1
|
Ferreira FHDC, Farrell NP, Costa LAS. Spermine and spermidine SI-PPCs: Molecular dynamics reveals enhanced biomolecular interactions. Int J Biol Macromol 2024; 278:134654. [PMID: 39128748 DOI: 10.1016/j.ijbiomac.2024.134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.
Collapse
Affiliation(s)
- Frederico Henrique do C Ferreira
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Luiz Antônio S Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
2
|
Uciechowska-Kaczmarzyk U, Frank M, Samsonov SA, Maszota-Zieleniak M. Structural Insights into Endostatin-Heparan Sulfate Interactions Using Modeling Approaches. Molecules 2024; 29:4040. [PMID: 39274888 PMCID: PMC11397277 DOI: 10.3390/molecules29174040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Glycosaminoglycans (GAGs) play a key role in a variety of biological processes in the extracellular matrix (ECM) via interactions with their protein targets. Due to their high flexibility, periodicity and electrostatics-driven interactions, GAG-containing complexes are very challenging to characterize both experimentally and in silico. In this study, we, for the first time, systematically analyzed the interactions of endostatin, a proteolytic fragment of collagen XVIII known to be anti-angiogenic and anti-tumoral, with heparin (HP) and representative heparan sulfate (HS) oligosaccharides of various lengths, sequences and sulfation patterns. We first used conventional molecular docking and a docking approach based on a repulsive scaling-replica exchange molecular dynamics technique, as well as unbiased molecular dynamic simulations, to obtain dynamically stable GAG binding poses. Then, the corresponding free energies of binding were calculated and the amino acid residues that contribute the most to GAG binding were identified. We also investigated the potential influence of Zn2+ on endostatin-HP complexes using computational approaches. These data provide new atomistic details of the molecular mechanism of HP's binding to endostatin, which will contribute to a better understanding of its interplay with proteoglycans at the cell surface and in the extracellular matrix.
Collapse
Affiliation(s)
- Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Martin Frank
- Biognos AB, P.O. Box 8963, 40274 Göteborg, Sweden
| | - Sergey A Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Halat M, Zając G, Andrushchenko V, Bouř P, Baranski R, Pajor K, Baranska M. Induced Chirality in Canthaxanthin Aggregates Reveals Multiple Levels of Supramolecular Organization. Angew Chem Int Ed Engl 2024; 63:e202402449. [PMID: 38517385 DOI: 10.1002/anie.202402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.
Collapse
Affiliation(s)
- Monika Halat
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Rafal Baranski
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Katarzyna Pajor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, S. Łojasiewicza 11, 30-348, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
4
|
Parafioriti M, Elli S, Muñoz-García JC, Ramírez-Cárdenas J, Yates EA, Angulo J, Guerrini M. Differential Solvent DEEP-STD NMR and MD Simulations Enable the Determinants of the Molecular Recognition of Heparin Oligosaccharides by Antithrombin to Be Disentangled. Int J Mol Sci 2024; 25:4669. [PMID: 38731888 PMCID: PMC11083112 DOI: 10.3390/ijms25094669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.
Collapse
Affiliation(s)
- Michela Parafioriti
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy; (M.P.); (S.E.)
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy; (M.P.); (S.E.)
| | - Juan C. Muñoz-García
- Instituto de Investigationes Químicas (IIQ)-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 49, 41092 Sevilla, Spain; (J.C.M.-G.); (J.R.-C.)
| | - Jonathan Ramírez-Cárdenas
- Instituto de Investigationes Químicas (IIQ)-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 49, 41092 Sevilla, Spain; (J.C.M.-G.); (J.R.-C.)
| | - Edwin A. Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK;
- Centre for Glycoscience, Keele University, Newcastle-Under-Lyme ST5 5BG, UK
| | - Jesús Angulo
- Instituto de Investigationes Químicas (IIQ)-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Americo Vespucio 49, 41092 Sevilla, Spain; (J.C.M.-G.); (J.R.-C.)
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy; (M.P.); (S.E.)
| |
Collapse
|
5
|
Schulze C, Danielsson A, Liwo A, Huster D, Samsonov SA, Penk A. Ligand binding of interleukin-8: a comparison of glycosaminoglycans and acidic peptides. Phys Chem Chem Phys 2023; 25:24930-24947. [PMID: 37694394 DOI: 10.1039/d3cp02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recognition and binding of regulatory proteins to glycosaminoglycans (GAGs) from the extracellular matrix is a process of high biological importance. The interaction between negatively charged sulfate or carboxyl groups of the GAGs and clusters of basic amino acids on the protein is crucial in this binding process and it is believed that electrostatics represent the key factor for this interaction. However, given the rather undirected nature of electrostatics, it is important to achieve a clear understanding of its role in protein-GAG interactions and how specificity and selectivity in these systems can be achieved, when the classical key-lock binding motif is not applicable. Here, we compare protein binding of a highly charged heparin (HP) hexasaccharide with four de novo designed decapeptides of varying negative net charge. The charge density of these peptides was comparable to typical GAGs of the extracellular matrix. We used the regulatory protein interleukin-8 (IL-8) because its interactions with GAGs are well described. All four peptide ligands bind to the same epitope of IL-8 but show much weaker binding affinity as revealed in 1H-15N HSQC NMR titration experiments. Complementary molecular docking and molecular dynamics simulations revealed further atomistic details of the interaction mode of GAG versus peptide ligands. Overall, similar contributions to the binding energy and hydrogen bond formation are determined for HP and the highly charged peptides, suggesting that the entropic loss of the peptides upon binding likely account for the remarkably different affinity of GAG versus peptide ligands to IL-8.
Collapse
Affiliation(s)
- Christian Schulze
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Anja Penk
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| |
Collapse
|
6
|
Danielsson A, Samsonov SA, Liwo A, Sieradzan AK. Extension of the SUGRES-1P Coarse-Grained Model of Polysaccharides to Heparin. J Chem Theory Comput 2023; 19:6023-6036. [PMID: 37587433 PMCID: PMC10500997 DOI: 10.1021/acs.jctc.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/18/2023]
Abstract
Heparin is an unbranched periodic polysaccharide composed of negatively charged monomers and involved in key biological processes, including anticoagulation, angiogenesis, and inflammation. Its structure and dynamics have been studied extensively using experimental as well as theoretical approaches. The conventional approach of computational chemistry applied to the analysis of biomolecules is all-atom molecular dynamics, which captures the interactions of individual atoms by solving Newton's equation of motion. An alternative is molecular dynamics simulations using coarse-grained models of biomacromolecules, which offer a reduction of the representation and consequently enable us to extend the time and size scale of simulations by orders of magnitude. In this work, we extend the UNIfied COarse-gRaiNed (UNICORN) model of biological macromolecules developed in our laboratory to heparin. We carried out extensive tests to estimate the optimal weights of energy terms of the effective energy function as well as the optimal Debye-Hückel screening factor for electrostatic interactions. We applied the model to study unbound heparin molecules of polymerization degree ranging from 6 to 68 residues. We compare the obtained coarse-grained heparin conformations with models obtained from X-ray diffraction studies of heparin. The SUGRES-1P force field was able to accurately predict the general shape and global characteristics of heparin molecules.
Collapse
Affiliation(s)
- Annemarie Danielsson
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A. Samsonov
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Marcisz M, Samsonov SA. Solvent Model Benchmark for Molecular Dynamics of Glycosaminoglycans. J Chem Inf Model 2023; 63:2147-2157. [PMID: 36989082 PMCID: PMC10091405 DOI: 10.1021/acs.jcim.2c01472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In computational studies of glycosaminoglycans (GAGs), a group of anionic, periodic linear polysaccharides, so far there has been very little discussion about the role of solvent models in the molecular dynamics simulations of these molecules. Predominantly, the TIP3P water model is commonly used as one of the most popular explicit water models in general. However, there are numerous alternative explicit and implicit water models that are neglected in the computational research of GAGs. Since solvent-mediated interactions are particularly important for GAG dynamic and structural properties, it would be of great interest for the GAG community to establish the solvent model that is suited the best in terms of the quality of theoretically obtained GAG parameters and, at the same time, would be reasonably demanding in terms of computational resources required. In this study, heparin (HP) was simulated using five implicit and six explicit solvent models with the aim to find out how different solvent models influence HP's molecular descriptors in the molecular dynamics simulations. Here, we initiate the search for the most appropriate solvent representation for GAG systems and we hope to encourage other groups to contribute to this highly relevant subject.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Meier M, Gupta M, Akgül S, McDougall M, Imhof T, Nikodemus D, Reuten R, Moya-Torres A, To V, Ferens F, Heide F, Padilla-Meier GP, Kukura P, Huang W, Gerisch B, Mörgelin M, Poole K, Antebi A, Koch M, Stetefeld J. The dynamic nature of netrin-1 and the structural basis for glycosaminoglycan fragment-induced filament formation. Nat Commun 2023; 14:1226. [PMID: 36869049 PMCID: PMC9984387 DOI: 10.1038/s41467-023-36692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.
Collapse
Affiliation(s)
- Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Serife Akgül
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Denise Nikodemus
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Raphael Reuten
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Obsterics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Vu To
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fraser Ferens
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Birgit Gerisch
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kate Poole
- Max Delbrück Center for Molecular Medicine, Robert Roessle Str 10, Berlin-Buch, Germany.,EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany.
| | - Manuel Koch
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Holmes SG, Nagarajan B, Desai UR. 3- O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Comput Struct Biotechnol J 2022; 20:3884-3898. [PMID: 35891779 PMCID: PMC9309406 DOI: 10.1016/j.csbj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Corresponding author at: Institute for Structural Biology, Drug Discovery, and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
| |
Collapse
|
11
|
Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022; 10:837172. [PMID: 35646879 PMCID: PMC9133562 DOI: 10.3389/fbioe.2022.837172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Bone regeneration in large segmental defects depends on the action of osteoblasts and the ingrowth of new blood vessels. Therefore, it is important to promote the release of osteogenic/angiogenic growth factors. Since the discovery of heparin, its anticoagulant, anti-inflammatory, and anticancer functions have been extensively studied for over a century. Although the application of heparin is widely used in the orthopedic field, its auxiliary effect on bone regeneration is yet to be unveiled. Specifically, approximately one-third of the transforming growth factor (TGF) superfamily is bound to heparin and heparan sulfate, among which TGF-β1, TGF-β2, and bone morphogenetic protein (BMP) are the most common growth factors used. In addition, heparin can also improve the delivery and retention of BMP-2 in vivo promoting the healing of large bone defects at hyper physiological doses. In blood vessel formation, heparin still plays an integral part of fracture healing by cooperating with the platelet-derived growth factor (PDGF). Importantly, since heparin binds to growth factors and release components in nanomaterials, it can significantly facilitate the controlled release and retention of growth factors [such as fibroblast growth factor (FGF), BMP, and PDGF] in vivo. Consequently, the knowledge of scaffolds or delivery systems composed of heparin and different biomaterials (including organic, inorganic, metal, and natural polymers) is vital for material-guided bone regeneration research. This study systematically reviews the structural properties and auxiliary functions of heparin, with an emphasis on bone regeneration and its application in biomaterials under physiological conditions.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Australia−China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| |
Collapse
|
12
|
Nguyen NT, Bui QA, Huynh PD, Nguyen QH, Tran NQ, Viet NT, Nguyen DT. Curcumin and Paclitaxel co-Loaded Heparin and Poloxamer P403 Hybrid Nanocarrier for Improved Synergistic Efficacy in Breast Cancer. Curr Drug Deliv 2022; 19:966-979. [DOI: 10.2174/1567201819666220401095923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Introduction:
Multi-drug nanosystem has been employed in several therapeutic models due to the synergistic effect of the drugs and/or bioactive compounds, which help in tumor-targeting and limit usual side effects of chemotherapy.
Methods:
In this research, we developed the amphiphilic Heparin-Poloxamer P403 (HSP) nanogel that can load curcumin (CUR) and Paclitaxel (PTX) through the hydrophobic core of Poloxamer P403. The features of HSP nanogel are assessed through Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), differential light scattering (DLS), and critical micelle concentration (CMC). Nanogel and its duel-loaded platform show high stability and spherical morphology.
Results:
The drug release profile indicates fast release at pH 5.5, suggesting effective drug distribution at the tumor site. In vitro research confirms lower cytotoxicity of HSP@CUR@PTX compared with free PTX and higher inhibition effect with MCF-7 than HSP@PTX. These results support the synergism between PTX and CUR.
Conclusion,:
HSP@CUR@PTX suggests a prominent strategy for achieving the synergistic effect of PTX and CUR to circumvent undesirable effects in breast cancer treatment.
Collapse
Affiliation(s)
- Ngoc The Nguyen
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | - Quynh Anh Bui
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phuong Duy Huynh
- Faculty of Medicine - Pharmacy, Tra Vinh University, Tra Vinh City, Vietnam
| | | | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Nguyen Thanh Viet
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res 2022; 392:349-365. [PMID: 35307792 DOI: 10.1007/s00441-022-03604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, are caused by the accumulation of abnormal isoforms of the prion protein (scrapie isoform of the prion protein, PrPSc) in the central nervous system. Many compounds with anti-prion activities have been found using in silico screening, in vitro models, persistently prion-infected cell models, and prion-infected rodent models. Some of these compounds include several types of polymers. Although the inhibition or removal of PrPSc production is the main target of therapy, the unique features of prions, namely protein aggregation and assembly accompanied by steric structural transformation, may require different strategies for the development of anti-prion drugs than those for conventional therapeutics targeting enzyme inhibition, agonist ligands, or modulation of signaling. In this paper, we first overview the history of the application of polymers to prion disease research. Next, we describe the characteristics of each type of polymer with anti-prion activity. Finally, we discuss the common features of these polymers. Although drug delivery of these polymers to the brain is a challenge, they are useful not only as leads for therapeutic drugs but also as tools to explore the structure of PrPSc and are indispensable for prion disease research.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
14
|
Janke JJ, Yu Y, Pomin VH, Zhao J, Wang C, Linhardt RJ, García AE. Characterization of Heparin's Conformational Ensemble by Molecular Dynamics Simulations and Nuclear Magnetic Resonance Spectroscopy. J Chem Theory Comput 2022; 18:1894-1904. [PMID: 35108013 PMCID: PMC9027489 DOI: 10.1021/acs.jctc.1c00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heparin is a highly charged, polysulfated polysaccharide and serves as an anticoagulant. Heparin binds to multiple proteins throughout the body, suggesting a large range of potential therapeutic applications. Although its function has been characterized in multiple physiological contexts, heparin's solution conformational dynamics and structure-function relationships are not fully understood. Molecular dynamics (MD) simulations facilitate the analysis of a molecule's underlying conformational ensemble, which then provides important information necessary for understanding structure-function relationships. However, for MD simulations to afford meaningful results, they must both provide adequate sampling and accurately represent the energy properties of a molecule. The aim of this study is to compare heparin's conformational ensemble using two well-developed force fields for carbohydrates, known as GLYCAM06 and CHARMM36, using replica exchange molecular dynamics (REMD) simulations, and to validate these results with NMR experiments. The anticoagulant sequence, an ultra-low-molecular-weight heparin, known as Arixtra (fondaparinux, sodium), was simulated with both parameter sets. The results suggest that GLYCAM06 matches experimental nuclear magnetic resonance three-bond J-coupling values measured for Arixtra better than CHARMM36. In addition, NOESY and ROESY experiments suggest that Arixtra is very flexible in the sub-millisecond time scale and does not adopt a unique structure at 25 C. Moreover, GLYCAM06 affords a much more dynamic conformational ensemble for Arixtra than CHARMM36.
Collapse
Affiliation(s)
- J Joel Janke
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yanlei Yu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Rosa NMP, Ferreira FHDC, Farrell NP, Costa LAS. Substitution-inert polynuclear platinum complexes and Glycosaminoglycans: A molecular dynamics study of its non-covalent interactions. J Inorg Biochem 2022; 232:111811. [DOI: 10.1016/j.jinorgbio.2022.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
16
|
Nguyen NT, Bui QA, Nguyen HHN, Nguyen TT, Ly KL, Tran HLB, Doan VN, Nhi TTY, Nguyen NH, Nguyen NH, Tran NQ, Nguyen DT. Curcuminoid Co-Loading Platinum Heparin-Poloxamer P403 Nanogel Increasing Effectiveness in Antitumor Activity. Gels 2022; 8:59. [PMID: 35049594 PMCID: PMC8774475 DOI: 10.3390/gels8010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Nanosized multi-drug delivery systems provide synergistic effects between drugs and bioactive compounds, resulting in increased overall efficiency and restricted side effects compared to conventional single-drug chemotherapy. In this study, we develop an amphiphilic heparin-poloxamer P403 (HP403) nanogel that could effectively co-load curcuminoid (Cur) and cisplatin hydrate (CisOH) (HP403@CisOH@Cur) via two loading mechanisms. The HP403 nanogels and HP403@CisOH@Cur nanogels were closely analyzed with 1H-NMR spectroscopy, FT-IR spectroscopy, TEM, and DLS, exhibiting high stability in spherical forms. In drug release profiles, accelerated behavior of Cur and CisOH at pH 5.5 compared with neutral pH was observed, suggesting effective delivery of the compounds in tumor sites. In vitro studies showed high antitumor activity of HP403@CisOH@Cur nanogels, while in vivo assays showed that the dual-drug platform prolonged the survival time of mice and prevented tail necrosis. In summary, HP403@CisOH@Cur offers an intriguing strategy to achieve the cisplatin and curcumin synergistic effect in a well-designed delivery platform that increases antitumor effectiveness and overcomes undesired consequences caused by cisplatin in breast cancer treatment.
Collapse
Affiliation(s)
- Ngoc The Nguyen
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Quynh Anh Bui
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| | - Hoang Huong Nhu Nguyen
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Tien Thanh Nguyen
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Khanh Linh Ly
- Faculty of Medicine-Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam; (T.T.N.); (K.L.L.)
| | - Ha Le Bao Tran
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Vu Nguyen Doan
- Faculty of Biology and Biotechnology, University of Science—Vietnam National University, Ho Chi Minh City 72700, Vietnam; (H.H.N.N.); (H.L.B.T.); (V.N.D.)
| | - Tran Thi Yen Nhi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam;
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 72800, Vietnam
| | - Ngoc Hoa Nguyen
- German Vietnamese Technology Center, HCMC University of Food Industry, Ho Chi Minh City 72000, Vietnam;
| | - Ngoc Hao Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam;
| | - Dinh Trung Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 71500, Vietnam; (Q.A.B.); (N.H.N.); (N.Q.T.)
| |
Collapse
|
17
|
Yamazaki M, Yabe M, Iijima K. Analysis of the formation mechanism of polyion complexes of polysaccharides by molecular dynamics simulation with oligosaccharides. Polym J 2022. [DOI: 10.1038/s41428-021-00602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Ryan EO, Jiang Z, Nguyen H, Wang X. Interactions of Pleiotrophin with a Structurally Defined Heparin Hexasaccharide. Biomolecules 2021; 12:biom12010050. [PMID: 35053198 PMCID: PMC8773689 DOI: 10.3390/biom12010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Pleiotrophin (PTN) is a potent cytokine that plays an important role in neural generation, angiogenesis, inflammation, and cancers. Its interactions with the polysaccharide glycosaminoglycan (GAG) are crucial to PTN’s biological activities. In this study, we investigated the interaction of selectively protonated PTN with the heparin hexasaccharide ΔUA2S-(GlcNS6S-IdoA2S)2-GlcNS6S using solution NMR. The use of a structurally defined oligosaccharide and selectively protonated PTN enabled us to obtain intermolecular contacts using unfiltered NOESY experiments, significantly increasing the amount of high-resolution structural information obtainable. Our data showed that PTN’s arginines, lysines, and tryptophans in the two structured domains have strong interactions with the 2-O-sulfated uronate protons in the heparin hexasaccharide. Consistent with the NMR data is the observation that 2-O-desulfation and N-desulfation/N-acetylation significantly decreased heparin hexasaccharides’ affinity for PTN, while 6-O-desulfation only modestly affected the interactions with PTN. These results allowed us to hypothesize that PTN has a preference for sulfate clusters centered on the GlcNS6S-IdoA2S disaccharide. Using these data and the fact that PTN domains mostly bind heparin hexasaccharides independently, models of the PTN-heparin complex were constructed.
Collapse
Affiliation(s)
| | | | | | - Xu Wang
- Correspondence: ; Tel.: +1-480-7278256
| |
Collapse
|
19
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
20
|
Computerized Molecular Modeling for Discovering Promising Glycosaminoglycan Oligosaccharides that Modulate Protein Function. Methods Mol Biol 2021; 2303:513-537. [PMID: 34626405 DOI: 10.1007/978-1-0716-1398-6_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of highly negatively charged polysaccharides that plays a major role in various biological processes through their interaction with hundreds of proteins. A major challenge in understanding the specific protein-GAG interaction is their structural diversity and complexity. Recently, computational approaches have been used extensively in addressing this challenge. In this chapter, we present a generally-applicable methodology termed Combinatorial Virtual Library Screening (CVLS) that can identify potential high-affinity, high-specificity sequence(s) binding to a suitable GAG-binding protein from large GAG combinatorial libraries of various lengths and structural patterns.
Collapse
|
21
|
Dong X, Qi R, Qiao Q, Li X, Li F, Wan J, Zhang Q, Wei G. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Phys Chem Chem Phys 2021; 23:20406-20418. [PMID: 34494046 DOI: 10.1039/d1cp02651h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abnormal aggregation of proteins into pathological amyloid fibrils is implicated in a wide range of devastating human neurodegenerative diseases. Intracellular fibrillary inclusions formed by Tau protein are characterized as the hallmark of tauopathies, including Alzheimer's disease and frontotemporal dementia. Heparin has been often used to trigger Tau aggregation in in vitro studies. However, the conformational changes induced by heparin and the underlying mechanism of promotion of Tau aggregation by heparin are not well understood. Structural characterization of Tau oligomers in the early stage of fibrillation is of great importance but remains challenging due to their dynamic and heterogeneous nature. R3, the third microtubule-binding repeat of Tau, contains the fibril-nucleating core (PHF6) and is crucial for Tau aggregation. In this study, utilizing extensive all-atom replica-exchange molecular dynamic simulations, we explored the conformational ensembles of R3 monomer/dimer in the absence and presence of heparin. Our results show that without heparin, both monomeric and dimeric R3 preferentially adopt collapsed β-sheet-containing conformations and PHF6 plays an important role in the formation of interchain β-sheet structures, while in the presence of heparin, R3 can populate relatively extended disordered states where chain dimension is similar to that of R3 in Tau filaments. Through electrostatic, hydrogen-bonding and hydrophobic interactions, heparin has a preference for interacting with residues V306/Q307/K317/K321/H329/H330/K331 which distribute throughout the entire sequence of R3, in turn acting as a template to extend R3 conformations. More importantly, heparin alters intramolecular/intermolecular interaction patterns of R3 and increases the intermolecular contact regions. Our results suggest that heparin remodels the conformations of R3 towards fibril-prone structures by increasing chain dimension and intermolecular contact regions, which may shed light on the atomic mechanism of heparin-induced amyloid fibrillization of Tau protein.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200032, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Jiaqian Wan
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
22
|
Mese K, Bunz O, Volkwein W, Vemulapalli SPB, Zhang W, Schellhorn S, Heenemann K, Rueckner A, Sing A, Vahlenkamp TW, Severing AL, Gao J, Aydin M, Jung D, Bachmann HS, Zänker KS, Busch U, Baiker A, Griesinger C, Ehrhardt A. Enhanced Antiviral Function of Magnesium Chloride-Modified Heparin on a Broad Spectrum of Viruses. Int J Mol Sci 2021; 22:10075. [PMID: 34576237 PMCID: PMC8466540 DOI: 10.3390/ijms221810075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.
Collapse
Affiliation(s)
- Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Oskar Bunz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Department of Prosthodontics, School of Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Wolfram Volkwein
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Sahithya P. B. Vemulapalli
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Kristin Heenemann
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Antje Rueckner
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Andreas Sing
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Thomas W. Vahlenkamp
- Center for Infectious Diseases, Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany; (K.H.); (A.R.); (T.W.V.)
| | - Anna-Lena Severing
- Centre for Biomedical Education and Research (ZBAF), Institute for Translational Wound Research, Witten/Herdecke University, 58453 Witten, Germany;
| | - Jian Gao
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Dominik Jung
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Hagen S. Bachmann
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Kurt S. Zänker
- Center for Biomedical Education and Research (ZBAF), Institute of Immunology, Witten/Herdecke University, 58453 Witten, Germany;
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Armin Baiker
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany; (W.V.); (A.S.); (U.B.)
| | - Christian Griesinger
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, 58453 Witten, Germany; (D.J.); (H.S.B.)
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany; (K.M.); (O.B.); (W.Z.); (S.S.); (J.G.); (A.B.)
| |
Collapse
|
23
|
Chemical Modification of Glycosaminoglycan Polysaccharides. Molecules 2021; 26:molecules26175211. [PMID: 34500644 PMCID: PMC8434129 DOI: 10.3390/molecules26175211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.
Collapse
|
24
|
Rojo J, Nieto PM, de Paz JL. GAG Multivalent Systems to interact with Langerin. Curr Med Chem 2021; 29:1173-1192. [PMID: 34225602 DOI: 10.2174/0929867328666210705143102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022]
Abstract
Langerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role in protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca2+-dependent and another one independent, capable of recognizing a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix at the interphase generated in the trimeric form of Langerin but absent in the monomeric form. The complexity of these oligosaccharides has impeded the development of well-defined monodisperse structures to study these interaction processes. However, in the last few decades, an improvement of synthetic developments to achieve the preparation of carbohydrate multivalent systems mimicking the GAGs has been described. Despite all these contributions, very few examples are reported where the GAG multivalent structures are used to evaluate the interaction with Langerin. These molecules should pave the way to explore these GAG-Langerin interactions.
Collapse
Affiliation(s)
- Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - José Luis de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| |
Collapse
|
25
|
Satish L, Santra S, Tsurkan MV, Werner C, Jana M, Sahoo H. Conformational changes of GDNF-derived peptide induced by heparin, heparan sulfate, and sulfated hyaluronic acid - Analysis by circular dichroism spectroscopy and molecular dynamics simulation. Int J Biol Macromol 2021; 182:2144-2150. [PMID: 34087306 DOI: 10.1016/j.ijbiomac.2021.05.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 01/15/2023]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is a protein that has therapeutic potential in the treatment of Parkinson's disease and other neurodegenerative diseases. The activity of GDNF is highly dependent on the interaction with sulfated glycans which bind at the N-terminus consisting of 19 residues. Herein, we studied the influence of different glycosaminoglycan (i.e., glycan; GAG) molecules on the conformation of a GDNF-derived peptide (GAG binding motif, sixteen amino acid residues at the N-terminus) using both experimental and theoretical studies. The GAG molecules employed in this study are heparin, heparan sulfate, hyaluronic acid, and sulfated hyaluronic acid. Circular dichroism spectroscopy was employed to detect conformational changes induced by the GAG molecules; molecular dynamics simulation studies were performed to support the experimental results. Our results revealed that the sulfated GAG molecules bind strongly with GDNF peptide and induce alpha-helical structure in the peptide to some extent.
Collapse
Affiliation(s)
- Lakkoji Satish
- Biophysical and Protein Chemistry Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India; School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar, Odisha 752050, India
| | - Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Odisha 769008, India; Center for Nanomaterials, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
26
|
A Bittersweet Computational Journey among Glycosaminoglycans. Biomolecules 2021; 11:biom11050739. [PMID: 34063530 PMCID: PMC8156566 DOI: 10.3390/biom11050739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides. In proteoglycans (PGs), they are attached to a core protein. GAGs and PGs can be found as free molecules, associated with the extracellular matrix or expressed on the cell membrane. They play a role in the regulation of a wide array of physiological and pathological processes by binding to different proteins, thus modulating their structure and function, and their concentration and availability in the microenvironment. Unfortunately, the enormous structural diversity of GAGs/PGs has hampered the development of dedicated analytical technologies and experimental models. Similarly, computational approaches (in particular, molecular modeling, docking and dynamics simulations) have not been fully exploited in glycobiology, despite their potential to demystify the complexity of GAGs/PGs at a structural and functional level. Here, we review the state-of-the art of computational approaches to studying GAGs/PGs with the aim of pointing out the “bitter” and “sweet” aspects of this field of research. Furthermore, we attempt to bridge the gap between bioinformatics and glycobiology, which have so far been kept apart by conceptual and technical differences. For this purpose, we provide computational scientists and glycobiologists with the fundamentals of these two fields of research, with the aim of creating opportunities for their combined exploitation, and thereby contributing to a substantial improvement in scientific knowledge.
Collapse
|
27
|
Insights into Interactions between Interleukin-6 and Dendritic Polyglycerols. Int J Mol Sci 2021; 22:ijms22052415. [PMID: 33670858 PMCID: PMC7957513 DOI: 10.3390/ijms22052415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Interleukin-6 (IL-6) is involved in physiological and pathological processes. Different pharmacological agents have been developed to block IL-6 deleterious effects and to recover homeostatic IL-6 signaling. One of the proposed nanostructures in pre-clinical investigations which reduced IL-6 concentrations is polyglycerol dendrimer, a nano-structure with multiple sulfate groups. The aim of the present study was to uncover the type of binding between critical positions in the human IL-6 structure available for binding dPGS and compare it with heparin sulfate binding. We studied these interactions by performing docking simulations of dPGS and heparins with human IL-6 using AutoDock Vina. These molecular docking analyses indicate that the two ligands have comparable affinities for the positively charged positions on the surface of IL-6. All-atom molecular dynamics simulations (MD) employing Gromacs were used to explore the binding sites and binding strengths. Results suggest two major binding sites and show that the strengths of binding are similar for heparin and dPGS (−5.5–6.4 kcal/ mol). dPGS or its analogs could be used in the therapeutic intervention in sepsis and inflammatory disorders to reduce unbound IL-6 in the plasma or tissues and its binding to the receptors. We propose that analogs of dPGS could specifically block IL-6 binding in the desired signaling mode and would be valuable new probes to establish optimized therapeutic intervention in inflammation.
Collapse
|
28
|
Kozlowski AM, Yates EA, Roubroeks JP, Tømmeraas K, Smith AM, Morris GA. Hydrolytic Degradation of Heparin in Acidic Environments: Nuclear Magnetic Resonance Reveals Details of Selective Desulfation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5551-5563. [PMID: 33471995 DOI: 10.1021/acsami.0c20198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heparin is a complex glycosaminoglycan, derived mainly from pig mucosa, used therapeutically for its anticoagulant activity. Yet, owing largely to the chain complexity, the progressive effects of environmental conditions on heparin structure have not been fully described. A systematic study of the influence of acidic hydrolysis on heparin chain length and substitution has therefore been conducted. Changes in the sulfation pattern, monitored via 2D NMR, revealed initial de-N-sulfation of the molecule (pH 1/ 40 °C) and unexpectedly identified the secondary sulfate of iduronate as more labile than the 6-O-sulfate of glucosamine residues under these conditions (pH 1/ 60 °C). Additionally, the loss of sulfate groups, rather than depolymerization, accounted for most of the reduction in molecular weight. This provides an alternative route to producing partially 2-O-de-sulfated heparin derivatives that avoids using conventional basic conditions and may be of value in the optimization of processes associated with the production of heparin pharmaceuticals.
Collapse
Affiliation(s)
- Aleksandra M Kozlowski
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | | | | | - Alan M Smith
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Gordon A Morris
- Biopolymer Research Centre, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| |
Collapse
|
29
|
Denardo A, Elli S, Federici S, Asperti M, Gryzik M, Ruzzenenti P, Carmona F, Bergese P, Naggi A, Arosio P, Poli M. BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues. Biochim Biophys Acta Gen Subj 2020; 1865:129799. [PMID: 33232799 DOI: 10.1016/j.bbagen.2020.129799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The bone morphogenetic protein 6 (BMP6) is a crucial inducer of hepcidin, the peptide hormone that regulates the iron availability in our body. Hepcidin expression is influenced by hepatic heparan sulfate (HS) and by heparin administration, suggesting BMP6 interaction with heparin/HS. The BMP2/4 subfamily has been deeply characterized to have a N-terminal heparin/HS binding domain (HBD), whose basic residues contact the sulfate groups on heparin and HS. Such detailed characterization is still required for other, structurally different BMPs, including BMP6. METHODS BMP6 peptides encompassing potential HBDs were analysed on heparin-functionalized plates and microcantilevers, and on membrane HS expressing CHO-K1 cells. Monomeric wild-type BMP6 and mutants were produced, substituting the basic residues with non-charged ones, and their affinity to the heparin-column was measured. The BMP6-heparin interaction was also predicted at atomic level by in silico molecular dynamics. RESULTS N-terminal and C-terminal BMP6 peptides showed high heparin affinity in solid-phase assays. The mutation of the two sites (R5L, R6S, R7L and K126N, K127N, R129S) abolished the heparin-binding activity of the recombinant monomeric BMP6. Monomeric BMP6 and peptides specifically bound to membrane HS of CHO-K1 cells through the same domains. Molecular dynamic studies supported the role of the two HBDs, suggesting a cooperative behaviour. CONCLUSIONS In BMP6, N-terminal (R5, R6, R7) and C-terminal (K126, K127, R129) domains mediate the interaction with heparin and HS. GENERAL SIGNIFICANCE This study provides the molecular mechanism supporting the use of heparin to sequester BMP6 and inhibit hepcidin expression, a novel clinical approach for high-hepcidin iron disorders.
Collapse
Affiliation(s)
- Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Elli
- G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering and INSTM, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Ruzzenenti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Fernando Carmona
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via Giuseppe Colombo 81, 20133 Milan, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
30
|
Elli S, Stancanelli E, Wang Z, Petitou M, Liu J, Guerrini M. Degeneracy of the Antithrombin Binding Sequence in Heparin: 2-O-Sulfated Iduronic Acid Can Replace the Critical Glucuronic Acid. Chemistry 2020; 26:11814-11818. [PMID: 32515841 DOI: 10.1002/chem.202001346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/07/2022]
Abstract
Heparin binds to and activates antithrombin (AT) through a specific pentasaccharide sequence, in which a trisaccharide subsite, containing glucuronic acid (GlcA), has been considered as the initiator in the recognition of the polysaccharide by the protein. Recently it was suggested that sulfated iduronic acid (IdoA2S) could replace this "canonical" GlcA. Indeed, a heparin octasaccharidic sequence obtained by chemoenzymatic synthesis, in which GlcA is replaced with IdoA2S, has been found to similarly bind to and activate antithrombin. By using saturation-transfer-difference (STD) NMR, NOEs, transferred NOEs (tr-NOEs) NMR and molecular dynamics, we show that, upon binding to AT, this IdoA2S unit develops comparable interactions with AT as GlcA. Interestingly, two IdoA2S units, both present in a 1 C4 -2 S0 equilibrium in the unbound saccharide, shift to full 2 S0 and full 1 C4 upon binding to antithrombin, providing the best illustration of the critical role of iduronic acid conformational flexibility in biological systems.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Eduardo Stancanelli
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maurice Petitou
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", via G. Colombo 81, 20133, Milan, Italy
| |
Collapse
|
31
|
The conformation of the idopyranose ring revisited: How subtle O-substituent induced changes can be deduced from vicinal 1H-NMR coupling constants. Carbohydr Res 2020; 496:108052. [PMID: 32738719 DOI: 10.1016/j.carres.2020.108052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023]
Abstract
The idopyranose ring plays a pivotal role in the conformational, dynamical, and intermolecular binding aspects of glycosaminoglycans like heparin and dermatan sulfate and it was early on assigned a role in the Sugar Code governing biological recognition processes. There is consensus that next to the two canonical 1C4 and 4C1 chair conformations, the conformational space accessible to the idopyranose ring entails a 2SO skew-boat conformation, but the equilibrium between these three ring puckers has evaded satisfactory quantification. In this study a meta-analysis of X-ray solid-state data and vicinal NMR coupling constants is presented, based on the Truncated Fourier Puckering (TFP) formalism and the generalized Karplus (CAGPLUS) equation. This approach yields a model-free, granular and consistent reckoning of 159 idopyranose solution puckering equilibria studied by NMR and allows us to reproduce the involved 636 NMR vicinal couplings with an overall residual RMS(Jobs-Jcalc) of 0.184 Hz. Our analyses show that for all ring systems examined, the idopyranosyl chair conformations take up the same ring pucker irrespective of the ring substituent pattern or a vast variety in experimental conditions. Instead, it is the (skew-)boat conformation that adapts to the substitution pattern of the idopyranose ring or a specific sulfation pattern of neighboring saccharides. All idopyranose rings are involved in conformational equilibria that subsume the aforementioned conformers which turn out to differ only a few kJ/mole in conformational energy. Thus, the plasticity and flexibility of idopyranose remains intact under practically all circumstances and, as the glycosidic linkages in heparin are considered to be relatively stiff, the iduronic moiety functions as the linchpin of heparin flexibility thereby being rather a "space(r)" than a "letter" in the alleged Sugar Code alphabet.
Collapse
|
32
|
Nagarajan B, Sankaranarayanan NV, Desai UR. Rigorous analysis of free solution glycosaminoglycan dynamics using simple, new tools. Glycobiology 2020; 30:516-527. [PMID: 32080710 PMCID: PMC8179626 DOI: 10.1093/glycob/cwaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/15/2022] Open
Abstract
Heparin/heparan sulfates (H/HS) are ubiquitous biopolymers that interact with many proteins to induce a range of biological functions. Unfortunately, how these biopolymers recognize their preferred protein targets remain poorly understood. It is suggested that computational simulations offer attractive avenues but a number of challenges, e.g., difficulty of selecting a comprehensive force field, few simple tools to interpret data, among others, remain. This work addresses several such challenges so as to help ease the implementation and analysis of computational experiments. First, this work presents a rigorous comparison of two different recent force fields, CHARMM36 and GLYCAM06, for H/HS studies. Second, it introduces two new straightforward parameters, i.e., end-to-end distance and minimum volume enclosing ellipsoid, to understand the myriad conformational forms of oligosaccharides that evolve over time in water. Third, it presents an application to elucidate the number and nature of inter and intramolecular, nondirect bridging water molecules, which help stabilize unique forms of H/HS. The results show that nonspecialists can use either CHARMM36 or GLYCAM06 force fields because both gave comparable results, albeit with small differences. The comparative study shows that the HS hexasaccharide samples a range of conformations with nearly equivalent energies, which could be the reason for its recognition by different proteins. Finally, analysis of the nondirect water bridges across the dynamics trajectory shows their importance in stabilization of certain conformational forms, which may become important for protein recognition. Overall, the work aids nonspecialists employ computational studies for understanding the solution behavior of H/HS.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA
- Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA
| |
Collapse
|
33
|
Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV, McKenna JK, Li D, Carette JE, Ho M, Siebold C, Maurice M, Lebensohn AM, Rohatgi R. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. eLife 2020; 9:e54469. [PMID: 32432544 PMCID: PMC7239654 DOI: 10.7554/elife.54469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/25/2020] [Indexed: 12/17/2022] Open
Abstract
R-spondins (RSPOs) amplify WNT signaling during development and regenerative responses. We previously demonstrated that RSPOs 2 and 3 potentiate WNT/β-catenin signaling in cells lacking leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4, 5 and 6 (Lebensohn and Rohatgi, 2018). We now show that heparan sulfate proteoglycans (HSPGs) act as alternative co-receptors for RSPO3 using a combination of ligand mutagenesis and ligand engineering. Mutations in RSPO3 residues predicted to contact HSPGs impair its signaling capacity. Conversely, the HSPG-binding domains of RSPO3 can be entirely replaced with an antibody that recognizes heparan sulfate (HS) chains attached to multiple HSPGs without diminishing WNT-potentiating activity in cultured cells and intestinal organoids. A genome-wide screen for mediators of RSPO3 signaling in cells lacking LGRs 4, 5 and 6 failed to reveal other receptors. We conclude that HSPGs are RSPO co-receptors that potentiate WNT signaling in the presence and absence of LGRs.
Collapse
Affiliation(s)
- Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| | - Peter van Kerkhof
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ingrid Jordens
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| | - Joseph K McKenna
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Madelon Maurice
- Department of Cell Biology and Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
34
|
Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32274710 DOI: 10.1007/978-3-030-34521-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Heparanase is the principal enzyme that degrades heparan sulfate (HS) in both physiological (HS turnover) and pathological (tumor metastasis, inflammation) cell conditions, catalysing the hydrolysis of the β-1-4 glycosidic bond in -GlcUA-β(1-4)-GlcNX-. Despite efforts to define the minimum trisaccharide sequence that allows glycans to be recognized by heparanase, a rigorous "molecular code" by which the enzyme reads and degrades HS chains has not been identified. The X-ray diffraction model of heparanase, resolved by Wu et al (2015), revealed a complex between the trisaccharide GlcNS6S-GlcUA-GlcNS6S and heparanase. Efforts are ongoing to better understand how HS mimetics longer than three residues are recognized by heparanase before being hydrolyzed or inhibit the enzyme. It is also important to consider the flexibility of the enzyme active site, a feature that opens up the development of heparanase inhibitors with structures significantly different from HS or heparin. This chapter reviews the state-of-the-art knowledge about structural aspects of heparanase activities in terms of substrate recognition, mechanism of hydrolysis, and inhibition.
Collapse
|
35
|
Secretory Expression of a Chimeric Peptide in Lactococcus lactis: Assessment of its Cytotoxic Activity and a Deep View on Its Interaction with Cell-Surface Glycosaminoglycans by Molecular Modeling. Probiotics Antimicrob Proteins 2020; 11:1034-1041. [PMID: 30552573 DOI: 10.1007/s12602-018-9496-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, cancer remains a major cause of death affecting millions of people. Currently, the antimicrobial peptides (AMPs) as potent anticancer therapeutic agents offer specificity and low levels of side effects in cancer therapy. In the present study, a cationic chimeric peptide (cLFchimera), derived from camel lactoferrin, was expressed as a secretory peptide using P170 expression system in L. lactis. Peptide purification was carried out using Ni-NTA agarose column from culture medium with 21 μ/mL concentration. The recombinant peptide was investigated for its activity against four tumor and one normal cell line. The cLFchimera was more active against two tumor cell lines (chondrosarcoma and colorectal cancer cells), but the activity against two other tumor cell lines (hepatoma and breast cancer cell line) and normal cells was low. Finally, to have better insight into the mode of action of the peptide on cytotoxic activity, we examined the interaction of cationic peptide with two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), as the two most anionic molecules on the cell surface by molecular dynamic simulation. The results of in silico analysis showed that the cLFchimera interacted with HS and CS with a totally different amino acid profile. Hydrogen bonding screening in GAGs-peptide complexes revealed K21, V23 and I3, R16 are the dominant amino acids involved in peptide-HS and CS interaction, respectively. Overall, the results of this investigation showed the P170 expression system successfully expressed a cationic peptide with potent anticancer activity. Moreover, molecular docking analysis revealed the pattern of peptide interaction with negatively charged membrane molecules.
Collapse
|
36
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
37
|
Bugatti A, Paiardi G, Urbinati C, Chiodelli P, Orro A, Uggeri M, Milanesi L, Caruso A, Caccuri F, D'Ursi P, Rusnati M. Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications. Sci Rep 2019; 9:15768. [PMID: 31673058 PMCID: PMC6823450 DOI: 10.1038/s41598-019-52201-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous “electropositive channel” in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Giulia Paiardi
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Chiara Urbinati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Matteo Uggeri
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy
| | - Pasqualina D'Ursi
- Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Milan, Italy.
| | - Marco Rusnati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Front Oncol 2019; 9:843. [PMID: 31620357 PMCID: PMC6759624 DOI: 10.3389/fonc.2019.00843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Lorenzo Depau
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
39
|
Prokopov IA, Kovaleva EL, Minaeva ED, Pryakhina EA, Savin EV, Gamayunova AV, Pozharitskaya ON, Makarov VG, Shikov AN. Animal-derived medicinal products in Russia: Current nomenclature and specific aspects of quality control. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111933. [PMID: 31116966 DOI: 10.1016/j.jep.2019.111933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived medicinal products (ADMP) had been extensively used in Russia and became a part of officinal medicine in 1778. AIM OF THE STUDY The aim of the current review was to analyse the ADMPs authorised in the Russian Federation and to identify specific aspects of quality evaluation of these medicinal products. MATERIALS AND METHODS Information of ADMPs was extracted from the online State Register of Medicinal Products of the Russian Federation. At the next stage, we systematically searched library catalogues, E-library.ru, Medline/PubMed, Scopus, Web of Science and Google Scholar databases to find data related to ADMP quality evaluation, clinically proven efficacy and safety. RESULTS For classification of ADMP, we propose an approach based on the raw material used: ADMPs derived from marine organisms, ADMPs from cattle and pigs and ADMPs from other terrestrial animals. The majority of ADMPs authorised in Russia are produced by local manufacturers. ADMPs are available in dosage forms of solution for parenteral administration (35% of all products) and lyophilisates for parenteral use (19%), tablets and capsules (17% and 11%, respectively), ointments (5%) and powders (3%). ADMPs belong to the following pharmacotherapeutic groups: medicines for tissue regeneration and repair stimulators (30%), digestive enzyme products (22%), anticoagulants (17%), proteolytic agents (6%) and medicines for the treatment of chronic prostatitis (5%). The most important approaches to standardisation of ADMPs are implementation of modern requirements for registration dossiers, development of risk-oriented approaches for evaluation of impurities, elaboration of advanced instrumental and in vitro test methods capable of replacing in vivo methods and harmonisation of the potency units used for standardisation. CONCLUSIONS The key features of ADMPs that help them retain their leading position in the pharmaceutical market are as follows: (i) their unique composition usually represented by a complex of biologically active substances; (ii) a high degree of affinity of the active ingredient of an ADMP to the human body and (iii) proved safety and clinical efficiency. Variability in the quality of raw ingredients, epidemiological situation and other conditions pose additional challenges for the development of ADMPs and for the standardisation.
Collapse
Affiliation(s)
- Ilya A Prokopov
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia.
| | - Elena L Kovaleva
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Elena D Minaeva
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Ekaterina A Pryakhina
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Evgenyi V Savin
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Alexandra V Gamayunova
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Olga N Pozharitskaya
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| | - Valery G Makarov
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| | - Alexander N Shikov
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| |
Collapse
|
40
|
José García-Jiménez M, Corzana F, De Paz JL, Nieto PM. Langerin-Heparin Interaction: Analysis of the Binding to the Non-Lectin Site. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19851597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Langerin is a C-type lectin involved in the immune response that forms a trimer in its active form. It can interact with carbohydrates using 2 sites with different selectivity, the C-lectin site, a Ca2+-mediated binding, and the cleft between chains. Here we report the complementary analysis of the interaction between a heparin-like hexasaccharide 1 and langerin at the second site.
Collapse
Affiliation(s)
- M. José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Logroño, Spain
| | - José L. De Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Spain
| | - Pedro M. Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Spain
| |
Collapse
|
41
|
He Z, Zhou L, Lin L, Yin R, Zhao J. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus. Carbohydr Polym 2019; 220:176-184. [PMID: 31196538 DOI: 10.1016/j.carbpol.2019.05.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023]
Abstract
A new glycosaminoglycan (LF-GAG) was purified from the slug Limacus flavus. Its unique chemical structure and heparanase inhibitory activity were studied in this work. The native LF-GAG was composed of L-iduronic acid (L-IdoA) and N-acetyl-D-glucosamine (D-GlcNAc), with a Mw of 22,700 Da. To elucidate the precise structure and structure-activity relationship, its deacetylation-deaminative depolymerized product (dLF-GAG) was prepared, and from which four oligosaccharides were purified. Combining the NMR spectral analysis of LF-GAG and its derived oligosaccharides, the structure of LF-GAG was deduced to be -4)-L-IdoA2R-(α1,4)-D-GlcNAc-(α1-, in which R was -OH (˜80%) or -OSO3- (˜20%). Bioactivity assays showed that LF-GAG could potently inhibit human heparanase (IC50, 0.10 μM). dLF-GAG and LF-3 were less potent but also active for heparanase inhibition. Structure-activity relationship analysis indicated that the chain length and sulfate substitution of LF-GAG are essential for its heparanase inhibitory activity.
Collapse
Affiliation(s)
- Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
42
|
Rosa NMP, Ferreira FHDC, Farrell NP, Costa LAS. TriplatinNC and Biomolecules: Building Models Based on Non-covalent Interactions. Front Chem 2019; 7:307. [PMID: 31231629 PMCID: PMC6558404 DOI: 10.3389/fchem.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022] Open
Abstract
The class of polynuclear platinum(II) compounds have demonstrated a great interest because their high activity against cancer cells. Among these new compounds, the TriplatinNC also called AH78, demonstrated surprising antitumor activity, in some cases equivalent to cisplatin. It is well-known that complex charge +8 favors interaction with DNA and other biomolecules non-covalently, through the hydrogen bonds with phosphate and sulfate groups present in these structures. The hydrogen atoms of the amine interact with the oxygen atoms of the phosphate and sulfate groups present in the DNA strand and heparan sulfate, respectively. These interactions can cause significant twists in double helix and inhibit the activity of these biomolecules. The present investigation is an attempt to provide a benchmark theoretical study about TriplatinNC. We have described the non-covalent interactions through small reliable mimetic models. The non-covalent interactions were also evaluated on larger models containing DNA fractions with six nitrogenous base pairs (CGCGAA) and fractions of the disaccharide that makes the HS evaluated by the hybrid QM/MM ONIOM methodology.
Collapse
Affiliation(s)
- Nathália M. P. Rosa
- Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Frederico Henrique do C. Ferreira
- Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Nicholas P. Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Luiz Antônio S. Costa
- Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
43
|
Heparin: An essential drug for modern medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:1-19. [PMID: 31030744 DOI: 10.1016/bs.pmbts.2019.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heparin is a life-saving drug, which belongs to few clinically used drugs without defined molecular structures in modern medicine. Heparin is the mostly negatively charged biopolymer with a broad distributions in molecular weight, charge density, and biological activities. Heparin is mainly composed of repeating trisulfated disaccharide units, which is made by mast cells that are enriched in the intestines, lungs or livers of animals. Porcine intestines and bovine lungs are two mostly used sources for heparin isolation. Heparin is well known for its anticoagulant and antithrombotic pharmacological effects. The anticoagulant activity of heparin is attributable to a 3-O-sulfate and 6-O-sulfate containing pentasaccharide sequence or a minimum eight-repeating disaccharide units containing the pentasaccharide sequence that catalyzes the suicidal inactivation of factor Xa or thrombin by a serpin or serine protease inhibitor named antithrombin III, respectively. Thus, heparin is responsible for the simultaneous inhibition of both thrombin generation and thrombin activity in the blood circulation. Moreover, heparin has many pharmacological properties such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, and anti-metastatic effects though high affinity interactions with a variety of proteases, protease inhibitors, chemokines, cytokines, growth factors, and their respective receptors. The one drug multiple molecular targeting properties make heparin a very special drug in that various clinical trials are still conducting worldwide even 100 years after its discovery. In this review, we will summarize the structure-function relationship and the molecular mechanisms of heparin. We will also provide an overview of different clinical and potential clinical applications of heparin.
Collapse
|
44
|
Samsonov SA, Lubecka EA, Bojarski KK, Ganzynkowicz R, Liwo A. Local and long range potentials for heparin‐protein systems for coarse‐grained simulations. Biopolymers 2019; 110:e23269. [DOI: 10.1002/bip.23269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Emilia A. Lubecka
- Faculty of ChemistryUniversity of Gdańsk Gdańsk Poland
- Faculty of Mathematics, Physics and Informatics, Institute of InformaticsUniversity of Gdańsk Gdańsk Poland
| | | | | | - Adam Liwo
- Faculty of ChemistryUniversity of Gdańsk Gdańsk Poland
| |
Collapse
|
45
|
Nagarajan B, Sankaranarayanan NV, Desai UR. Perspective on computational simulations of glycosaminoglycans. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2019; 9:e1388. [PMID: 31080520 PMCID: PMC6504973 DOI: 10.1002/wcms.1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/07/2018] [Indexed: 01/06/2023]
Abstract
Glycosaminoglycans (GAGs) represent a formidable frontier for chemists, biochemists, biologists, medicinal chemists and drug delivery specialists because of massive structural complexity. GAGs are arguably the most complex, natural linear biopolymers with theoretical diversity orders of magnitude higher than proteins and nucleic acids. Yet, this diversity remains generally untapped. Computational approaches offer major routes to understand GAG structure and dynamics so as to enable novel applications of these biopolymers. In fact, computational algorithms, softwares, online tools and techniques have reached a level of sophistication that help understand atomistic details of conformational variation and protein recognition of individual GAG sequences. This review describes current approaches and challenges in computational study of GAGs. It presents a history of major findings since the earliest mention of GAGs (the 1960s), the development of parameters and force fields specific for GAGs, and the application of these tools in understanding GAG structure-function relationship. This review also presents a section on how to perform simulation of GAGs, which is directed toward researchers interested in entering this promising field with potential to impact therapy.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
46
|
Winkler S, Derler R, Gesslbauer B, Krieger E, Kungl AJ. Molecular dynamics simulations of the chemokine CCL2 in complex with pull down-derived heparan sulfate hexasaccharides. Biochim Biophys Acta Gen Subj 2019; 1863:528-533. [DOI: 10.1016/j.bbagen.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
|
47
|
Connor SA, Elegheert J, Xie Y, Craig AM. Pumping the brakes: suppression of synapse development by MDGA-neuroligin interactions. Curr Opin Neurobiol 2019; 57:71-80. [PMID: 30771697 DOI: 10.1016/j.conb.2019.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Steven A Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Jonathan Elegheert
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 and University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
48
|
Bojarski KK, Sieradzan AK, Samsonov SA. Molecular dynamics insights into protein‐glycosaminoglycan systems from microsecond‐scale simulations. Biopolymers 2019; 110:e23252. [DOI: 10.1002/bip.23252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
49
|
Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. J Biol Chem 2018; 293:17817-17828. [PMID: 30257866 DOI: 10.1074/jbc.ra118.004866] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Indexed: 01/21/2023] Open
Abstract
Keratinocyte-derived chemokine (KC or mCXCL1) and macrophage inflammatory protein 2 (MIP2 or mCXCL2) play nonredundant roles in trafficking blood neutrophils to sites of infection and injury. The functional responses of KC and MIP2 are intimately coupled to their interactions with glycosaminoglycans (GAGs). GAG interactions orchestrate chemokine concentration gradients and modulate receptor activity, which together regulate neutrophil trafficking. Here, using NMR, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we characterized the molecular basis of KC and MIP2 binding to the GAG heparin. Both chemokines reversibly exist as monomers and dimers, and the NMR analysis indicates that the dimer binds heparin with higher affinity. The ITC experiments indicate a stoichiometry of two GAGs per KC or MIP2 dimer and that the enthalpic and entropic contributions vary significantly between the two chemokine-heparin complexes. NMR-based structural models of heparin-KC and heparin-MIP2 complexes reveal that different combinations of residues from the N-loop, 40s turn, β3-strand, and C-terminal helix form a binding surface within a monomer and that both conserved residues and residues unique to a particular chemokine mediate the binding interactions. MD simulations indicate significant residue-specific differences in their contribution to binding and affinity for a given chemokine and between chemokines. On the basis of our observations that KC and MIP2 bind to GAG via distinct molecular interactions, we propose that the differences in these GAG interactions lead to differences in neutrophil recruitment and play nonoverlapping roles in resolution of inflammation.
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- From the Departments of Biochemistry and Molecular Biology; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Balaji Nagarajan
- Department of Medicinal Chemistry and Institute for Structural Biology, and Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, and Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| | - Krishna Rajarathnam
- From the Departments of Biochemistry and Molecular Biology; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555; Microbiology and Immunology.
| |
Collapse
|
50
|
Babazada H, Yanamoto S, Hashida M, Yamashita F. Binding and structure-kinetic relationship analysis of selective TLR4-targeted immunosuppressive self-assembling heparin nanoparticles. Int J Pharm 2018; 552:76-83. [PMID: 30253213 DOI: 10.1016/j.ijpharm.2018.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/12/2023]
Abstract
Self-assembling aliphatic heparin derivatives were shown to inhibit the immune system by antagonizing Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD2). In the present study, glycol split heparin-d-erythro-sphingosine conjugates (NAHNP) and its regioselectively desulfated derivatives with shortened aliphatic chains were investigated regarding their biophysical properties in the interaction with TLR4/MD2. Two-dimensional nuclear Overhauser effect spectroscopy studies showed that upon glycol splitting, the heparin backbone gains extra adaptability that facilitates binding to proteins. However, unlike native heparin or glycol split non-anticoagulant heparin (NAH), hydrophobic derivatization of NAH forces sulfated iduronic acid residues to change configuration from a 2S0 skew-boat to a 1C4 chair form. Whereas neither heparin nor NAH had any appreciable effect, NAHNP significantly inhibited lipopolysaccharide-induced activation of the NF-κB transcription factor. We showed that NAHNP binds to TLR4/MD2 with an affinity of 62.3 nM. In line with computational studies, biosensor-based structure-kinetic relationship studies demonstrated that 6-O-sulfo groups of d-glucosamine residue were essential in binding to arginines of both TLR4 and MD2 domains of the receptor complex. The desulfation of 6-O-sulfo groups decreases the association kinetics from 4.2 × 104 M-1 s-1 to 3.8 × 103 M-1 s-1, which results in a decreased affinity of 800 nM. Two aliphatic chains of NAHNP bound to the MD2 pocket similarly to lipopolysaccharide. A decrease in chain length resulted in a loss of inhibitory activity on NF-κB transcription and binding affinity to TLR4/MD2. In conclusion, the present study characterizes the immunosuppressive effect of aliphatic heparin derivatives and provides a promising strategy to develop selective immunosuppressants for acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Hasan Babazada
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Shinya Yanamoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|