1
|
The activating role of phospho-(Tyr)-calmodulin on the epidermal growth factor receptor. Biochem J 2015; 472:195-204. [DOI: 10.1042/bj20150851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The existence of a calmodulin (CaM)/phospho-(Tyr)-CaM cycle involved in the regulation of the epidermal growth factor receptor could have important consequences for the control of cell proliferation, as its alteration could potentially result in uncontrolled tumour growth.
Collapse
|
2
|
Stateva SR, Salas V, Benaim G, Menéndez M, Solís D, Villalobo A. Characterization of phospho-(tyrosine)-mimetic calmodulin mutants. PLoS One 2015; 10:e0120798. [PMID: 25830911 PMCID: PMC4382182 DOI: 10.1371/journal.pone.0120798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Calmodulin (CaM) phosphorylated at different serine/threonine and tyrosine residues is known to exert differential regulatory effects on a variety of CaM-binding enzymes as compared to non-phosphorylated CaM. In this report we describe the preparation and characterization of a series of phospho-(Y)-mimetic CaM mutants in which either one or the two tyrosine residues present in CaM (Y99 and Y138) were substituted to aspartic acid or glutamic acid. It was expected that the negative charge of the respective carboxyl group of these amino acids mimics the negative charge of phosphate and reproduce the effects that distinct phospho-(Y)-CaM species may have on target proteins. We describe some physicochemical properties of these CaM mutants as compared to wild type CaM, after their expression in Escherichia coli and purification to homogeneity, including: i) changes in their electrophoretic mobility in the absence and presence of Ca2+; ii) ultraviolet (UV) light absorption spectra, far- and near-UV circular dichroism data; iii) thermal stability in the absence and presence of Ca2+; and iv) Tb3+-emitted fluorescence upon tyrosine excitation. We also describe some biochemical properties of these CaM mutants, such as their differential phosphorylation by the tyrosine kinase c-Src, and their action as compared to wild type CaM, on the activity of two CaM-dependent enzymes: cyclic nucleotide phosphodiesterase 1 (PDE1) and endothelial nitric oxide synthase (eNOS) assayed in vitro.
Collapse
Affiliation(s)
- Silviya R. Stateva
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Valentina Salas
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto de Biología Experimental, Caracas, Venezuela
| | - Gustavo Benaim
- Universidad Central de Venezuela, Facultad de Ciencias, Instituto de Biología Experimental, Caracas, Venezuela
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
3
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
4
|
Fang Z, Wang Q, Cao W, Feng Q, Li C, Xie L, Zhang R. Investigation of phosphorylation site responsible for CaLP (P. fucata) nucleo-cytoplasmic shuttling triggered by overexpression of p21Cip1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:270-279. [PMID: 18818969 DOI: 10.1007/s10126-008-9142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 08/26/2008] [Indexed: 05/26/2023]
Abstract
Calmodulin (CaM) is a highly conserved and ubiquitous Ca(2+)-binding protein regulating intracellular Ca(2+) concentration by acting as a sensor of this divalent cation in eukaryotic cells. Being such a very important signal sensor, CaM is susceptible to undergo many posttranslational modifications. One of these important modifications is its phosphorylation. Our previous investigations showed that CaM and calmodulin-like protein (CaLP) cloned from Pinctada fucata have many different characteristics in spite of their high similarity to each other. We have narrowed down that the C-terminal domains of CaM and CaLP are responsible for their discrepant subcellular localizations and shuttling of CaLP when it is co-transfected with p21(Cip1), which is commonly considered as an important cell cycle regulating protein. In this study, we first predicted the potential phosphorylation site responsible for the shuttling and confirmed by fluorescence confocal microscopy. Together with fluorescence activated cell sorter analysis, we further investigated the releasing ability of wild type and point mutated CaLP from arrested cell cycle caused by p21(Cip1) overexpression. By performing pull-down analysis and phosphorylation status of CaLP in cytoplasm fraction of transfected COS-7 cells with CaLP alone and phosphorylation status of CaLP in nuclear fraction of co-transfected COS-7 cells with CaLP and p21(Cip), we propose that the CaLP staying in the cytoplasm is in the state of phosphorylation, but when p21(Cip1) is overexpressed in mammalian cells, some signal triggers CaLP dephosphorylation and translocation into the nucleus.
Collapse
Affiliation(s)
- Z Fang
- Institute of Marine Biotechnology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Demoliou-Mason CD. Overview: Cardiovascular & Renal; Cyclic nucleotide phosphodiesterase inhibitors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.5.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Turner JH, Garnovskaya MN, Coaxum SD, Vlasova TM, Yakutovich M, Lefler DM, Raymond JR. Ca2+-Calmodulin and Janus Kinase 2 Are Required for Activation of Sodium-Proton Exchange by the Gi-Coupled 5-Hydroxytryptamine1aReceptor. J Pharmacol Exp Ther 2006; 320:314-22. [PMID: 17050776 DOI: 10.1124/jpet.106.112581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The type 1 sodium-proton exchanger (NHE-1) is expressed ubiquitously and regulates key cellular functions, including mitogenesis, cell volume, and intracellular pH. Despite its importance, the signaling pathways that regulate NHE-1 remain incompletely defined. In this work, we present evidence that stimulation of the 5-hydroxytryptamine 1A (5-HT1A) receptor results in the formation of a signaling complex that includes activated Janus kinase 2 (Jak2), Ca2+/calmodulin (CaM), and NHE-1, and which involves tyrosine phosphorylation of CaM. The signaling pathway also involves rapid agonist-induced association of CaM and NHE-1 as assessed by coimmunoprecipitation studies and by bioluminescence resonance energy transfer studies in living cells. We propose that NHE-1 is activated through this pathway: 5-HT1A receptor --> G(i2)alpha and/or G(i3)alpha --> Jak2 activation --> tyrosine phosphorylation of CaM --> increased binding of CaM to NHE-1 --> induction of a conformational change in NHE-1 that unmasks an obscured proton-sensing and/or proton-transporting region of NHE-1 --> activation of NHE-1. The G(i/o)-coupled 5-HT1A receptor now joins a handful of Gq-coupled receptors and hypertonic shock as upstream activators of this emerging pathway. In the course of this work, we have presented clear evidence that CaM can be activated through tyrosine phosphorylation in the absence of a significant role for elevated intracellular Ca2+. We have also shown for the first time that the association of CaM with NHE-1 in living cells is a dynamic process.
Collapse
Affiliation(s)
- Justin H Turner
- The Medical and Research Services of the Ralph H Johnson Veterans Affairs Medical Center, Department of Medicine (Nephrology Division) of the Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Garnovskaya MN, Mukhin YV, Vlasova TM, Raymond JR. Hypertonicity activates Na+/H+ exchange through Janus kinase 2 and calmodulin. J Biol Chem 2003; 278:16908-15. [PMID: 12626508 DOI: 10.1074/jbc.m209883200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 sodium-hydrogen exchanger (NHE-1) is a ubiquitous electroneutral membrane transporter that is activated by hypertonicity in many cells. NHE-1 may be an important pathway for Na(+) entry during volume restoration, yet the molecular mechanisms underlying the osmotic regulation of NHE-1 are poorly understood. In the present study we conducted a screen for important signaling molecules that could be involved in hypertonicity-induced activation of NHE-1 in CHO-K1 cells. Hypertonicity rapidly activated NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Inhibitors of Ca(2+)/calmodulin (CaM) and Janus kinase 2 (Jak2) attenuated this activation, whereas neither calcium chelation nor inhibitors of protein kinase C, the Ras-ERK1/2 pathway, Src kinase, and Ca(2+)/calmodulin-dependent enzymes had significant effects. Hypertonicity also resulted in the rapid tyrosine phosphorylation of Jak2 and STAT3 (the major substrate of Jak2) and CaM. Phosphorylation of Jak2 and CaM were blocked by AG490, an inhibitor of Jak2. Immunoprecipitation studies showed that hypertonicity stimulates the assembly of a signaling complex that includes CaM, Jak2, and NHE-1. Formation of the complex could be blocked by AG490. Thus, we propose that hypertonicity induces activation of NHE-1 in CHO-K1 cells in large part through the following pathway: hypertonicity --> Jak2 phosphorylation and activation --> tyrosine phosphorylation of CaM --> association of CaM with NHE-1 --> NHE-1 activation.
Collapse
Affiliation(s)
- Maria N Garnovskaya
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
8
|
Benaim G, Villalobo A. Phosphorylation of calmodulin. Functional implications. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3619-31. [PMID: 12153558 DOI: 10.1046/j.1432-1033.2002.03038.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calmodulin (CaM) is phosphorylated in vitro and in vivo by multiple protein-serine/threonine and protein-tyrosine kinases. Casein kinase II and myosin light-chain kinase are two of the well established protein-serine/threonine kinases implicated in this process. On the other hand, within the protein-tyrosine kinases involved in the phosphorylation of CaM are receptors with tyrosine kinase activity, such as the insulin receptor and the epidermal growth factor receptor, and nonreceptor protein-tyrosine kinases, such as several members of the Src family kinases, Janus kinase 2, and p38Syk. The phosphorylation of CaM brings important physiological consequences for the cell as the diverse phosphocalmodulin species have differential actions as compared to nonphosphorylated CaM when acting on different CaM-dependent systems. In this review we will summarize the progress made on this topic as the first report on phosphorylation of CaM was published almost two decades ago. We will emphasize the description of the phosphorylation events mediated by the different protein kinases not only in the test tube but in intact cells, the phosphorylation-mediated changes of CaM activity, its action on CaM-dependent systems, and the functional repercussion of these phosphorylation processes in the physiology of the cell.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | | |
Collapse
|
9
|
Mukhin YV, Vlasova T, Jaffa AA, Collinsworth G, Bell JL, Tholanikunnel BG, Pettus T, Fitzgibbon W, Ploth DW, Raymond JR, Garnovskaya MN. Bradykinin B2 receptors activate Na+/H+ exchange in mIMCD-3 cells via Janus kinase 2 and Ca2+/calmodulin. J Biol Chem 2001; 276:17339-46. [PMID: 11278760 DOI: 10.1074/jbc.m010834200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) to examine the regulation of the ubiquitous sodium-proton exchanger, Na+/H+ exchanger isoform 1 (NHE-1), by a prototypical G protein-coupled receptor, the bradykinin B2 receptor. Bradykinin rapidly activates NHE-1 in a concentration-dependent manner as assessed by proton microphysiometry of quiescent cells and by 2'-7'-bis[2-carboxymethyl]-5(6)-carboxyfluorescein fluorescence measuring the accelerated rate of pH(i) recovery from an imposed acid load. The activation of NHE-1 is blocked by inhibitors of the bradykinin B2 receptor, phospholipase C, Ca2+/calmodulin (CaM), and Janus kinase 2 (Jak2), but not by pertussis toxin or by inhibitors of protein kinase C and phosphatidylinositol 3'-kinase. Immunoprecipitation studies showed that bradykinin stimulates the assembly of a signal transduction complex that includes CaM, Jak2, and NHE-1. CaM appears to be a direct substrate for phosphorylation by Jak2 as measured by an in vitro kinase assay. We propose that Jak2 is a new indirect regulator of NHE-1 activity, which modulates the activity of NHE-1 by increasing the tyrosine phosphorylation of CaM and most likely by increasing the binding of CaM to NHE-1.
Collapse
Affiliation(s)
- Y V Mukhin
- Medical and Research Services of the Ralph H. Johnson Veterans Affairs Medical Center, and Department of Medicine of the Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sitges M, Nekrassov V. Vinpocetine selectively inhibits neurotransmitter release triggered by sodium channel activation. Neurochem Res 1999; 24:1585-91. [PMID: 10591410 DOI: 10.1023/a:1021164418478] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of vinpocetine on internal Na+ (Na(i)), cAMP accumulation, internal Ca2+ (Ca(i)) and excitatory amino acid neurotransmitters release, under resting and under depolarized conditions, was investigated in rat striatum synaptosomes. Veratridine (20 microM) or high K+ (30 mM) were used as depolarizing agents. Results show that vinpocetine in the low microM range inhibits the elevation of Na(i), the elevation of Ca(i) and the release of glutamate and aspartate induced by veratridine depolarization. In contrast, vinpocetine fails to inhibit the rise of Ca(i) and the neurotransmitter release induced by high K+, which are both TTX insensitive responses. Results also show that the inhibition exerted by vinpocetine on all the above veratridine-induced responses is not reflected in PDE activity. Our interpretation of these results is that vinpocetine inhibits neurotransmitter release triggered by veratridine activation of voltage sensitive Na+ channels, but not that triggered by a direct activation of VSCC. Thus, the main mechanism involved in the neuroprotective action of vinpocetine in the CNS is unlikely to be due to a direct inhibition of Ca2+ channels or PDE enzymes, but rather the inhibition of presynaptic Na+ channel-activation unchained responses.
Collapse
Affiliation(s)
- M Sitges
- Depto. de Biología Celular, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, México.
| | | |
Collapse
|
11
|
Li C, Lü P, Zhang D. Using a GFP-gene fusion technique to study the cell cycle-dependent distribution of calmodulin in living cells. ACTA ACUST UNITED AC 1999; 42:517-28. [DOI: 10.1007/bf02881776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Indexed: 11/29/2022]
|
12
|
Palomo-Jiménez PI, Hernández-Hernando S, García-Nieto RM, Villalobo A. A method for the purification of phospho(Tyr)calmodulin free of nonphosphorylated calmodulin. Protein Expr Purif 1999; 16:388-95. [PMID: 10425159 DOI: 10.1006/prep.1999.1092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphocalmodulin has been shown to have a differential biological activity compared to nonphosphorylated calmodulin when assayed on a variety of calmodulin-dependent systems. However, the phosphocalmodulin preparations used so far in those experiments were not necessarily free of nonphosphorylated calmodulin. Therefore, the results obtained may not unquestionably show the real effect of pure phosphocalmodulin on the systems under study. To solve this problem, we describe here a method for the purification of phospho(Tyr)calmodulin free of nonphosphorylated calmodulin. The procedure consists of the following steps: (i) phosphorylation of calmodulin by a fraction enriched in epidermal growth factor receptor tyrosine kinase from rat liver isolated by calmodulin affinity chromatography, (ii) isolation of a calmodulin/phosphocalmodulin mixture by Ca(2+)-dependent chromatography in phenyl-Sepharose, (iii) purification of phospho(Tyr)calmodulin using an anti-phosphotyrosine antibody immobilized in agarose upon elution with phenyl phosphate, and (iv) removal of phenyl phosphate from the phospho(Tyr)calmodulin preparation by filtration chromatography in a Bio-Gel P-2 column. The obtained phospho(Tyr)calmodulin preparation was highly pure and essentially free of nonphosphorylated calmodulin because of the use of anti-phosphotyrosine affinity chromatography. We demonstrate that this ultrapure phospho(Tyr)calmodulin preparation is totally incapable of activating the calmodulin-dependent cyclic nucleotide phosphodiesterase. In contrast, when a nonpurified phospho(Tyr)calmodulin preparation was used a partial activation of this enzyme was observed.
Collapse
Affiliation(s)
- P I Palomo-Jiménez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid, E-28029, Spain
| | | | | | | |
Collapse
|
13
|
Corti C, Leclerc L'Hostis E, Quadroni M, Schmid H, Durussel I, Cox J, Dainese Hatt P, James P, Carafoli E. Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:790-802. [PMID: 10411641 DOI: 10.1046/j.1432-1327.1999.00441.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.
Collapse
Affiliation(s)
- C Corti
- Protein Chemistry Laboratory, Department of Biology, Swiss Federal Institute of Technology, (ETH) Zürich
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wölfler A, Schauenstein K, Liebmann PM. Lack of calmodulin antagonism of melatonin in T-lymphocyte activation. Life Sci 1998; 63:835-42. [PMID: 9734703 DOI: 10.1016/s0024-3205(98)00340-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite various reported effects of the pineal hormone melatonin on the immune system, its mechanism of action on immune cells is still unknown. Since melatonin has been suggested as a physiological antagonist to calmodulin in certain cell types, we investigated effects of melatonin on calmodulin-dependent IL-2 production and proliferation of activated T-lymphocytes. It was found, however, that, in contrast to the calmodulin antagonists trifluoperazine and W7, melatonin neither inhibited the IL-2 production of activated lymphoblastoid Jurkat T-cells nor decreased the mitogen response of peripheral blood mononuclear leukocytes. Preincubation of Jurkat cells with melatonin did not influence trifluoperazine effects on IL-2 production indicating that melatonin does not bind to the same sites of calmodulin as trifluoperazine, as has been postulated. In conclusion, these results did not give any evidence for a calmodulin antagonism of melatonin in T-lymphocyte activation. Thus, melatonin as a calmodulin antagonist appears not to be a universal phenomenon.
Collapse
Affiliation(s)
- A Wölfler
- Institute of General & Experimental Pathology, University of Graz, Austria
| | | | | |
Collapse
|
15
|
Benaim G, Cervino V, Villalobo A. Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 120:57-65. [PMID: 9827017 DOI: 10.1016/s0742-8413(98)00006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calmodulin (CaM), a major intracellular Ca2+ receptor protein, has been identified and partially characterized in several trypanosomatids. The amino acid sequences of CaM from Trypanosoma cruzi and Trypanosoma brucei are known, while that from Leishmania mexicana is not. CaM from T. cruzi contains 18 amino acid substitutions, as compared with CaM from bovine brain. In addition, CaM from bovine brain contains two tyrosine residues (Tyr-99 and Tyr-138), while CaM from T. cruzi only contains Tyr-138. In the present work we show that a monoclonal antibody developed against the carboxyl-terminal region of bovine brain CaM fails to recognize CaM from both T. cruzi and L. mexicana. CaM from both parasites and from bovine brain were phosphorylated in vitro by a preparation of CaM-binding protein kinases enriched in the epidermal growth factor (EGF) receptor. Phosphoamino acids analysis demonstrated EGF-dependent phosphorylation of tyrosine residues in bovine brain CaM, while only trace amounts of tyrosine phosphorylation were detected in CaM from both trypanosomatids. These results demonstrate that the EGF receptor tyrosine kinase targets Tyr-99, but not Tyr-138, as the single major phosphorylatable residue of CaM. On the other hand, and in contrast to bovine brain CaM, there is a significant phosphorylation of serine residues in CaM from trypanosomatids which is activated by the EGF receptor via a protein-serine/threonine kinase cascade.
Collapse
Affiliation(s)
- G Benaim
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | |
Collapse
|
16
|
Quadroni M, L'Hostis EL, Corti C, Myagkikh I, Durussel I, Cox J, James P, Carafoli E. Phosphorylation of calmodulin alters its potency as an activator of target enzymes. Biochemistry 1998; 37:6523-32. [PMID: 9572870 DOI: 10.1021/bi972930+] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous work has shown that calmodulin (CaM) is constitutively phosphorylated in rat liver, probably by casein kinase II [Quadroni, M., James, P., and Carafoli, E. (1994) J. Biol. Chem. 269, 16116-16122]. A procedure is now described for the isolation of the phosphorylated forms of calmodulin (PCaM) free from CaM, since in vitro phosphorylation experiments yield a 50:50 mixture of 3-4 times phosphorylated CaM and native CaM. The activation of six target enzymes by PCaM was tested: myosin light chain kinase, 3',5'-cyclic nucleotide phosphodiesterase, plasma membrane Ca2+-ATPase, Ca2+-CaM-dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase, and CaM-kinase II. In general, the phosphorylation of CaM caused a decrease in enzyme binding affinity, increasing the Kact by 2-4-fold for MLCK, PDE, PM Ca2+-ATPase, and calcineurin. The Vmax at saturating concentrations of PCaM was less affected, with the exception of CaM-kinase II, which was only minimally activated by PCaM and NOS whose Vmax was increased 2.6 times by PCaM with respect to CaM. Phosphorylation of calmodulin had very little effect on the binding of calcium to the enzyme despite the fact that Ser 101 which is phosphorylated is located in the third calcium binding loop. CD measurements performed on CaM and PCaM indicated that phosphorylation causes a marked decrease in the alpha-helical content of the protein. Phosphorylated CaM is very prone to dephosphorylation and was thus tested as a substrate for several phosphatases. It was unaffected by calcineurin (PP2B), but was a reasonable substrate for the pleiotropic phosphatases PP1gamma and PP2A.
Collapse
Affiliation(s)
- M Quadroni
- Protein Chemistry Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Davis HW. Phosphorylation of calmodulin by myosin light chain kinase is altered by exchange or duplication of EF-hand pairs. Biochem Biophys Res Commun 1997; 236:702-5. [PMID: 9245717 DOI: 10.1006/bbrc.1997.7029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously demonstrated that under certain conditions, myosin light chain kinase can phosphorylate its activator, calmodulin. In this study we show that myosin light chain kinase from chicken gizzard can phosphorylate recombinant calmodulins in which the EF-hand pairs (Ca2+-binding domains) are duplicated or exchanged. Three mutants were used CaMNN (the amino-terminal EF-hand pair is duplicated), CaMCC (the carboxy-terminal EF-hand pair is duplicated) and CaMCN (the carboxy- and amino-terminal EF-hand pairs are switched). Myosin light chain kinase phosphorylated CaMNN and CaMCN to a greater extent than wild-type CaM but did not phosphorylate CaMCC. While CaMCC is a competitive inhibitor of myosin light chain kinase-catalyzed phosphorylation of myosin light chains, it did not prevent the phosphorylation of native calmodulin under the conditions employed in these studies. These data suggest that, although the carboxy- and amino-terminal EF-hand pairs are similar, their orientation can be distinguished by chicken gizzard myosin light chain kinase.
Collapse
Affiliation(s)
- H W Davis
- Department of Internal Medicine, University of Cincinnati Medical Center, Ohio 45267, USA
| |
Collapse
|
18
|
Sacks DB, Mazus B, Joyal JL. The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation. Biochem J 1995; 312 ( Pt 1):197-204. [PMID: 7492313 PMCID: PMC1136245 DOI: 10.1042/bj3120197] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calmodulin transduces Ca2+ signals by binding to and activating essential regulatory enzymes. The large number of intracellular targets for calmodulin raises the possibility that mechanisms in addition to Ca2+ may modulate calmodulin activity. Phosphocalmodulin is found in cells and tissues, and calmodulin phosphorylation is enhanced by several mitogens. Phosphorylation of calmodulin on serine/threonine residues by casein kinase II decreased its ability to activate Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). The major effect was a 2.5-fold increase in the concentration at which half-maximal velocity (K0.5) was attained, with no apparent alteration in the Vmax, or the K0.5 for Ca2+. In contrast, calmodulin phosphorylated on tyrosine residues by the insulin receptor kinase produced an increase in the Vmax, with no alteration in the affinity for CaM-kinase II or the K0.5 for Ca2+. Direct determination by surface plasmon resonance of the dissociation constants with a synthetic peptide corresponding to the calmodulin-binding domain of CaM-kinase II revealed that phosphorylation on serine/threonine residues of calmodulin significantly decreased its affinity for the peptide, while tyrosine phosphorylation had no effect on binding. In contrast to CaM-kinase II, neither serine/threonine nor tyrosine phosphorylation of calmodulin altered its ability to activate calcineurin. These data indicate that phosphorylation of calmodulin differentially modifies its interaction with individual target enzymes. Moreover, the amino acid residues phosphorylated provide an additional level of control. These results demonstrate that phosphorylation is an in vitro regulatory mechanism in the targeting of calmodulin responses and, coupled with the stoichiometric phosphorylation of calmodulin in rat hepatocytes, suggest that it may be relevant in intact cells.
Collapse
Affiliation(s)
- D B Sacks
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
19
|
Benguría A, Soriano M, Joyal JL, Sacks DB, Villalobo A. Phosphorylation of calmodulin by plasma-membrane-associated protein kinase(s). EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:50-8. [PMID: 8529668 DOI: 10.1111/j.1432-1033.1995.050_c.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasma-membrane-associated protein kinase(s) from normal rat liver phosphorylates exogenous bovine brain calmodulin in the absence of Ca2+ and in the presence of histone or poly(L-lysine). Maximum levels of calmodulin phosphorylation are obtained at a poly(L-lysine)/calmodulin molar ratio of 0.4. Phosphoamino acid analysis revealed that calmodulin is phosphorylated on serine, threonine and tyrosine residues. Endogenous plasma-membrane-associated calmodulin was also phosphorylated by plasma-membrane-associated protein kinase(s) in the absence of added cationic protein or polypeptide. The identity of endogenous phosphocalmodulin was confirmed by immunoprecipitation with a specific anti-calmodulin monoclonal antibody. Ehrlich ascites tumor cell plasma membranes do not contain endogenous calmodulin. However, membrane-associated protein kinase(s) from these tumor cells phosphorylates bovine brain calmodulin in the presence of poly(L-lysine). These data demonstrate that phosphocalmodulin is present in liver plasma membranes and suggest that this post-translational modification could have a physiological role in this location.
Collapse
Affiliation(s)
- A Benguría
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Spence S, Rena G, Sweeney G, Houslay MD. Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms. Biochem J 1995; 310 ( Pt 3):975-82. [PMID: 7575435 PMCID: PMC1135991 DOI: 10.1042/bj3100975] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cAMP phosphodiesterase (PDE) activity of CHO cells was unaffected by the addition of Ca2+ +calmodulin (CaM), indicating the absence of any PDE1 (Ca2+/CaM-stimulated PDE) activity. Treatment with the tumour promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) led to the rapid transient induction of PDE1 activity which attained a maximum value after about 13 h before slowly decreasing. Such induction was attenuated by actinomycin D. PCR primers were designed to hybridize with two regions identified as being characteristic of PDE1 forms found in various species and predicted to amplify a 601 bp fragment. RT-PCR using degenerate primers allowed an approx. 600 bp fragment to be amplified from RNA preparations of rat brain but not from CHO cells unless they had been treated with PMA. CHO cells transfected to overexpress protein kinase C (PKC)-alpha and PKC-epsilon, but not those transfected to overexpress PKC-beta I or PKC-gamma, exhibited a twofold higher PDE activity. They also expressed a PDE1 activity, with Ca2+/CaM effecting a 1.8-2.8-fold increase in total PDE activity. RT-PCR, with PDE1-specific primers, identified an approx. 600 bp product in CHO cells transfected to overexpress PKC-alpha and PKC-epsilon, but not in those overexpressing PKC-beta I or PKC-gamma. Treatment of PKC-alpha transfected cells with PMA caused a rapid, albeit transient, increase in PDE1 activity, which reached a maximum some 1 h after PMA challenge, before returning to resting levels some 2 h later. The residual isobutylmethylxanthine (IBMX)-insensitive PDE activity was dramatically reduced (approx. 4-fold) in the PKC-gamma transfectants, suggesting that the activity of the cyclic AMP-specific IBMX-insensitive PDE7 activity was selectively reduced by overexpression of this particular PKC isoform. These data identify a novel point of 'cross-talk' between the lipid and cyclic AMP signalling systems where the action of specific PKC isoforms is shown to cause the induction of Ca2+/CaM-stimulated PDE (PDE1) activity. It is suggested that this protein kinase C-mediated process might involve regulation of PDE1 gene expression by the AP-1 (fos/jun) system.
Collapse
Affiliation(s)
- S Spence
- Division of Biochemistry and Molecular Biology, IBLS, University of Glasgow, Scotland, U.K
| | | | | | | |
Collapse
|
21
|
Bunn SJ, Saunders HI. Staurosporine inhibits inositol phosphate formation in bovine adrenal medullary cells. Eur J Pharmacol 1995; 290:227-36. [PMID: 7589217 DOI: 10.1016/0922-4106(95)00082-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of protein kinase C activators and inhibitors on histamine-stimulated phospholipase C in bovine adrenal medullary cells has been investigated. The protein kinase C activators, phorbol 12,13-dibutyrate (PDB) or sn-1,2-dioctanoylglycerol (DOG), inhibited histamine-stimulation of phospholipase C. This inhibition was prevented by the protein kinase C-selective inhibitor Ro 31-8220 (3-[1-[3-(2-isothioureido) propyl]indol-3-yl]-4-(1-methylindol-3-yl)-3-pyrrolin-2,5-dio ne) but not the broad spectrum protein kinase inhibitor staurosporine. Indeed staurosporine on its own inhibited both the histamine-stimulated response and, in permeabilized cells, phospholipase C activated by Ca2+. Staurosporine inhibition of phospholipase C is unlikely to be mediated via protein kinase A or Ca2+/calmodulin-dependent protein kinase because it was not reproduced by selective inhibition of these kinases. Staurosporine treatment, however, reduced inositol phospholipid levels in stimulated cells. Thus staurosporine and Ro 31-8220, two widely used protein kinase C inhibitors, have quite different effects on phospholipase C activation. Furthermore, staurosporine may cause this inhibition through a reduction in the level of phospholipase C substrate.
Collapse
Affiliation(s)
- S J Bunn
- Neuroscience Group, Faculty of Medicine, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
22
|
Wilding M, Torok K, Whitaker M. Activation-dependent and activation-independent localisation of calmodulin to the mitotic apparatus during the first cell cycle of the Lytechinus pictus embryo. ZYGOTE 1995; 3:219-24. [PMID: 8903791 DOI: 10.1017/s0967199400002616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have used confocal microscopy and a fluorescent calmodulin probe to examine the mechanism of localisation of calmodulin during the first cell cycle of the sea urchin zygote. Using fluorescein-calmodulin, calmodulin can be observed within the nucleus and interphase astral microtubule arrays as cells approach mitosis. During mitosis, calmodulin redistributes to the mitotic apparatus and to condensed chromosomes. Quantitative analysis with reference to a control dye (fluorescein-dextran) shows that the distribution of calmodulin is specific. We used a competitive inhibitor of calcium-dependent calmodulin binding (Trp-peptide; Torok & Trentham (1994) Biochemistry 33, 12807-20) to test whether the cell cycle localisation of calmodulin was due to its binding to targets on activation. The Trp-peptide eliminates localisation of calmodulin within the nucleus. However, microtubule localisation persists in the presence of the Trp-peptide. These data show that calmodulin can localise by calcium (and hence activation)-dependent as well as calcium-independent mechanisms. This suggests that distinct mechanisms of localisation may be involved in the regulation of the differential functions of calmodulin, at least during the cell cycle.
Collapse
Affiliation(s)
- M Wilding
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
23
|
Houslay MD. Compartmentalization of cyclic AMP phosphodiesterases, signalling 'crosstalk', desensitization and the phosphorylation of Gi-2 add cell specific personalization to the control of the levels of the second messenger cyclic AMP. ADVANCES IN ENZYME REGULATION 1995; 35:303-38. [PMID: 7572351 DOI: 10.1016/0065-2571(94)00012-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M D Houslay
- Department of Biochemistry, University of Glasgow, Scotland, UK
| |
Collapse
|
24
|
Friedberg F, Rhoads AR. Calmodulin's warm embrace. Bioessays 1994; 16:853-5. [PMID: 7840763 DOI: 10.1002/bies.950161113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Benguría A, Hernández-Perera O, Martínez-Pastor MT, Sacks DB, Villalobo A. Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:909-16. [PMID: 7925415 DOI: 10.1111/j.1432-1033.1994.00909.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An epidermal-growth-factor(EGF)-receptor preparation isolated by calmodulin-affinity chromatography from rat liver plasma membranes is able to phosphorylate calmodulin. Calmodulin phosphorylation was enhanced 3-8-fold by EGF, was dependent on the presence of a polycation or basic protein and was inhibited by micromolar concentrations of Ca2+. Phosphate incorporation into calmodulin occurs predominantly on tyrosine residues. Partial proteolysis of phosphocalmodulin by thrombin identifies Tyr99, located in the third calcium-binding domain of calmodulin, as the phosphorylated residue. Stoichiometric measurements show a 32P/calmodulin molar ratio of approximately 1 when optimal phosphorylation conditions are used.
Collapse
Affiliation(s)
- A Benguría
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|