1
|
Abstract
Peptidases generate bioactive peptides that can regulate cell signaling and mediate intercellular communication. While the processing of peptide precursors is initiated intracellularly, some modifications by peptidases may be conducted extracellularly. Thimet oligopeptidase (TOP) is a peptidase that processes neuroendocrine peptides with roles in mood, metabolism, and immune responses, among other functions. TOP also hydrolyzes angiotensin I to angiotensin 1–7, which may be involved in the pathophysiology of COVID-19 infection. Although TOP is primarily cytosolic, it can also be associated with the cell plasma membrane or secreted to the extracellular space. Recent work indicates that membrane-associated TOP can be released with extracellular vesicles (EVs) to the extracellular space. Here we briefly summarize the enzyme’s classical function in extracellular processing of neuroendocrine peptides, as well as its more recently understood role in intracellular processing of various peptides that impact human diseases. Finally, we discuss new findings of EV-associated TOP in the extracellular space.
Collapse
|
2
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
3
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
4
|
Neurolysin: From Initial Detection to Latest Advances. Neurochem Res 2018; 43:2017-2024. [DOI: 10.1007/s11064-018-2624-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/20/2023]
|
5
|
Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2011; 287:114-122. [PMID: 22039052 DOI: 10.1074/jbc.m111.273052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.
Collapse
Affiliation(s)
- Naomi J Wangler
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | - Kira L Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Fred K Hagen
- Proteomics Center, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Emanuel Escher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
6
|
Rabey FM, Karamyan VT, Speth RC. Distribution of a novel binding site for angiotensins II and III in mouse tissues. REGULATORY PEPTIDES 2010; 162:5-11. [PMID: 20171994 PMCID: PMC7114337 DOI: 10.1016/j.regpep.2010.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 12/02/2022]
Abstract
A novel binding site for angiotensins II and III that is unmasked by parachloromercuribenzoate has been reported in rat, mouse and human brains. Initial studies of this binding site indicate that it is not expressed in the adrenal, liver or kidney of the rat and mouse. To determine if this binding site occurs in other mouse tissues, 8 tissues were assayed for expression of this binding site by radioligand binding assay and compared with the expression of this binding site in the forebrain. Particulate fractions of homogenates of testis, epididymis, seminal vesicles, heart, spleen, pancreas, lung, skeletal muscle, and forebrain were incubated with (125)I-sarcosine(1), isoleucine(8) angiotensin II in the presence or absence of 0.3mM parachloromercuribenzoate plus 10microM losartan and 10microM PD123319 (to saturate AT(1) and AT(2) receptors). Specific (3microM angiotensin II displaceable) high affinity binding occurred in the testis>forebrain>epididymis>spleen>pancreas>lung when parachloromercuribenzoate was present. Binding could not be reliably observed in heart, skeletal muscle and seminal vesicles. High affinity binding of (125)I-sarcosine(1), isoleucine(8) angiotensin II was observed in the absence of parachloromercuribenzoate in the pancreas on occasion. This suggests that this novel angiotensin binding site may have a functional role in these tissues.
Collapse
Affiliation(s)
- Felicia M. Rabey
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Vardan T. Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Robert C. Speth
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA,Corresponding author. Dept. Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S. University Dr., Fort Lauderdale, FL 33328, USA. Tel.: +1 954 262 1330
| |
Collapse
|
7
|
Karamyan VT, Arsenault J, Escher E, Speth RC. Preliminary biochemical characterization of the novel, non-AT1, non-AT2 angiotensin binding site from the rat brain. Endocrine 2010; 37:442-8. [PMID: 20960166 PMCID: PMC3176303 DOI: 10.1007/s12020-010-9328-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/25/2010] [Indexed: 12/26/2022]
Abstract
A novel binding site for angiotensins II and III was recently discovered in brain membranes in the presence of the sulfhydryl reactive angiotensinase inhibitor parachloromercuribenzoate. This binding site is distinctly different from the other known receptors for angiotensins: AT₁, AT₂, AT₄, and mas oncogene protein (Ang 1-7 receptor). Preliminary biochemical characterization studies have been done on this protein by crosslinking it with (125)I-labeled photoaffinity probes and solubilizing the radiolabeled binding site. Polyacrylamide gel electrophoresis studies and isoelectric focusing indicate that this membrane bound binding site is a protein with a molecular weight of 70-85 kDa and an isoelectric point of ~7. Cyanogen bromide hydrolysis of the protein yielded two radiolabeled fragments of 12.5 and 25 kDa. The protein does not appear to be N-glycosylated based upon the failure of PNGaseF to alter its migration rate on a 7.5% polyacrylamide gel. The binding of angiotensin II to this protein is not affected by GTPγS or Gpp(NH)p, suggesting that it is not a G protein-coupled receptor. Further characterization studies are directed to identify this protein either as a novel angiotensin receptor, an angiotensin scavenger (clearance receptor) or an angiotensinase.
Collapse
Affiliation(s)
- Vardan T. Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University HSC, Amarillo, TX 79106, USA
| | - Jason Arsenault
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emanuel Escher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
8
|
Human brain contains a novel non-AT1, non-AT2 binding site for active angiotensin peptides. Life Sci 2008; 83:421-5. [PMID: 18692076 DOI: 10.1016/j.lfs.2008.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 11/20/2022]
Abstract
AIMS To determine whether the novel non-AT1, non-AT2 binding site for angiotensins recently discovered in rodent brains occurs in the human brain. MAIN METHODS Radioligand binding assays of (125)I-sarcosine(1), isoleucine(8) angiotensin II binding were carried out in homogenates of the rostral pole of the temporal cortex of human brains containing 0.3 mM parachloromercuribenzoate (PCMB), 10 microM losartan to saturate AT1 receptors, 10 microM PD123319 to saturate AT2 receptors, with or without 10 microM angiotensin II to define specific binding. Competition binding assays employed a variety of angiotensin peptides, specific angiotensin receptor antagonists, several neuropeptides and an endopeptidase inhibitor to determine pharmacological specificity for this binding site. KEY FINDINGS The novel non-AT1, non-AT2 binding site was present in similar amounts in female and male brains: Bmax 1.77+/-0.16 and 1.52+/-0.17 fmol/mg initial wet weight in female and male brains, respectively. The K(D) values, 1.79+/-0.09 nM for females, and 1.53+/-0.06 nM for males were also similar. The binding site shows pharmacological specificity similar to that in rodent brains: sarcosine(1), isoleucine(8) angiotensin II>angiotensin III>angiotensin II>angiotensin I'angiotensin IV>angiotensin 1-7. Shorter angiotensin fragments and non-angiotensin peptides showed low affinity for this binding site. SIGNIFICANCE The presence in human brain of this novel non-AT1, non-AT2 binding site supports the concept that this binding site is an important component of the brain angiotensin system. The functional significance of this binding site, either as a novel angiotensin receptor or a highly specific angiotensinase remains to be determined.
Collapse
|
9
|
Karamyan VT, Gembardt F, Rabey FM, Walther T, Speth RC. Characterization of the brain-specific non-AT(1), non-AT(2) angiotensin binding site in the mouse. Eur J Pharmacol 2008; 590:87-92. [PMID: 18571643 DOI: 10.1016/j.ejphar.2008.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/18/2022]
Abstract
In the present study the existence of a non-AT(1), non-AT(2) angiotensin (Ang) binding site unmasked by the organomercurial protease inhibitor p-chloromercuribenzoate (PCMB) was demonstrated in mouse brain membranes, consistent with observations previously reported in the rat (Karamyan and Speth, 2007b). The pharmacological specificity of the non-AT(1), non-AT(2) angiotensin binding site was similar to the rat brain: Sar(1)-Ile(8)-Ang II > Ang III >or= Ang II > Ang I> p-aminophenylalanine(6) Ang II> CGP42112 >> Ang IV > Ang 1-7 congruent with shorter angiotensin fragments. Neurotensin, bradykinin, and luteinizing hormone-releasing hormone showed K(i) values >10 microM, while substance P and VIP had K(i) values of approximately 2 microM. The non-AT(1), non-AT(2) angiotensin binding site was not present in adrenal, liver or kidney. Subcellular fractionation showed a higher density of [(125)I]Ang II binding in plasma membrane (P2) fractions of cerebral cortex and hypothalamus relative to debris (P1) fractions. The binding site is present in the brains of mice in which the AT(1a), AT(1b), AT(2), Mas, and neprilysin (EC 3.4.24.11, neutral endopeptidase) was knocked out confirming that the binding site is not a heretofore described angiotensin receptor or neprilysin. These observations confirm that this novel Ang binding site is distinct from classical AT(1), AT(2), AT(4) and Ang 1-7 receptors while retaining a high specificity for angiotensins that act on the known angiotensin receptors. Whether this binding site functions as a novel receptor for angiotensins or a specific angiotensinase with variable functionality at different redox states will require further study.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | | | | | | | | |
Collapse
|
10
|
Speth RC, Karamyan VT. Brain angiotensin receptors and binding proteins. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:283-93. [PMID: 18172611 DOI: 10.1007/s00210-007-0238-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 11/26/2007] [Indexed: 12/29/2022]
Abstract
This review addresses classical and novel aspects of the brain angiotensin system. The brain contains both the AT1 and AT2 angiotensin II (Ang II) receptor subtypes which are well-characterized guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs). Like other GPCRs, novel signal transduction pathways and protein interactions are being described for Ang II receptors. For brain AT1 receptors, there is a controversy regarding the identity of the active angiotensin peptide in the brain which is addressed in this review. This review also summarizes a recent discovery of a novel, membrane-bound, non-AT1, non-AT2 binding site for angiotensin peptides that appears to be brain-specific. This binding site is unmasked by a limited concentration range of the organometallic sulfhydryl-reactive agent p-chloromercuribenzoic acid (PCMB) suggesting that functional expression of this binding site may depend on the redox state of the milieu of the brain. While this binding site has similarities to a previously described soluble angiotensin-binding protein found in liver that is unmasked by PCMB, it has many different characteristics. The possible functional significance of this novel non-AT1, non-AT2 binding site for angiotensin peptides as a mediator of non-traditional actions of Ang II in the brain, e.g., stimulation of dopamine release from the striatum, as a peptidase, or as a clearance receptor, and the importance of the state of the internal environment of the brain to its function is reviewed.
Collapse
Affiliation(s)
- Robert C Speth
- Department of Pharmacology, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, Oxford, MS 38677, USA.
| | | |
Collapse
|
11
|
Karamyan VT, Speth RC. Identification of a novel non-AT1, non-AT2 angiotensin binding site in the rat brain. Brain Res 2007; 1143:83-91. [PMID: 17306233 DOI: 10.1016/j.brainres.2007.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/09/2007] [Accepted: 01/18/2007] [Indexed: 11/24/2022]
Abstract
Efforts to protect radiolabeled angiotensins from metabolism during receptor binding assays date back more than 30 years. However, this continues to be a problem. This study focused on the effects of a protease inhibitor, p-chloromercuribenzoate (PCMB), on the binding of (125)I-Ang II to rat brain membranes. Addition of PCMB to the incubation medium revealed a high affinity binding site for (125)I-Ang II in brain membranes (K(d)=1-4 nM) with a greater amount of binding than revealed in previous studies of brain Ang II receptors. Further characterization of this binding, revealed it to be insensitive to inhibition by losartan (an AT(1) receptor antagonist) and PD123319 (an AT(2) receptor antagonist). This non-AT1, non-AT2 binding site was not present in liver or adrenal membranes. It was activated by a limited range of concentrations of PCMB, with maximal activation at 0.3-1 mM. This binding site was equally abundant in cerebral cortex (a brain region with few Ang II receptors) and the hypothalamus (a brain region with abundant Ang II receptors). The binding site was also present in mouse brain, but not mouse liver. The binding site shows high affinity for Ang I, Ang II and Ang III (K(i) approximately 40-100 nM), but lesser affinity for smaller angiotensin fragments and other neuropeptides. This binding site shares some characteristics with the liver cytosolic Ang II binding proteins, later identified as endopeptidases EC 3.4.24.15 and/or EC 3.4.24.16. However, some unique characteristics of this non-AT1, non-AT2 binding site suggest that it may be a novel angiotensin binding substance.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmacology and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
12
|
Thimet oligopeptidase (EC 3.4.24.15) activates CPI-0004Na, an extracellularly tumour-activated prodrug of doxorubicin. Eur J Cancer 2006; 42:3049-56. [PMID: 16644202 DOI: 10.1016/j.ejca.2005.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
CPI-0004Na is a tetrapeptidic extracellularly tumour-activated prodrug of doxorubicin. The tetrapeptide structure ensures blood stability and selective cleavage by unidentified peptidase(s) released by tumour cells. The purpose of this work was to identify the enzyme responsible for the first rate-limiting step of CPI-0004Na activation, initially attributed to a 70 kDa acidic (pI=5.2) metallopeptidase active at neutral pH that was subsequently purified from HeLa cell homogenates. Two electrophoretic bands were isolated and identified by matrix-assisted laser desorption ionisation-time of flight (MALDI-tof) and electrospray ionisation-quadrupole-time of flight (ESI-Q-tof) mass spectrometry as thimet oligopeptidase (TOP). The identity of the CPI-0004Na activating enzyme and TOP was further supported by the similar substrate specificity of the purified enzyme and recombinant TOP, by thiol stimulation of CPI-0004Na cleavage by cancer cell conditioned media (unique characteristic of TOP) and by the inhibition of CPI-0004Na activation by specific inhibitors or immunoprecipitation. Although other enzymes can be involved, TOP clearly appears to be a likely candidate for extracellular activation of the CPI-0004Na prodrug.
Collapse
|
13
|
Shivakumar BR, Wang Z, Hammond TG, Harris RC. EP24.15 interacts with the angiotensin II type I receptor and bradykinin B2 receptor. Cell Biochem Funct 2005; 23:195-204. [PMID: 15376229 DOI: 10.1002/cbf.1176] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The carboxyl-terminal cytoplasmic domain of the angiotensin II type 1 receptor (AT1) is known to interact with several classes of intracellular proteins that may modulate receptor function. Employing yeast two-hybrid screening of a human embryonic kidney cDNA library with the carboxyl-terminal cytoplasmic domain of the AT1 receptor as a bait, we have isolated EP24.15 (EC 3.4.24.15, thimet oligopeptidase) as a potentially interacting protein. EP24.15 is widely distributed and is known to degrade bioactive peptides such as angiotensin I and II and bradykinin. In addition, EP24.15 was previously identified as a putative soluble angiotensin II binding protein. Two-hybrid screening also determined that EP24.15 can interact with the B2 bradykinin receptor. Transient expression of EP24.15 in a porcine kidney epithelial cell line stably expressing full length AT1 and full length B2 followed by affinity chromatography and co-immunoprecipitation confirmed EP24.15 association with both AT1 and B2 receptors. EP24.15 was also co-immunoprecipitated with AT1 and B2 in rat kidney brush border membranes (BBM) and basolateral membranes (BLM). Both AT1 and B2 undergo ligand-induced endocytosis. Analysis of endosomal fractions following immunoprecipitation with AT1 or B2 antibodies detected strong association of EP24.15 with the receptors in both light and heavy endosomal populations. Therefore, the present study indicates that EP24.15 associates with AT1 and B2 receptors both at the plasma membrane and after receptor internalization and suggests a possible mechanism for endosomal disposition of ligand that may facilitate receptor recycling.
Collapse
MESH Headings
- Animals
- Cell Membrane/enzymology
- Cytoplasm/enzymology
- Endosomes/enzymology
- Gene Library
- Glutathione Transferase/genetics
- Humans
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- LLC-PK1 Cells
- Metalloendopeptidases/metabolism
- Mice
- Protein Structure, Tertiary
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Bradykinin B2/chemistry
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Recombinant Fusion Proteins/genetics
- Swine
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Bangalore R Shivakumar
- Department of Medicine, Vanderbilt University and Veterans Affairs Medical Center Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Peptidases play a vital and often highly specific role in the physiological and pathological generation and termination of peptide hormone signals. The thermolysin-like family of metalloendopeptidases involved in the extracellular processing of neuroendocrine and cardiovascular peptides are of particular significance, reflecting both their specificity for particular peptide substrates and their utility as therapeutic targets. Although the functions of the membrane-bound members of this family, such as angiotensin-converting enzyme and neutral endopeptidase, are well established, a role for the predominantly soluble family members in peptide metabolism is only just emerging. This review will focus on the biochemistry, cell biology, and physiology of the soluble metalloendopeptidases EC 3.4.24.15 (thimet oligopeptidase) and EC 3.4.24.16 (neurolysin), as well as presenting evidence that both peptidases play an important role in such diverse functions as reproduction, nociception, and cardiovascular homeostasis.
Collapse
|
15
|
Mitochondrial Processing Peptidase/Mitochondrial Intermediate Peptidase. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Filipeanu CM, Henning RH, Nelemans SA, de Zeeuw D. Intracellular angiotensin II: from myth to reality? J Renin Angiotensin Aldosterone Syst 2001; 2:219-26. [PMID: 11881127 DOI: 10.3317/jraas.2001.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- C M Filipeanu
- Department of Clinical Pharmacology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Oliveira V, Campos M, Melo RL, Ferro ES, Camargo AC, Juliano MA, Juliano L. Substrate specificity characterization of recombinant metallo oligo-peptidases thimet oligopeptidase and neurolysin. Biochemistry 2001; 40:4417-25. [PMID: 11284698 DOI: 10.1021/bi002715k] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a systematic and detailed analysis of recombinant neurolysin (EC 3.4.24.16) specificity in parallel with thimet oligopeptidase (TOP, EC 3.4.24.15) using Bk sequence and its C- and N-terminal extensions as in human kininogen as motif for synthesis of internally quenched fluorescent substrates. The influence of the substrate size was investigated, and the longest peptide susceptible to TOP and neurolysin contains 17 amino acids. The specificities of both oligopeptidases to substrate sites P(4) to P(3)' were also characterized in great detail using seven series of peptides based on Abz-GFSPFRQ-EDDnp taken as reference substrate. Most of the peptides were hydrolyzed at the bond corresponding to P(4)-F(5) in the reference substrate and some of them were hydrolyzed at this bond or at F(2)-S(3) bond. No restricted specificity was found for P(1)' as found in thermolysin as well for P(1) substrate position, however the modifications at this position (P(1)) showed to have large influence on the catalytic constant and the best substrates for TOP contained at P(1), Phe, Ala, or Arg and for neurolysin Asn or Arg. Some amino acid residues have large influence on the K(m) constants independently of its position. On the basis of these results, we are hypothesizing that some amino acids of the substrates can bind to different sub-sites of the enzyme fitting P-F or F-S bond, which requires rapid interchange for the different forms of interaction and convenient conformations of the substrate in order to expose and fit the cleavage bonds in correct position for an efficient hydrolysis. Finally, this plasticity of interaction with the substrates can be an essential property for a class of cytosolic oligopeptidases that are candidates to participate in the selection of the peptides to be presented by the MHC class I.
Collapse
Affiliation(s)
- V Oliveira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100 São Paulo - SP - 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Hunyady L, Catt KJ, Clark AJ, Gáborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. REGULATORY PEPTIDES 2000; 91:29-44. [PMID: 10967200 DOI: 10.1016/s0167-0115(00)00137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/metabolism
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Models, Biological
- Mutation
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, P.O. Box 259, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
19
|
Okida N, Tokumoto M, Tokumoto T, Nagahama Y, Ohe Y, Miyamoto K, Ishikawa K. Cloning of cDNA Encoding Thimet Oligopeptidase from Xenopus Oocytes and Regulation of the mRNA During Oogenesis. Zoolog Sci 2000. [DOI: 10.2108/0289-0003(2000)17[431:coceto]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L. Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<478::aid-jcb14>3.0.co;2-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Portaro FC, Gomes MD, Cabrera A, Fernandes BL, Silva CL, Ferro ES, Juliano L, de Camargo AC. Thimet oligopeptidase and the stability of MHC class I epitopes in macrophage cytosol. Biochem Biophys Res Commun 1999; 255:596-601. [PMID: 10049756 DOI: 10.1006/bbrc.1999.0251] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we investigated the fate of a class of proteasome-generated oligopeptides, exposing them to the crude cytosol of macrophages or to the purified recombinant thimet oligopeptidase. Among the proteasome products of known sequences are MHC class I epitopes, 13 of which were randomly chosen to be used as putative substrates. Surprisingly, our results clearly showed that the majority of the peptides were poorly or not degraded, either by the purified enzyme or by the crude macrophage cytosol. The peptides, which were resistant to hydrolysis, displayed high affinity for the thimet oligopeptidase as competitive inhibitors. Regardless of the fact that our data do not allow prediction of whether or not a specific peptide would be degraded, it seems very likely that the structural features, which rule out the stability of the MHC class I peptides in the cytosol, may have implications in an optimized repertoire selection for antigen presentation.
Collapse
Affiliation(s)
- F C Portaro
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kato A, Sugiura N, Saruta Y, Hosoiri T, Yasue H, Hirose S. Targeting of endopeptidase 24.16 to different subcellular compartments by alternative promoter usage. J Biol Chem 1997; 272:15313-22. [PMID: 9182559 DOI: 10.1074/jbc.272.24.15313] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endopeptidase 24.16 or mitochondrial oligopeptidase, abbreviated here as EP 24.16 (MOP), is a thiol- and metal-dependent oligopeptidase that is found in multiple intracellular compartments in mammalian cells. From an analysis of the corresponding gene, we found that the distribution of the enzyme to appropriate subcellular locations is achieved by the use of alternative sites for the initiation of transcription. The pig EP 24.16 (MOP) gene spans over 100 kilobases and is organized into 16 exons. The core protein sequence is encoded by exons 5-16 which match perfectly with exons 2-13 of the gene for endopeptidase 24.15, another member of the thimet oligopeptidase family. These two sets of 11 exons share the same splice sites, suggesting a common ancestor. Multiple species of mRNA for EP 24.16 (MOP) were detected by the 5'-rapid amplification of cDNA ends and they were shown to have been generated from a single gene by alternative choices of sites for the initiation of transcription and splicing. Two types of transcript were prepared, corresponding to transcription from distal and proximal sites. Their expression in vitro in COS-1 cells indicated that they encoded two isoforms (long and short) which differed only at their amino termini: the long form contained a cleavable mitochondrial targeting sequence and was directed to mitochondria; the short form, lacking such a signal sequence, remained in the cytosol. The complex structure of the EP 24.16 (MOP) gene thus allows, by alternative promoter usage, a fine transcriptional regulation of coordinate expression, in the different subcellular compartments, of the two isoforms arising from a single gene.
Collapse
Affiliation(s)
- A Kato
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Nakagawa K, Kawabata S, Nakashima Y, Iwanaga S, Sueishi K. Tissue distribution and subcellular localization of rabbit liver metalloendopeptidase. J Histochem Cytochem 1997; 45:41-7. [PMID: 9010467 DOI: 10.1177/002215549704500106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously isolated rabbit liver microsomal metalloendopeptidase (MEP) as a candidate for the processing enzyme of vitamin K-dependent plasma proteins. A cDNA coding for MEP has revealed that it is structurally related to metalloendopeptidase-24.15, which catalyzes the proteolytic processing of several bioactive peptides. In this study we examined the tissue distribution and subcellular localization of MEP by light and electron microscopic immunohistochemical methods, in addition to Northern blot analysis. Chicken polyclonal antibodies were raised by using synthetic peptides AG1 (Met31-Asn46) and AG3 (Asp537-Gly551) derived from the sequence of MEP. Both anti-AG1 and anti-AG3 antibodies reacted specifically with MEP, as judged by Western blotting and immunohistochemical methods. Both antibodies gave an identical staining distribution, which was localized on the luminal cell surfaces and in the cytoplasm of the following organs: liver, brain, lungs, kidneys, esophagus, stomach, duodenum, pancreas, placenta, epididymis, uterus, ovary, and oviduct. Northern blot analysis revealed that the expression of MEP mRNA is similar to its immunohistochemical distribution except in the heart. These results suggest that MEP may participate more closely in a degradation role in peptide metabolism in various tissues than in a processing role of the proprotein, like metalloendopeptidase-24.15.
Collapse
Affiliation(s)
- K Nakagawa
- Department of Pathology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
24
|
Regitz-Zagrosek V, Neuss M, Holzmeister J, Warnecke C, Fleck E. Molecular biology of angiotensin receptors and their role in human cardiovascular disease. J Mol Med (Berl) 1996; 74:233-51. [PMID: 8773261 DOI: 10.1007/bf00196577] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The actions of angiotensin II in the cardiovascular system are transmitted by two known and possibly some unknown angiotensin receptor types. AT1 and AT2 both correspond to G-protein-coupled receptors with seven hydrophobic transmembrane domains, several N-glycosylation sites and a potential G-protein binding site. Cloning of coding regions and promoter sequences contributed to the understanding of receptor protein function and regulation. Angiotensin receptors with atypical binding properties for the known AT1- and AT2-specific ligands are expressed on human cardiac fibroblasts and in the human ulcrus. In several animal models, receptors with high affinity for angiotensin (1-7) have been described. AT1 stimulation is mediated by the generation of phospholipid-derived second messengers, activation of protein kinase C, the MAPkinase pathway and of immediate early genes. Recently, phosphorylation and dephosphorylation of tyrosine kinases have been associated with AT1- and AT2-mediated signal transduction. ATR are regulated by phosphorylation, internalization, modification of transcription rate and mRNA stability. Regulation is highly cell and organ specific and includes upregulation of ATR in some pathophysiological situations where the renin angiotensin system is activated. Whereas the function of AT1 in the cardiovascular system is relatively well established, there is little information regarding the role of AT2. Recent hypotheses suggest an antagonism between AT1 and AT2 at the signal transduction and the functional level. Transgenic animal models, particularly with targeted disruption of the AT1 and AT2 genes, suggest the contribution of both genes to blood pressure regulation. Genetic polymorphisms have been described in the AT1 and AT2 gene or neighbored regions and are used to analyze the association between gene defects and cardiovascular diseases. AT1 antagonists are now being introduced into the treatment of hypertension and potentially heart failure, and more interesting pharmacological developments are expected from the ongoing basic studies.
Collapse
Affiliation(s)
- V Regitz-Zagrosek
- Department of Internal Medicine/Cardiology, Virchow-Klinikum, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Jirácek J, Yiotakis A, Vincent B, Lecoq A, Nicolaou A, Checler F, Dive V. Development of highly potent and selective phosphinic peptide inhibitors of zinc endopeptidase 24-15 using combinatorial chemistry. J Biol Chem 1995; 270:21701-6. [PMID: 7665587 DOI: 10.1074/jbc.270.37.21701] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several hundred phosphinic peptides having the general formula Z-(L,D)Phe psi (PO2CH2)(L,D)Xaa'-Yaa'-Zaa', where Xaa' = Gly or Ala and Yaa' and Zaa' represent 20 different amino acids, have been synthesized by the combinatorial chemistry approach. Peptide mixtures or individual peptides were evaluated for their ability to inhibit the rat brain zinc endopeptidases 24-15 and 24-16. Numerous phosphinic peptides of this series act as potent (Ki in the nanomolar range) mixed inhibitors of these two peptidases. However, our systematic and comparative strategy led us to delineate the residues located in P2' and P3' positions of the inhibitors that are preferred by these two peptidases. Thus, endopeptidase 24-15 exhibits a marked preference for inhibitors containing a basic residue (Arg or Lys) in the P2' position, while 24-16 prefers a proline in this position. The P3' position has less influence on the inhibitory potency and selectivity, both peptidases preferring a hydrophobic residue at this position. On the basis of these observations, we have prepared highly potent and selective inhibitors of endopeptidase 24-15. The Z-(L,D)Phe psi-(PO2CH2)(L,D)Ala-Arg-Met compound (mixture of the four diastereoisomers) displays a Ki value of 70 pM for endopeptidase 24-15. The most selective inhibitor of endopeptidase 24-15 in this series, Z-(L,D)Phe psi (PO2-CH2)(L,D)Ala-Arg-Phe, exhibits a Ki value of 0.160 nM and is more than 3 orders of magnitude less potent toward endopeptidase 24-16 (Ki = 530 nM). Furthermore, at 1 microM this selective inhibitor is unable to affect the activity of several other zinc peptidases, namely endopeptidase 24-11, angiotensin-converting enzyme, aminopeptidase M, leucine aminopeptidase, and carboxypeptidases A and B. Therefore, Z-(L,D)Phe psi (PO2CH2)(L,D)Ala-Arg-Phe can be considered as the most potent and specific inhibitor of endopeptidase 24-15 developed to date. This new inhibitor should be useful in assessing the contribution of this proteolytic activity in the physiological inactivation of neuropeptides known to be hydrolyzed, at least in vitro, by endopeptidase 24-15. Our study also demonstrates that the combinatorial chemistry approach leading to the development of phosphinic peptide libraries is a powerful strategy for discovering highly potent and selective inhibitors of zinc metalloproteases and should find a broader application in studies of this important class of enzymes.
Collapse
Affiliation(s)
- J Jirácek
- Département d'Ingénierie et d'Etudes des Protéines, DSV, CE-Saclay, Gif/Yvette, France
| | | | | | | | | | | | | |
Collapse
|
26
|
el-Sayed NM, Alarcon CM, Beck JC, Sheffield VC, Donelson JE. cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol Biochem Parasitol 1995; 73:75-90. [PMID: 8577350 DOI: 10.1016/0166-6851(95)00098-l] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A total of 518 expressed sequence tags (ESTs) have been generated from clones randomly selected from a cDNA library and a spliced leader sub-library of a Trypanosoma brucei rhodesiense bloodstream clone. 205 (39%) of the clones were identified based on matches to 113 unique genes in the public databases. Of these, 71 cDNAs display significant similarities to genes in unrelated organisms encoding metabolic enzymes, signal transduction proteins, transcription factors, ribosomal proteins, histones, a proliferation-associated protein and thimet oligopeptidase, among others. 313 of the cDNAs are not related to any other sequences in the databases. These cDNA ESTs provide new avenues of research for exploring both the novel trypanosome-specific genes and the genome organization of this parasite, as well as a resource for identifying trypanosome homologs to genes expressed in other organisms.
Collapse
Affiliation(s)
- N M el-Sayed
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
27
|
McKie N, Dando PM, Brown MA, Barrett AJ. Rat thimet oligopeptidase: large-scale expression in Escherichia coli and characterization of the recombinant enzyme. Biochem J 1995; 309 ( Pt 1):203-7. [PMID: 7619057 PMCID: PMC1135820 DOI: 10.1042/bj3090203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The coding sequence for rat testis thimet oligopeptidase (TOP) (EC 3.4.24.15) was placed under the control of the T7 polymerase/promoter system. Cultures of Escherichia coli transfected with the resulting plasmid expressed the enzyme as a soluble cytoplasmic protein. Medium-scale cultures allowed isolation of the enzyme in quantities of tens of milligrams. The availability of the recombinant enzyme permitted the determination of such chemical properties as epsilon 280 (48,960), zinc content (2 atom/molecule) and available thiol content (8-10/molecule) for TOP. The recombinant enzyme showed the catalytic activities previously reported for the naturally occurring enzyme, so that we can now conclude with confidence that these are all due to TOP and there is no need to postulate the existence of separate 'Pz-peptidase' or 'endo-oligopeptidase A' enzymes.
Collapse
Affiliation(s)
- N McKie
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, U.K
| | | | | | | |
Collapse
|
28
|
Serizawa A, Dando PM, Barrett AJ. Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase. J Biol Chem 1995; 270:2092-8. [PMID: 7836437 DOI: 10.1074/jbc.270.5.2092] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have isolated a metallopeptidase from rat liver. The peptidase is primarily located in the mitochondrial intermembrane space, where it interacts non-covalently with the inner membrane. The enzyme hydrolyzes oligopeptides, the largest substrate molecule found being dynorphin A1-17; it has no action on proteins, and does not interact with alpha 2-macroglobulin, and can therefore be classified as an oligopeptidase. We term the enzyme oligopeptidase M. Oligopeptidase M acts similarly to thimet oligopeptidase (EC 3.4.24.15) on bradykinin and several other peptides, but hydrolyzes neurotensin exclusively at the -Pro+Tyr- bond (the symbol + is used to indicate a scissile peptide bond) rather than the -Arg+Arg- bond. The enzyme is inhibited by chelating agents and some thiol-blocking compounds, but differs from thimet oligopeptidase in not being activated by thiol compounds. The peptidase is inhibited by Pro-Ile, unlike thimet oligopeptidase, and the two enzymes are separable in chromatography on hydroxyapatite. The N-terminal amino acid sequence of rat mitochondrial oligopeptidase M contains 19 out of 20 residues identical with a segment of rabbit microsomal endopeptidase and 17 matching the corresponding segment of pig-soluble angiotensin II-binding protein. Moreover, the rat protein is recognized by a monoclonal antibody against rabbit soluble angiotensin II-binding protein, all of which is consistent with these proteins being species variants of a single protein that is a homologue of thimet oligopeptidase. The biochemical properties of the mitochondrial oligopeptidase leave us in no doubt that it is neurolysin (EC 3.4.24.16), for which no sequence has previously been reported, and which has not been thought to be mitochondrial.
Collapse
Affiliation(s)
- A Serizawa
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | | | |
Collapse
|
29
|
Barrett AJ, Brown MA, Dando PM, Knight CG, McKie N, Rawlings ND, Serizawa A. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol 1995; 248:529-56. [PMID: 7674943 DOI: 10.1016/0076-6879(95)48034-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A J Barrett
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
A scheme based on the zinc binding site [1992, FEBS Lett. 312, 110-114] has been extended to classify zinc metalloproteases into distinct families. The gluzincins, defined by the HEXXH motif and a glutamic acid as the third zinc ligand, include the thermolysin, endopeptidase-24.11, aminopeptidase, angiotensin converting enzyme, endopeptidase-24.15, and tetanus and botulinum neurotoxin families. The metzincins, defined by the HEXXH motif, a histidine as the third zinc ligand and a Met-turn, include the astacin, serralysin, reprolysin and matrixin families. The inverted zincin motif, HXXEH, defines the inverzincin family of insulin-degrading enzymes, the HXXE motif defines the carboxypeptidase family, and the HXH motif DD-carboxypeptidase.
Collapse
Affiliation(s)
- N M Hooper
- Department of Biochemistry and Molecular Biology, University of Leeds, UK
| |
Collapse
|
31
|
Pajic A, Tauer R, Feldmann H, Neupert W, Langer T. Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett 1994; 353:201-6. [PMID: 7926052 DOI: 10.1016/0014-5793(94)01046-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Incompletely synthesized polypeptides in the mitochondrial inner membrane are subject to rapid proteolysis. We demonstrate that Yta10p, a mitochondrial homologue of a conserved family of putative ATPases in Saccharomyces cerevisiae, is essential for this proteolytic process. Yta10p-dependent degradation requires divalent metal ions and the hydrolysis of ATP. Yta10p is an integral protein of the inner mitochondrial membrane exposing the carboxy terminus to the mitochondrial matrix space. Based on the presence of consensus binding sites for ATP, and for divalent metal ions found in a number of metal dependent endopeptidases, a direct role of Yta10p in the proteolytic breakdown of membrane-associated polypeptides in mitochondria is suggested.
Collapse
Affiliation(s)
- A Pajic
- Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, Germany
| | | | | | | | | |
Collapse
|
32
|
Evidence for a two-step mechanism of gonadotropin-releasing hormone metabolism by prolyl endopeptidase and metalloendopeptidase EC 3.4.24.15 in ovine hypothalamic extracts. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99922-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Kato A, Sugiura N, Hagiwara H, Hirose S. Cloning, amino acid sequence and tissue distribution of porcine thimet oligopeptidase. A comparison with soluble angiotensin-binding protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:159-65. [PMID: 8168506 DOI: 10.1111/j.1432-1033.1994.tb18725.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously determined the amino acid sequence of porcine soluble angiotensin-binding protein (sABP) by cDNA cloning and sequencing. In this study, we have cloned a sABP homologue (PABH) from the same porcine cDNA libraries used for sABP cloning. PABH and sABP have 65% sequence identity. Sequence comparisons with other proteins revealed very high similarities between porcine PABH and rat thimet oligopeptidase (90%), and between porcine sABP and rabbit microsomal endopeptidase (93%). This suggests that PABH and thimet oligopeptidase are identical and that sABP and microsomal endopeptidase are also the same. Indeed, sABP was shown to have a peptidase activity that is sensitive to the metal-chelating agents EDTA and 1,10-phenanthroline; sABP was also sensitive to the thiol reagent p-chloromercuriphenylsulfonic acid. RNase-protection assays, using RNA preparations from various porcine tissues, indicated that thimet oligopeptidase mRNA is ubiquitously expressed whereas sABP mRNA is predominantly expressed in the liver, kidney and adrenal gland. This assay also revealed tissue-specific alternative splicing of the sABP-encoding message.
Collapse
Affiliation(s)
- A Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
34
|
Büchler M, Tisljar U, Wolf DH. Proteinase yscD (oligopeptidase yscD). Structure, function and relationship of the yeast enzyme with mammalian thimet oligopeptidase (metalloendopeptidase, EP 24.15). EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:627-39. [PMID: 8307027 DOI: 10.1111/j.1432-1033.1994.tb19978.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The yeast PRD1 gene, encoding proteinase yscD, was cloned by complementation of the prd1-6 point mutation. Sequencing of the gene revealed an open reading frame of 2.136 kb, encoding a protein of 712 amino acids with a calculated molecular mass of 81.8 kDa. The sequence HEGLG beginning at residue 501 represents the HEXXH motif, unique for the zinc metallo-peptidases. Sequence comparison revealed complete identity of the proteinase yscD gene with a recently published open reading frame of yeast chromosome III. We found 34.8% identity between proteinase yscD and rat metalloendopeptidase (thimet oligopeptidase, EP 24.15). Proteinase yscD hydrolyzes several chromogenic and fluorogenic peptides that are substrates of thimet oligopeptidase. N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Phe-p-aminobenzoic acid, a compound designed as specific inhibitor of EP 24.15, is also a strong inhibitor of the yeast enzyme. Proteinase yscD is a nonvacuolar enzyme. 3-5% of the total enzyme activity can be detected in the intermembrane space of mitochondria. In a mutant carrying a deletion of the PRD1 gene no proteinase yscD activity is detectable in the cytoplasm and in mitochondria of these cells. They do not show any grossly altered phenotype but exhibit a decrease in the intracellular degradation of peptides. This suggests a function of proteinase yscD in the late stages of protein degradation.
Collapse
Affiliation(s)
- M Büchler
- Institut für Biochemie, Universität Stuttgart, Germany
| | | | | |
Collapse
|