.tube.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Evidence suggests that Mycobacterium tuberculosis grown in vivo may have a different phenotypic structure from its in vitro counterpart. In order to study the differences between in vivo and in vitro grown bacilli, it is important to establish a reliable method for isolating and purifying M. tuberculosis from infected tissue. In this study, we developed an optimal method to isolate bacilli from the lungs of infected guinea pigs, which was also shown to be applicable to the interferon-γ gene knockout mouse model. Briefly, 1) the infected lungs were thoroughly homogenized; 2) a four step enzymatic digestion was utilized to reduce the bulk of the host tissue using collagenase, DNase I and pronase E; 3) residual contamination by the host tissue debris was successfully reduced using percoll density gradient centrifugation. These steps resulted in a protocol such that relatively clean, viable bacilli can be isolated from the digested host tissue homogenate in about 50% yield. These bacilli can further be used for analytical studies of the more stable cellular components such as lipid, peptidoglycan and mycolic acid.
Collapse
Affiliation(s)
- Libin Shi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gavin J Ryan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Suresh Bhamidi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - JoLynn Troudt
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anita Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angelo Izzo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael R McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dean C Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
14
|
Sharoyan SG, Antonyan AA, Mardanyan SS, Lupidi G, Cuccioloni M, Angeletti M, Cristalli G. Complex of dipeptidyl peptidase II with adenosine deaminase. BIOCHEMISTRY (MOSCOW) 2008; 73:943-9. [DOI: 10.1134/s0006297908080130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Jennings LL, Cass CE, Ritzel MW, Yao SY, Young JD, Griffiths M, Baldwin SA. Adenosine transport: Recent advances in the molecular biology of nucleoside transporter proteins. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199811/12)45:3/4<277::aid-ddr26>3.0.co;2-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Growth Inhibition of Granulocyte-Macrophage Colony-Forming Cells by Human Cytidine Deaminase Requires the Catalytic Function of the Protein. Blood 1998. [DOI: 10.1182/blood.v91.11.4127.411k42_4127_4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that cytidine deaminase (CDD) is a potent growth inhibitor of granulocyte-macrophage colony-forming cells (GM-CFC). In this study, we have undertaken molecular cloning and purification of recombinant human CDD to elucidate the growth regulatory potential and mechanism behind the growth suppressive effect. The purified protein had a specific activity of 1.35 × 105 U/mg and a Km value of 30 μmol/L. In the GM-CFC assay, the recombinant protein was shown to reduce colony formation to 50% at 16 pmol/L concentration. Similarly, as was observed with CDD derived from granulocyte extract, the effect depended on the presence of thymidine (≥ 4 × 10-5 mol/L). These results imply that CDD is an extremely potent inhibitor of GM-CFC and that no additional factor from the granulocyte extract is required for the growth inhibitory effect. Modification of CDD by truncation from the C-terminal end, or by amino acid substitution of an active site glutamate residue, eliminated both the enzyme activity and the growth regulatory potential of CDD. Furthermore, CDD fromEscherichia coli was found to be even more effective than human CDD in growth suppression of GM-CFC, with 10-fold higher inhibitory activity corresponding to a 10-fold higher enzymatic activity. Taken together, these results show that the catalytic nucleoside deaminating function of the protein is essential for the growth suppressive effect of CDD. Most probably, CDD exerts growth inhibition by depleting the cytidine and deoxycytidine pool required for DNA synthesis, as addition of deoxycytidine monophosphate, which is not a substrate for CDD, neutralizes the inhibiting effect.
Collapse
|
17
|
Growth Inhibition of Granulocyte-Macrophage Colony-Forming Cells by Human Cytidine Deaminase Requires the Catalytic Function of the Protein. Blood 1998. [DOI: 10.1182/blood.v91.11.4127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPrevious studies have indicated that cytidine deaminase (CDD) is a potent growth inhibitor of granulocyte-macrophage colony-forming cells (GM-CFC). In this study, we have undertaken molecular cloning and purification of recombinant human CDD to elucidate the growth regulatory potential and mechanism behind the growth suppressive effect. The purified protein had a specific activity of 1.35 × 105 U/mg and a Km value of 30 μmol/L. In the GM-CFC assay, the recombinant protein was shown to reduce colony formation to 50% at 16 pmol/L concentration. Similarly, as was observed with CDD derived from granulocyte extract, the effect depended on the presence of thymidine (≥ 4 × 10-5 mol/L). These results imply that CDD is an extremely potent inhibitor of GM-CFC and that no additional factor from the granulocyte extract is required for the growth inhibitory effect. Modification of CDD by truncation from the C-terminal end, or by amino acid substitution of an active site glutamate residue, eliminated both the enzyme activity and the growth regulatory potential of CDD. Furthermore, CDD fromEscherichia coli was found to be even more effective than human CDD in growth suppression of GM-CFC, with 10-fold higher inhibitory activity corresponding to a 10-fold higher enzymatic activity. Taken together, these results show that the catalytic nucleoside deaminating function of the protein is essential for the growth suppressive effect of CDD. Most probably, CDD exerts growth inhibition by depleting the cytidine and deoxycytidine pool required for DNA synthesis, as addition of deoxycytidine monophosphate, which is not a substrate for CDD, neutralizes the inhibiting effect.
Collapse
|
18
|
Hogue DL, Ellison MJ, Young JD, Cass CE. Identification of a novel membrane transporter associated with intracellular membranes by phenotypic complementation in the yeast Saccharomyces cerevisiae. J Biol Chem 1996; 271:9801-8. [PMID: 8621662 DOI: 10.1074/jbc.271.16.9801] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A partial mouse cDNA was isolated by its ability to functionally complement a thymidine transport deficiency in plasma membranes of the yeast, Saccharomyces cerevisiae. The full-length cDNA encoded a previously unidentified 27-kDa protein (mouse transporter protein (MTP)) with four predicted transmembrane-spanning domains. MTP mRNA was detected in cells of several mammalian species, and its predicted protein sequence exhibited near identity (98%) with that of a human cDNA (HUMORF13). MTP and its homologs evidently reside in an intracellular membrane compartment because a protein (about 24 kDa) that was recognized by MTP-specific antibodies was observed in a subcellular fraction of rat hepatocytes enriched for Golgi membranes. Deletion of the hydrophilic C terminus of MTP, which encompassed two putative signal motifs for intracellular localization (Tyr-X-X-hydrophobic amino acid), allowed expression of recombinant protein (MTP deltaC) in plasma membranes of Xenopus laevis oocytes. MTP deltaC-expressing oocytes exhibited greater fragility than nonexpressing oocytes, and those that survived the experimental manipulations were capable of mediated uptake of thymidine, uridine, and adenosine. Thymidine uptake by MTP deltaC-expressing oocytes was inhibited by thymine and dTMP. MTP may function in the transport of nucleosides and/or nucleoside derivatives between the cytosol and the lumen of an intracellular membrane-bound compartment.
Collapse
Affiliation(s)
- D L Hogue
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J B Lloyd
- Department of Pediatrics, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
20
|
Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, Becker HF, Foiret D, Morin A, Jin YX, Fournier M, Fourrey JL. Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 1996; 78:488-501. [PMID: 8915538 DOI: 10.1016/0300-9084(96)84755-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inosine (6-deaminated adenosine) is a characteristic modified nucleoside that is found at the first anticodon position (position 34) of several tRNAs of eukaryotic and eubacterial origins, while N1-methylinosine is found exclusively at position 37 (3' adjacent to the anticodon) of eukaryotic tRNA(Ala) and at position 57 (in the middle of the psi loop) of several tRNAs from halophilic and thermophilic archaebacteria. Inosine has also been recently found in double-stranded RNA, mRNA and viral RNAs. As for all other modified nucleosides in RNAs, formation of inosine and inosine derivative in these RNA is catalysed by specific enzymes acting after transcription of the RNA genes. Using recombinant tRNAs and T7-runoff transcripts of several tRNA genes as substrates, we have studied the mechanism and specificity of tRNA-inosine-forming enzymes. The results show that inosine-34 and inosine-37 in tRNAs are both synthesised by a hydrolytic deamination-type reaction, catalysed by distinct tRNA:adenosine deaminases. Recognition of tRNA substrates by the deaminases does not strictly depend on a particular "identity' nucleotide. However, the efficiency of adenosine to inosine conversion depends on the nucleotides composition of the anticodon loop and the proximal stem as well as on 3D-architecture of the tRNA. In eukaryotic tRNA(Ala), N1-methylinosine-37 is formed from inosine-37 by a specific SAM-dependent methylase, while in the case of N1-methylinosine-57 in archaeal tRNAs, methylation of adenosine-57 into N1-methyladenosine-57 occurs before the deamination process. The T psi-branch of fragmented tRNA is the minimalist substrate for the N1-methylinosine-57 forming enzymes. Inosine-34 and N1-methylinosine-37 in human tRNA(Ala) are targets for specific autoantibodies which are present in the serum of patients with inflammatory muscle disease of the PL-12 polymyositis type. Here we discuss the mechanism, specificity and general properties of the recently discovered RNA:adenosine deaminases/editases acting on double-stranded RNA, intron-containing mRNA and viral RNA in relation to those of the deaminases acting on tRNAs.
Collapse
Affiliation(s)
- H Grosjean
- CNRS, Laboratoire d'Enzymologie et de Biochimie Structurales, Gif-sur-Yvétte, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pisoni RL. Lysosomal nucleic acid and phosphate metabolism and related metabolic reactions. Subcell Biochem 1996; 27:295-330. [PMID: 8993164 DOI: 10.1007/978-1-4615-5833-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R L Pisoni
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109, USA
| |
Collapse
|
22
|
Hughes M, Vassilakos A, Andrews DW, Hortelano G, Belmont JW, Chang PL. Delivery of a secretable adenosine deaminase through microcapsules--a novel approach to somatic gene therapy. Hum Gene Ther 1994; 5:1445-55. [PMID: 7711137 DOI: 10.1089/hum.1994.5.12-1445] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many current gene therapy protocols require genetic modification of autologous cells. An alternate approach is to use universal recombinant cell lines engineered to secrete in vivo the desired gene products. Enclosing these cells within immunoprotective devices before implantation would prevent rejection of the nonautologous donor cells. To overcome the limitation that not all therapeutic gene products are secreted, we now propose to fuse a signal sequence to the amino terminus of a nonsecreted protein such as human adenosine deaminase (ADA), thus directing the product into a secretory pathway for release from the cells. A fusion gene constructed between the cDNA of the beta-lactamase signal sequence and human ADA expressed a product after in vitro transcription and translation that was immunologically similar to the human protein. Mouse fibroblasts transfected with the fusion gene demonstrated secreted ADA activity that resembled the human cytosolic enzyme in its heat stability, pH optimum, KM, electrophoretic mobility, and immunologic reactivity. Hence, the secreted enzyme expressed from the fusion gene is antigenically and enzymatically similar to the authentic human form. When transfected mouse fibroblasts or myoblasts were enclosed in permselective alginate-poly-L-lysine alginate microcapsules, ADA activity was secreted from the microcapsules and the cells remained viable for over 5 months. Hence, a secretable and functional human ADA has been constructed that can be delivered from recombinant cells within immunoprotective capsules. The success of this strategy provides the prototype for engineering nonsecreted gene products for therapy via this novel method of somatic gene therapy.
Collapse
Affiliation(s)
- M Hughes
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|