1
|
Federspiel JJ, Rodriguez W, Spears J, Calloway M, Zhang X, Farrar E, Rajkumar R, Lodaya K, James AH. Antithrombin testing and treatment in pregnancy: Their real-world relationship to clinical outcomes. Thromb Res 2024; 241:109070. [PMID: 38970992 DOI: 10.1016/j.thromres.2024.109070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Antithrombin (AT) deficiency is a severe thrombophilia associated with increased rates of maternal morbidity, mortality, and greater healthcare resource utilization during pregnancy and postpartum. METHODS Two large U.S. healthcare databases were queried for women aged 15-44 with delivery-related encounters: Cerner Real-World Data (CRWD, 01/01/2000-12/31/2021) and Premier Healthcare Database (PHD, 01/01/2016-01/01/2019). Individuals receiving cardiopulmonary bypass were excluded. Three cohorts were created: 1) Individuals who had AT levels tested any time between 9-months pre- through 3-months post-delivery (CRWD Test Cohort); 2) individuals prescribed AT concentrate (ATc) within 1-year pre- or 1-year post-delivery in CRWD (CRWD Medication Cohort); and 3) the same criteria as 2) applied to PHD (PHD Medication Cohort). RESULTS There were 5411 individuals in the CRWD Test Cohort, 13 in the CRWD Medication Cohort and 38 in the PHD Medication Cohort. Demographic and baseline clinical characteristics were similar across cohorts. AT level testing occurred pre-delivery in 47.9 % of the CRWD Test Cohort and 23.1 % of the CRWD Medication Cohort. ATc was administered during the delivery hospitalization to 0.1 %, 23.1 % and 50.0 % of the CRWD Test, CRWD Medication, and PHD Medication Cohorts, respectively. Across cohorts, 5.4-7.9 % of individuals experienced thrombosis during the delivery-related encounter. Mean (SD) total costs for delivery through 1-year post-delivery were $190,894 ($276,893) with $123,763 ($177,122) of total costs related to abnormal coagulation. CONCLUSION Opportunities exist to enhance the care of pregnant individuals with low AT levels throughout pregnancy, aiming for optimal maternal outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Xuan Zhang
- Boston Strategic Partners, Inc., Boston, MA, United States
| | - Emily Farrar
- Boston Strategic Partners, Inc., Boston, MA, United States
| | - Rahul Rajkumar
- Boston Strategic Partners, Inc., Boston, MA, United States
| | - Kunal Lodaya
- Boston Strategic Partners, Inc., Boston, MA, United States
| | | |
Collapse
|
2
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
3
|
Zeng M, Jia K, Liu M, Wang M, Yang L, Xie H. A novel mutation p.Met1Val in SERPINC1 gene causes hereditary antithrombin deficiency in a Chinese family with thrombotic disease. Thromb Res 2023; 232:104-107. [PMID: 37976729 DOI: 10.1016/j.thromres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Manlin Zeng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China
| | - Kaiqi Jia
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China
| | - Meina Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China
| | - Mingshan Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China
| | - Lihong Yang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China
| | - Haixiao Xie
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou 325000, China.
| |
Collapse
|
4
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
5
|
Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pharmaceuticals (Basel) 2021; 14:ph14090906. [PMID: 34577606 PMCID: PMC8465649 DOI: 10.3390/ph14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.
Collapse
Affiliation(s)
- Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Correspondence: (Y.P.); (I.A.)
| | - Roman Bonet
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Miriam Corredor
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Cecilia Domingo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Alejandra Moure
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Àngel Messeguer
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Jordi Bujons
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
- Correspondence: (Y.P.); (I.A.)
| |
Collapse
|
6
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Shastry DG, Karande P. Microarrays for the screening and identification of carbohydrate-binding peptides. Analyst 2019; 144:7378-7389. [PMID: 31670365 DOI: 10.1039/c9an01465a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of carbohydrate-binding ligands is crucial for expanding knowledge on the glycocode and for achieving systematic carbohydrate targeting. Amongst such ligands, carbohydrate-binding peptides (CBPs) are attractive for use in bioanalytical and biomedical systems due to their biochemical and physicochemical properties; moreover, given the biological significance of lectin-carbohydrate interactions, these ligands offer an opportunity to study peptide sequence and binding characteristics to inform on natural target/ligand interactions. Here, a high-throughput microarray screening technique is described for the identification and study of CBPs, with a focus on polysialic acid (PSA), a polysaccharide found on neural stem cells. The chemical and biological uniqueness of PSA suggests that an ability to exclusively target this glycan may promote a number of diagnostic and therapeutic applications. PSA-binding peptides from phage display screening and from epitope mapping of an scFv for oligosialic acid were screened in an optimized microarray format with three ligand density conditions. Hypothesis-driven mutations were additionally applied to select peptides to modulate peptide affinity and selectivity to PSA. Peptide compositional and positional analyses revealed the significance of various residues for PSA binding and suggested the importance of basic residue positioning for PSA recognition. Furthermore, selectivity studies performed directly on microarrays with chondroitin sulfate A (CS-A) demonstrated the value of screening for both affinity and selectivity in the development of CBPs. Thus, the integrated approach described, with attention to design strategy, screening, and peptide characterization, successfully identified novel PSA-binding ligands and offers a platform for the identification and study of additional polysaccharide-binding peptides.
Collapse
Affiliation(s)
- Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
9
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
10
|
Peng LX, Liu XH, Lu B, Liao SM, Zhou F, Huang JM, Chen D, Troy FA, Zhou GP, Huang RB. The Inhibition of Polysialyltranseferase ST8SiaIV Through Heparin Binding to Polysialyltransferase Domain (PSTD). Med Chem 2019; 15:486-495. [PMID: 30569872 DOI: 10.2174/1573406415666181218101623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies. OBJECTIVE To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes? METHODS Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4. RESULTS The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4. CONCLUSION The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.
Collapse
Affiliation(s)
- Li-Xin Peng
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, 530004 China; 2Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bo Lu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Si-Ming Liao
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Feng Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Ji-Min Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Dong Chen
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Frederic A Troy
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CL, United States
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China.,Gordon Life Science Institute, 53 South Cottage Road Belmont, MA 02478, United States
| | - Ri-Bo Huang
- Life Science and Technology College, Guangxi University, Nanning, Guangxi, 530004 China; 2Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| |
Collapse
|
11
|
Lim TC, Cai S, Huber RG, Bond PJ, Siew Chia PX, Khou SL, Gao S, Lee SS, Lee SG. Facile saccharide-free mimetics that recapitulate key features of glycosaminoglycan sulfation patterns. Chem Sci 2018; 9:7940-7947. [PMID: 30429999 PMCID: PMC6201788 DOI: 10.1039/c8sc02303d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
We report a new class of saccharide-free glycosaminoglycan (GAG) mimetics where polyproline imparts facilely-made sulfation patterns with GAG-like structure, function and tunability.
Controlling glycosaminoglycan (GAG) activity to exploit its immense potential in biology ultimately requires facile manipulation of sulfation patterns associated with GAGs. However, satisfying this requirement in full remains challenging, given that synthesis of GAGs is technically arduous while convenient GAG mimetics often produce sulfation patterns that are uncharacteristic of GAGs. To overcome this, we develop saccharide-free polyproline-based GAG mimetics (PGMs) that can be facilely assembled via amide coupling chemistry. Molecular dynamics simulations show that PGMs recapitulate key GAG structural features (i.e. ∼9 Å-sized repeating units, periodicity and helicity) and as with GAGs, can be tuned to introduce systematic variations in sulfate clustering and spacing. Functionally, a variety of PGMs control various GAG activities (concerning P-selectin, neurotrophic factors and heparinase) and exhibit GAG-like characteristics such as progressive modulation, comparable effectiveness with heparins, need for different sequences to suit different activities and the presence of a “minimal bioactive length”. Furthermore, PGMs produce consistent effects in vivo and successfully provide therapeutic benefits over cancer metastasis. Taken together with their high level of biosafety, PGMs answer the long-standing need for an effective and practicable strategy to manipulate GAG-appropriate sulfation patterns and exploit GAG activity in medicine and biotechnology.
Collapse
Affiliation(s)
- Teck Chuan Lim
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shuting Cai
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Roland G Huber
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore
| | - Peter J Bond
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore
| | - Priscilla Xian Siew Chia
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Siv Ly Khou
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| | - Song-Gil Lee
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 , Singapore .
| |
Collapse
|
12
|
Zulueta MML, Chyan CL, Hung SC. Structural analysis of synthetic heparan sulfate oligosaccharides with fibroblast growth factors and heparin-binding hemagglutinin. Curr Opin Struct Biol 2018; 50:126-133. [DOI: 10.1016/j.sbi.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
|
13
|
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452:54-63. [PMID: 29065343 DOI: 10.1016/j.carres.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of linear and anionic polysaccharides that play essential roles in many biological and physiological processes. Interactions between GAGs and proteins regulate function in many proteins and are related to many human diseases and disorders. The structural motifs and mechanisms for interactions between GAGs and proteins are not fully understood. Specific bindings, including minor but unique sequences sporadically distributed along the GAG chains or variably sulfated domains interspersed by undersulfated regions, may be specifically recognized by defined domains of a variety of proteins. Understanding the molecular basis of these interactions will provide a template for developing novel glycotherapeutic agents. The present article reviews recent methodologies and progress on the characterization of structural motifs in both GAGs and proteins involved in GAG-protein interactions. The analytical approaches are categorized into three groups: affinity-based methods; molecular docking, nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography; and mass spectrometry (MS) techniques. The advantages and limitations of each category of methods are discussed and are based on examples of using these techniques to investigate binding between GAGs and proteins.
Collapse
Affiliation(s)
- Jiyuan Yang
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
14
|
Tiwari N, Srivastava A, Kundu B, Munde M. Biophysical insight into the heparin-peptide interaction and its modulation by a small molecule. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Neha Tiwari
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Ankit Srivastava
- School of Biological Sciences; Indian Institute of Technology; New Delhi India
| | - Bishwajit Kundu
- School of Biological Sciences; Indian Institute of Technology; New Delhi India
| | - Manoj Munde
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
15
|
Flengsrud R, Antonsen SG. The binding of pentapeptides to biological and synthetic high affinity heparin. Bioorg Med Chem Lett 2015. [PMID: 26216842 DOI: 10.1016/j.bmcl.2015.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pentapeptides have been shown to bind the synthetic heparin fondaparinux (Arixtra) as well the biological heparins dalteparin (Fragmin) and salmon heparin. In contrast to heparin binding consensus sequences, the pentapeptides are acidic or neutral, with no arginine or histidine residue. The peptides showed an effect on in vitro heparin anti-factor X activity with a reduction of fondaparinux activity by 65-95%. Heparin binding was further studied by using peptide solid phase chromatography and NMR analysis.
Collapse
Affiliation(s)
- Ragnar Flengsrud
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway.
| | - Simen Gjelseth Antonsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| |
Collapse
|
16
|
Babazada H, Yamashita F, Yanamoto S, Hashida M. Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-κB signaling. J Control Release 2014; 194:332-40. [PMID: 25234820 DOI: 10.1016/j.jconrel.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/15/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Self-assembling heparin nanoparticles have attracted much attention as promising drug carriers for various drugs, genes and imaging agents. In the present investigation, we found that heparin nanoparticles are selective Toll-like receptor 4 (TLR-4) antagonists and have a much greater anti-inflammatory effect than native heparin. More specifically, we developed self-assembling nanoparticles composed of glycol-split heparin/D-erythro-sphingosine conjugates (NAHNP), characterized their physicochemical properties and anti-inflammatory effect in vitro. Unlike native heparin, NAHNP significantly inhibited lipopolysaccharide-induced activation of MyD88-dependent NF-κB signaling pathway and production of pro-inflammatory cytokines such as TNF-alpha from mouse macrophages with IC50 = 0.019 mg/mL. Furthermore, we investigated the structure-activity relationship of the conjugates and identified the length of attached alkyl chains of d-erythro-sphingosine to be critical for anti-inflammatory effect. Decrease in alkyl chain length of NAHNP resulted in loss of inhibitory activity. In line with these findings, 6-O-sulfate groups of D-glucosamine residue were essential for effective inhibition, while removal of 2-O-sulfo and 3-O-sulfo groups as well as replacement of N-sulfo groups with N-acetyl did not alter anti-inflammatory activity. Therefore, NAHNP would be a promising candidate in acute and chronic inflammatory disorders, in addition to the nature of a drug carrier.
Collapse
Affiliation(s)
- Hasan Babazada
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yanamoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
17
|
Scott RA, Panitch A. Glycosaminoglycans in biomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:388-98. [PMID: 23606640 DOI: 10.1002/wnan.1223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) compose one of four classes of mammalian biopolymers, and are arguably the most complex. The research areas of glycobiology, glycopolymers, and the use of GAGs within tissue engineering and regenerative medicine have grown exponentially during the past decade. Researchers are closing in on high throughput methods for GAG synthesis and sequencing, but our understanding of glycan sequence and the information contained in this sequence lags behind. Screening methods to identify key GAG-biopolymer interactions are providing insights into important targets for nanomedicine, regenerative medicine, and pharmaceutics. Importantly, GAGs are most often found in the form of glycolipids and proteoglycans. Several studies have shown that the clustering of GAGs, as is often the case in proteoglycans, increases the affinity between GAGs and other biopolymers. In addition, GAG clustering can create regions of high anionic charge, which leads to high osmotic pressure. Recent advances have led to proteoglycan mimics that exhibit many of the functions of proteoglycans including protection of the extracellular matrix from proteolytic activity, regulation of collagen fibril assembly on the nanoscale, alteration of matrix stiffness, and inhibition of platelet adhesion, among others. Collectively, these advances are stimulating possibilities for targeting of drugs, nanoparticles, and imaging agents, opening new avenues for mimicking nanoscale molecular interactions that allow for directed assembly of bulk materials, and providing avenues for the synthesis of proteoglycan mimics that enhance opportunities in regenerative medicine.
Collapse
Affiliation(s)
- Rebecca A Scott
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
18
|
Structure–function analysis of full-length midkine reveals novel residues important for heparin binding and zebrafish embryogenesis. Biochem J 2013; 451:407-15. [DOI: 10.1042/bj20121622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Midkine is a heparin-binding di-domain growth factor, implicated in many biological processes as diverse as angiogenesis, neurogenesis and tumorigenesis. Elevated midkine levels reflect poor prognosis for many carcinomas, yet the molecular and cellular mechanisms orchestrating its activity remain unclear. At the present time, the individual structures of isolated half domains of human midkine are known and its functionally active C-terminal half domain remains a popular therapeutic target. In the present study, we determined the structure of full-length zebrafish midkine and show that it interacts with fondaparinux (a synthetic highly sulfated pentasaccharide) and natural heparin through a previously uncharacterized, but highly conserved, hinge region. Mutating six consecutive residues in the conserved hinge to glycine strongly abates heparin binding and midkine embryogenic activity. In contrast with previous in vitro studies, we found that the isolated C-terminal half domain is not active in vivo in embryos. Instead, we have demonstrated that the N-terminal half domain is needed to enhance heparin binding and mediate midkine embryogenic activity surprisingly in both heparin-dependent and -independent manners. Our findings provide new insights into the structural features of full-length midkine relevant for embryogenesis, and unravel additional therapeutic routes targeting the N-terminal half domain and conserved hinge.
Collapse
|
19
|
Torrent M, Nogués MV, Andreu D, Boix E. The "CPC clip motif": a conserved structural signature for heparin-binding proteins. PLoS One 2012; 7:e42692. [PMID: 22880084 PMCID: PMC3412806 DOI: 10.1371/journal.pone.0042692] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
Glycosaminoglycans (GAGs) are essential molecules that regulate diverse biological processes including cell adhesion, differentiation, signaling and growth, by interaction with a wide variety of proteins. However, despite the efforts committed to understand the molecular nature of the interactions in protein-GAG complexes, the answer to this question remains elusive.In the present study the interphases of 20 heparin-binding proteins have been analyzed searching for a conserved structural pattern. We have found that a structural motif encompassing one polar and two cationic residues (which has been named the CPC clip motif) is conserved among all the proteins deposited in the PDB. The distances between the α carbons and the side chain center of gravity of the residues composing this motif are also conserved. Furthermore, this pattern can be found in other proteins suggested to bind heparin for which no structural information is available. Hence we propose that the CPC clip motif, working like a staple, is a primary contributor to the attachment of heparin and other sulfated GAGs to heparin-binding proteins.
Collapse
Affiliation(s)
- Marc Torrent
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | | | | | | |
Collapse
|
20
|
Butterfield KC, Caplan M, Panitch A. Identification and sequence composition characterization of chondroitin sulfate-binding peptides through peptide array screening. Biochemistry 2010; 49:1549-55. [PMID: 20095636 DOI: 10.1021/bi9021044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chondroitin sulfate (CS) is an important glycosaminoglycan that has been implicated in several disease processes, such as cancer and spinal cord injury. However, few studies have characterized CS-binding protein and peptide sequences for diagnostic and therapeutic use. In this study, peptide array screening, affinity capillary electrophoresis, and statistical analysis were used to both identify and characterize C6S-binding peptides for sequence composition. The compositional characterization results showed that Phe, Arg, and Tyr all had a significantly high rate of occurrence in the "high binding" affinity peptides, while tryptophan and lysine were significantly underrepresented in this population. Peptides modified with alanine point mutations for Phe, Arg, and Tyr all had lower C6S-binding affinities than the original peptides, demonstrating that these amino acids are all important for C6S binding. Several peptides were designed that substituted Arg for Lys and Phe or Tyr for Trp to create peptides with higher binding affinity. The peptides with the Arg substitution all had improved binding affinities while the Phe/Tyr substitution decreased C6S-binding affinity. Further analysis showed that the increased occurrence of Phe and Tyr in the "high affinity" peptides was dependent upon their positions both within the peptide sequence and in relation to other critical amino acids. Finally, a motif (ABBAA) was suggested for C6S-binding peptides where A represents any aromatic amino acid and B any basic amino acid. The results demonstrate that the methodology developed in this study for sequence composition analysis is an effective technique for the characterization of the interaction between peptides and CS.
Collapse
Affiliation(s)
- Karen Chao Butterfield
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona 85287-9709, USA
| | | | | |
Collapse
|
21
|
Patel RP, Narkowicz C, Jacobson GA. Investigation of the effect of heating on the chemistry and antifactor Xa activity of enoxaparin. J Pharm Sci 2009; 98:1700-11. [PMID: 18979533 DOI: 10.1002/jps.21556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to investigate the effects of heating on the chemistry, physical properties and antifactor Xa activity of enoxaparin. Samples of enoxaparin heated at 70 degrees C lost 27% of their initial AFXa activity after 8 h, then activity increased to 94% of the initial activity over the next 4 h. Activity then decreased to 84% of control after 48 h and further to 80% of control over 22 days. The initial activity loss correlated with desulfation as demonstrated by sulfate and amine analysis. Fragmentation of oligosaccharides occurred, as demonstrated by reducing capacity and capillary electrophoresis analysis. Individual enoxaparin fractions obtained by high performance size exclusion chromatography were analysed. Early eluting fractions, containing aggregated oligosaccharides, increased in concentration following heating. Up to 65% of sulfate was lost from some fractions, containing hexa- and octa-saccharides, after 8 h, corresponding with decreased activity. Low mass oligosaccharide fractions increased in concentration and had increased activity between 8 and 12 h. Reversed-phase ion-interaction HPLC analysis supported these findings. Deca-, dodeca- and tetradeca-saccharides were resistant to thermal degradation. Desulfation, fragmentation and aggregation occur during the heating of enoxaparin and result in the initial rapid loss, recovery and subsequent gradual loss of activity.
Collapse
Affiliation(s)
- Rahul P Patel
- School of Pharmacy, University of Tasmania, Private Bag 26, Hobart, Tasmania 7001, Australia.
| | | | | |
Collapse
|
22
|
Ishwar AR, Jeong KJ, Panitch A, Akkus O. Raman spectroscopic investigation of peptide-glycosaminoglycan interactions. APPLIED SPECTROSCOPY 2009; 63:636-641. [PMID: 19531291 DOI: 10.1366/000370209788559656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Protein-glycosaminoglycan (GAG) interactions play a central role in tissue engineering and drug delivery. A rapid and efficacious method for screening these interactions is essential. Raman spectroscopy was used to identify chemical interactions and conformational changes occurring upon binding between a synthetic peptide (QRRFMQYSARRF) and two glycosaminoglycans (GAGs), heparin and chondroitin 6-sulfate (C6S). The results identify three main chemical groups that are involved in the binding of the synthetic peptide with heparin and C6S. Tyrosine formed hydrogen bonds with the GAGs via its hydroxyl group. The amide I band demonstrated substantial shifts in Raman wavenumbers when bound to heparin and C6S (Deltaomega=-10.2+/-0.7 cm(-1) and Deltaomega=-11.9+/-0.3 cm(-1), respectively), suggesting that the peptide underwent planar conformational changes after binding occurred. Upon binding to the peptide, the sulfate peak of heparin displayed a substantially greater shift in the Raman wavenumber (-7.5+/-0.5 cm(-1)) than that of C6S (-2.6+/-0.5 cm(-1)). The greater amide I and sulfate band shifts seen during peptide-heparin interactions are indicative of a stronger association compared to that between the peptide and C6S. This observation was confirmed by capillary electrophoresis, which demonstrated a lower dissociation constant (KD) between the peptide and heparin (KD of 19.2+/-3.3 microM) than between the peptide and C6S (26.7+/-2.5 microM). We conclude that the shift in the Raman wavenumbers of amide I and sulfate groups can be used for high-throughput screening of interaction affinities between libraries of peptides and GAGs.
Collapse
Affiliation(s)
- Arjun R Ishwar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
23
|
Go DH, Joung YK, Lee SY, Lee MC, Park KD. Tetronic-Oligolactide-Heparin Hydrogel as a Multi-Functional Scaffold for Tissue Regeneration. Macromol Biosci 2008; 8:1152-60. [DOI: 10.1002/mabi.200800098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 703] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Go DH, Joung YK, Park SY, Park YD, Park KD. Heparin‐conjugated star‐shaped PLA for improved biocompatibility. J Biomed Mater Res A 2008; 86:842-8. [DOI: 10.1002/jbm.a.31690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Jeong KJ, Butterfield K, Panitch A. A novel assay to probe heparin-peptide interactions using pentapeptide-stabilized gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8794-8800. [PMID: 18646727 DOI: 10.1021/la801198p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article, we present a novel assay to probe the interactions between heparin and heparin-binding peptides based on CALNN pentapeptide-stabilized gold nanoparticles. This assay relies on rapid aggregation of gold nanoparticles and dramatic retardation in the presence of a large excess of heparin due to the binding of peptides to heparin. Using this method, the dissociation constant ( K d) and melting temperature ( T m) of three different peptides against heparin were determined. The results from capillary electrophoresis demonstrated that K d values measured by this method were comparatively accurate. It was found that the peptide with the lowest K d did not have the highest T m. Structural analysis by circular dichroism was performed to explain this phenomenon. A comparison with the results from affinity chromatography indicates that electrostatic interactions only are not the major determinant of the affinity between heparin and peptide, but other interactions such as hydrogen-bonding and hydrophobic interactions may play important roles in the overall interactions. This novel assay is inexpensive, label-free, and easy to implement in the laboratories, does not suffer precipitation of the heparin-peptide complex or their conformational changes caused by surface immobilization, and is expected to be a useful complement to other existing methods.
Collapse
Affiliation(s)
- Kyung Jae Jeong
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907-2032, USA
| | | | | |
Collapse
|
27
|
Peptide amphiphile nanostructure-heparin interactions and their relationship to bioactivity. Biomaterials 2008; 29:3298-305. [PMID: 18468676 DOI: 10.1016/j.biomaterials.2008.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/01/2008] [Indexed: 11/20/2022]
Abstract
Heparin-protein interactions are important in many physiological processes including angiogenesis, the growth of new blood vessels from existing ones. We have previously developed a highly angiogenic self-assembling gel, wherein the self-assembly process is triggered by the interactions between heparin and peptide amphiphiles (PAs) with a consensus heparin binding sequence. In this report, this consensus sequence was scrambled and incorporated into a new peptide amphiphile in order to study its importance in heparin interaction and bioactivity. Heparin was able to trigger gel formation of the scrambled peptide amphiphile (SPA). Furthermore, the affinity of the scrambled molecule for heparin was unchanged as shown by isothermal titration calorimetry and high Förster resonance emission transfer efficiency. However, both the mobile fraction and the dissociation rate constant of heparin, using fluorescence recovery after photobleaching, were markedly higher in its interaction with the scrambled molecule implying a weaker association. Importantly, the scrambled peptide amphiphile-heparin gel had significantly less angiogenic bioactivity as shown by decreased tubule formation of sandwiched endothelial cells. Hence, we believe that the presence of the consensus sequence stabilizes the interaction with heparin and is important for the bioactivity of these new materials.
Collapse
|
28
|
Huang L, Kerns RJ. Diversity-oriented chemical modification of heparin: Identification of charge-reduced N-acyl heparin derivatives having increased selectivity for heparin-binding proteins. Bioorg Med Chem 2006; 14:2300-13. [PMID: 16314105 DOI: 10.1016/j.bmc.2005.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 02/05/2023]
Abstract
The diversity-oriented chemical modification of heparin is shown to afford charge-reduced heparin derivatives that possess increased selectivity for binding heparin-binding proteins. Variable N-desulfonation of heparin was employed to afford heparin fractions possessing varied levels of free amine. These N-desulfonated heparin fractions were selectively N-acylated with structurally diverse carboxylic acids using a parallel synthesis protocol to generate a library of 133 heparin-derived structures. Screening library members to compare affinity for heparin-binding proteins revealed unique heparin-derived structures possessing increased affinity and selectivity for individual heparin-binding proteins. Moreover, N-sulfo groups in heparin previously shown to be required for heparin to bind specific proteins have been replaced with structurally diverse non-anionic moieties to afford identification of charge-reduced heparin derivatives that bind these proteins with equivalent or increased affinity compared to unmodified heparin. The methods described here outline a process that we feel will be applicable to the systematic chemical modification of natural polyanionic polysaccharides and the preparation of synthetic oligosaccharides to identify charge-reduced high affinity ligands for heparin-binding proteins.
Collapse
Affiliation(s)
- Liusheng Huang
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
29
|
Vázquez-Campos S, St. Hilaire P, Damgaard D, Meldal M. GAG Mimetic Libraries: Sulphated Peptide as Heparin-like Glycosaminoglycan Mimics in Their Interaction with FGF-1. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/qsar.200420100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Abstract
Heparin is a major anticoagulant with activity mediated primarily through its interaction with antithrombin (AT). Heparan sulfate (HS), structurally related to heparin, binds a wide range of proteins of different functionality, taking part in various physiological and pathological processes. The heparin-AT complex, the most well understood facet of anticoagulation, serves as a prototypical example of the important role of heparin/HS in vascular biology. Extensive studies have identified common structural features in heparin/HS-binding sites of proteins. These include the elucidation of consensus sequences in proteins, patterns of clusters of basic and nonbasic residues, and common spatial arrangements of basic amino acids in the heparin-binding sites. Although these studies have provided valuable information, heparin/HS-binding proteins differ widely in structure. The prediction of heparin/HS-binding proteins from sequence information is not currently possible, and elucidation of protein-binding sites requires the individual study of each glycosaminoglycan-protein complex. Thus, x-ray crystallography and site-directed mutagenesis experiments are among the most powerful tools, providing accurate structural information, facilitating the characterization of heparin-protein complexes. Heparin and structurally related heparan sulfate bind a large number of proteins, taking part in a wide range of biological processes, particularly ones involved in vascular biology. Heparin-binding domains share certain common structural features, but there is no absolute dependency on specific sequences or protein folds.
Collapse
Affiliation(s)
- Eva M Muñoz
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
31
|
Onoue S, Nemoto Y, Harada S, Yajima T, Kashimoto K. Human antithrombin III-derived heparin-binding peptide, a novel heparin antagonist. Life Sci 2003; 73:2793-806. [PMID: 14511765 DOI: 10.1016/s0024-3205(03)00705-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the blood coagulation cascade, human antithrombin III (hAT III) acts as an inhibitor of serine proteases such as thrombin and factor Xa, and this anticoagulatory glycoprotein requires the binding of heparin for its activation. In this study, we synthesized the polypeptides corresponding to the proposed heparin-binding sites including the (41-49), (286-301) and (123-139) regions of hAT III, and examined their interactions with heparin by means of physicochemical and biochemical methods. All the synthetic peptides had a high affinity toward heparin, evidenced by the fact that they were eluted from a heparin-agarose column at the high salt concentration range of 520-700 mM. In addition, hAT III (123-139) attenuated the effect of heparin on the activation of hAT III, whereas other HBPs did not, suggesting that only hAT III (123-139) could interact with the active site of heparin. On the basis of these results, we prepared novel hAT III (123-139)-related derivatives as potent heparin antagonist candidates, and examined the influence of several modifications on their activity in vitro. The results provided new findings about the structure-activity relationship of hAT III (123-139), and led us to the successful development of a potent antagonist for heparin.
Collapse
Affiliation(s)
- Satomi Onoue
- Health Science Division, Itoham Foods Inc, 1-2-1 Kubogaoka, Moriya, Ibaraki 302-0104, Japan.
| | | | | | | | | |
Collapse
|
32
|
Kern A, Schmidt K, Leder C, Müller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King JA, Kleinschmidt JA. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 2003; 77:11072-81. [PMID: 14512555 PMCID: PMC224995 DOI: 10.1128/jvi.77.20.11072-11081.2003] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cells with adeno-associated virus (AAV) type 2 (AAV-2) is mediated by binding to heparan sulfate proteoglycan and can be competed by heparin. Mutational analysis of AAV-2 capsid proteins showed that a group of basic amino acids (arginines 484, 487, 585, and 588 and lysine 532) contribute to heparin and HeLa cell binding. These amino acids are positioned in three clusters at the threefold spike region of the AAV-2 capsid. According to the recently resolved atomic structure for AAV-2, arginines 484 and 487 and lysine 532 on one site and arginines 585 and 588 on the other site belong to different capsid protein subunits. These data suggest that the formation of the heparin-binding motifs depends on the correct assembly of VP trimers or even of capsids. In contrast, arginine 475, which also strongly reduces heparin binding as well as viral infectivity upon mutation to alanine, is located inside the capsid structure at the border of adjacent VP subunits and most likely influences heparin binding indirectly by disturbing correct subunit assembly. Computer simulation of heparin docking to the AAV-2 capsid suggests that heparin associates with the three basic clusters along a channel-like cavity flanked by the basic amino acids. With few exceptions, mutant infectivities correlated with their heparin- and cell-binding properties. The tissue distribution in mice of recombinant AAV-2 mutated in R484 and R585 indicated markedly reduced infection of the liver, compared to infection with wild-type recombinant AAV, but continued infection of the heart. These results suggest that although heparin binding influences the infectivity of AAV-2, it seems not to be necessary.
Collapse
Affiliation(s)
- A Kern
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pimenta DC, Nantes IL, de Souza ES, Le Bonniec B, Ito AS, Tersariol ILS, Oliveira V, Juliano MA, Juliano L. Interaction of heparin with internally quenched fluorogenic peptides derived from heparin-binding consensus sequences, kallistatin and anti-thrombin III. Biochem J 2002; 366:435-46. [PMID: 12000310 PMCID: PMC1222784 DOI: 10.1042/bj20020023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 05/02/2002] [Accepted: 05/08/2002] [Indexed: 11/17/2022]
Abstract
Internally quenched fluorogenic (IQF) peptides bearing the fluorescence donor/acceptor pair o-aminobenzoic acid (Abz)/N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) at N- and C-terminal ends were synthesized containing heparin-binding sites from the human serpins kallistatin and antithrombin, as well as consensus heparin-binding sequences (Cardin clusters). The dissociation constant (K(d)), as well as the stoichiometry for the heparin-peptide complexes, was determined directly by measuring the decrease in fluorescence of the peptide solution. Experimental procedures were as sensitive as those used to follow the fluorescence change of tryptophan in heparin-binding proteins. The conformation of the peptides and the heparin-peptide complexes were obtained from measurements of time-resolved fluorescence decay and CD spectra. Kallistatin (Arg(300)-Pro(319))-derived peptide (HC2) and one derived from antithrombin III helix D [(AT3D), corresponding to Ser(112)-Lys(139)], which are the heparin-binding sites in these serpins, showed significant affinity for 4500 Da heparin, for which K(d) values were 17 nM and 100 nM respectively. The CD spectra of the heparin-HC2 peptide complex did not show any significant alpha-helix content, different from the situation with peptide AT3D, for which complex-formation with heparin resulted in 24% alpha-helix content. The end-to-end distance distribution and the time-resolved fluorescence-decay measurements agree with the CD spectra and K(d) values. The synthetic alpha-methyl glycoside pentasaccharide AGA*IA(M) (where A represents N,6-O-sulphated alpha-d-glucosamine; G, beta-d-glucuronic acid; A*, N,3,6-O-sulphated alpha-d-glucosamine; I, 2-O-sulphated alpha-l-iduronic acid; and A(M), alpha-methyl glycoside of A) also binds to AT3D and other consensus heparin-binding sequences, although with lower affinity. The interaction of IQF peptides with 4500 Da heparin was displaced by protamine. In conclusion, IQF peptides containing Abz/EDDnp as the donor/acceptor fluorescence pair are very promising tools for structure-activity relationship studies on heparin-peptide complexes, as well as for the development of new peptides as heparin reversal-effect compounds.
Collapse
Affiliation(s)
- Daniel C Pimenta
- Centro de Toxinologia Aplicada, CAT/CEPID, Av. Vital Brasil, 1500, São Paulo SP-05503-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.
Collapse
Affiliation(s)
- Ishan Capila
- S328 College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | | |
Collapse
|
36
|
|
37
|
|
38
|
Desai UR, Petitou M, Björk I, Olson ST. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem 1998; 273:7478-87. [PMID: 9516447 DOI: 10.1074/jbc.273.13.7478] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the role of individual saccharide residues of a specific heparin pentasaccharide, denoted DEFGH, in the allosteric activation of the serpin, antithrombin, we studied the effect of deleting pentasaccharide residues on this activation. Binding, spectroscopic, and kinetic analyses demonstrated that deletion of reducing-end residues G and H or nonreducing-end residue D produced variable losses in pentasaccharide binding energy of approximately 15-75% but did not affect the oligosaccharide's ability to conformationally activate the serpin or to enhance the rate at which the serpin inhibited factor Xa. Rapid kinetic studies revealed that elimination of the reducing-end disaccharide marginally affected binding to the native low-heparin-affinity conformational state of antithrombin but greatly affected the conversion of the serpin to the activated high-heparin- affinity state, although the activated conformation was still favored. In contrast, removal of the nonreducing- end residue D drastically affected the initial low-heparin-affinity interaction so as to favor an alternative activation pathway wherein the oligosaccharide shifted a preexisiting equilibrium between native and activated serpin conformations in favor of the activated state. These results demonstrate that the nonreducing-end residues of the pentasaccharide function both to recognize the native low-heparin-affinity conformation of antithrombin and to induce and stabilize the activated high-heparin-affinity conformation. Residues at the reducing-end, however, poorly recognize the native conformation and instead function primarily to bind and stabilize the activated antithrombin conformation. Together, these findings establish an important role of the heparin pentasaccharide sequence in preferential binding and stabilization of the activated conformational state of the serpin.
Collapse
Affiliation(s)
- U R Desai
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
39
|
Hileman RE, Fromm JR, Weiler JM, Linhardt RJ. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 1998; 20:156-67. [PMID: 9631661 DOI: 10.1002/(sici)1521-1878(199802)20:2<156::aid-bies8>3.0.co;2-r] [Citation(s) in RCA: 467] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein-GAG binding have not been well-characterised. Ionic interactions are important in promoting protein-GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein-GAG affinity and specificity. Consensus sequences such as XBBBXXBX, XBBXBX and a critical 20 A spacing of basic residues are found in some protein sites that bind GAG. A new consensus sequence TXXBXXTBXXXTBB is described, where turns bring basic interacting amino acid residues into proximity. Clearly, protein-GAG interactions play a prominent role in cell-cell interaction and cell growth. Pathogens including virus particles might target GAG-binding sites in envelope proteins leading to infection.
Collapse
Affiliation(s)
- R E Hileman
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
40
|
Kassam G, Manro A, Braat CE, Louie P, Fitzpatrick SL, Waisman DM. Characterization of the heparin binding properties of annexin II tetramer. J Biol Chem 1997; 272:15093-100. [PMID: 9182528 DOI: 10.1074/jbc.272.24.15093] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this report, we have characterized the interaction of heparin with the Ca2+- and phospholipid-binding protein annexin II tetramer (AIIt). Analysis of the circular dichroism spectra demonstrated that the Ca2+-dependent binding of AIIt to heparin caused a large decrease in the alpha-helical content of AIIt from approximately 44 to 31%, a small decrease in the beta-sheet content from approximately 27 to 24%, and an increase in the unordered structure from 20 to 29%. The binding of heparin also decreased the Ca2+ concentration required for a half-maximal conformational change in AIIt from 360 to 84 microM. AIIt bound to heparin with an apparent Kd of 32 +/- 6 nM (mean +/- S.D., n = 3) and a stoichiometry of 11 +/- 0.9 mol of AIIt/mol of heparin (mean +/- S.D., n = 3). The binding of heparin to AIIt was specific as other sulfated polysaccharides did not elicit a conformational change in AIIt. A region of the p36 subunit of AIIt (Phe306-Ser313) was found to contain a Cardin-Weintraub consensus sequence for glycosaminoglycan recognition. A peptide to this region underwent a conformational change upon heparin binding. Other annexins contained the Cardin-Weintraub consensus sequence, but did not undergo a substantial conformational change upon heparin binding.
Collapse
Affiliation(s)
- G Kassam
- Cell Regulation Research Group, Department of Medical Biochemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Liu S, Zhou F, Höök M, Carson DD. A heparin-binding synthetic peptide of heparin/heparan sulfate-interacting protein modulates blood coagulation activities. Proc Natl Acad Sci U S A 1997; 94:1739-44. [PMID: 9050848 PMCID: PMC19986 DOI: 10.1073/pnas.94.5.1739] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously identified and characterized a heparin-binding cell surface protein (heparin/heparan sulfate-interacting protein, or HIP) present on epithelial and endothelial cells. A synthetic peptide mimicking a heparin-binding domain of HIP is now shown to bind a small subset of heparin molecules with high affinity and, therefore, presumably recognizes a specific structural motif in the heparin molecule. Further analyses revealed that the heparin molecules exhibiting a high affinity for the HIP peptide also show an extremely high affinity for antithrombin III (AT-III), a cofactor required for heparin's anticoagulant activity. The HIP peptide was shown to compete with AT-III for binding to heparin and to neutralize the anticoagulant activity of heparin in blood plasma assays. Furthermore, the heparin subfraction that binds to the HIP peptide with high affinity exhibits an extremely high anticoagulant activity. We conclude that although the HIP peptide shows no sequence similarity with AT-III, the two proteins recognize the same or similar structural motifs in heparin.
Collapse
Affiliation(s)
- S Liu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
42
|
Toida T, Hileman RE, Smith AE, Vlahova PI, Linhardt RJ. Enzymatic preparation of heparin oligosaccharides containing antithrombin III binding sites. J Biol Chem 1996; 271:32040-7. [PMID: 8943254 DOI: 10.1074/jbc.271.50.32040] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two new oligosaccharides were prepared from heparin by its partial depolymerization using heparin lyase I (EC 4.2.2.7) in an attempt to prepare oligosaccharides having intact antithrombin III binding sites. The oligosaccharides were purified by chromatography on the basis of both size and charge and demonstrated a high level of purity by capillary electrophoresis. One- and two-dimensional 1H NMR spectroscopy at 500 MHz revealed the structure of each oligosaccharide. The octasaccharide and decasaccharide are DeltaUAp2S(1-->4)-alpha-DGlcNpS6S(1-->4)-alpha-L-IdoAp (1-->4)-alpha-D -GlcNpAc6S(1-->4)-betaD-GlcAp(1-->4)-alpha-D-GlcNpS 3S6S(1-->4)-alpha- L-IdoAp2S(1-->4)alpha-D-GlcNpS6S (where DeltaUAp is 4-deoxy-alpha-L-threo-hex-enopyranosyluronic acid, GlcNp is 2-amino-2-deoxy-glucopyranose, GlcAp is glucopyranosyluronic acid, S is sulfate and Ac is acetate) and DeltaUAp2S(1-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp++ +(1-->4)-alpha- D-GlcNpAc6S (1-->4)-beta-D-GlcAp(1-->4)-alpha-D-GlcNpS3S6S(1-->4)-alpha- L-IdoAp2S (1-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S(1-->4)-alpha -D-GlcNpS 6S, respectively. A hexasaccharide containing a similar structural motif to that found in the antithrombin III binding site and having greatly reduced anticoagulant activity was also isolated. The structure of the hexasaccharide is DeltaUAp2S(1-->4)-alpha-D-GlcNpAc6S(1-->4)-beta-D-GlcAp++ +(1-->4)-alpha- D-GlcNpS3S6S(1-->4)-alpha-L-IdoAp(1-->4)-alpha-D-GlcNpS6S . The octasaccharide and decasaccharide correspond to the predominant structural motif found in porcine intestinal mucosal heparin. Sufficient quantities of the decasaccharide were obtained to examine its interaction with antithrombin III using microtitration calorimetry. This decasaccharide bound to antithrombin III with similar avidity as heparin and showed comparable anticoagulant activity, as determined using an antithrombin III dependent anti-factor Xa assay. Interestingly, while both decasaccharide and heparin bound to antithrombin with nanomolar affinity, very little heat of binding was observed.
Collapse
Affiliation(s)
- T Toida
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
43
|
Whitfield DM, Lamba D, Tang TH, Csizmadia IG. Binding properties of carbohydrate sulfamates based on ab initio 6–31 + G∗∗ calculations on N-methyl and N-ethyl sulfamate anions. Carbohydr Res 1996. [DOI: 10.1016/0008-6215(96)00032-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Herold BC, Gerber SI, Belval BJ, Siston AM, Shulman N. Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry. J Virol 1996; 70:3461-9. [PMID: 8648678 PMCID: PMC190219 DOI: 10.1128/jvi.70.6.3461-3469.1996] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although heparan sulfate (HS) serves as an initial receptor for the binding of both herpes simplex virus type 1 (HSV-1) and HSV-2 to cell surfaces, the two serotypes differ in epidemiology, cell tropism, and ability to compete for viral receptors in vitro. These observations are not necessarily contradictory and can be explained if the two serotypes recognize different structural features of HS. To compare the specific features of HS important for the binding and infection of HSV-1 and HSV-2, we took advantage of structural similarities between heparin and cell surface HS and compared the abilities of chemically modified heparin compounds to inhibit plaque formation. We found that the antiviral activity of heparin for both serotypes was independent of anticoagulant activity. Moreover, specific negatively charged regions of the polysaccharide, including N sulfations and the carboxyl groups, are key structural features for interactions of both HSV-1 and HSV-2 with cell surfaces since N desulfation or carboxyl reduction abolished heparin's antiviral activity. In contrast, 6-O sulfations and 2-,3-O sulfations are important determinants primarily for HSV- 1 infection. The O-desulfated heparins had little or no inhibitory effect on HSV-1 infection but inhibited HSV-2 infection. Using a series of intertypic recombinant mutant viruses, we found that susceptibility to O-desulfated heparins can be transferred to HSV-1 by the gene for glycoprotein C of HSV-2 (gC-2). This supports the notion that the envelope glycoproteins of HSV-1 and HSV-2 interact with different affinities for different structural features of heparin. To determine if the modified heparin compounds inhibited plaque formation by competing with cell surface HS for viral attachment, binding studies were also performed. As anticipated, most compounds inhibited binding and plaque formation in parallel. However, several compounds inhibited the binding of HSV-1 to cells during the initial attachment period at 4 degrees C; this inhibitory effect was reversed when the cells and inoculum were shifted to 37 degrees C. This temperature-dependent differential response to modified heparin compounds was evident primarily when glycoprotein C of HSV-1 (gC-1) was present in the virion envelope. Minimal temperature-dependent differences were seen for HSV-1 with gC-1 deleted and for HSV-2. These results suggest differences in the interactions of HSV-1 and HSV-2 with cell surface HS that may influence cell tropism.
Collapse
Affiliation(s)
- B C Herold
- Section of Pediatric Infectious Diseases and Committee on Virology, University of Chicago, Illinois 60637-1470, USA
| | | | | | | | | |
Collapse
|
45
|
Chen JCR, Zhang JP, Stephens RS. Structural Requirements of Heparin Binding to Chlamydia trachomatis. J Biol Chem 1996. [DOI: 10.1074/jbc.271.19.11134] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Sasisekharan R, Venkataraman G, Godavarti R, Ernst S, Cooney CL, Langer R. Heparinase I from Flavobacterium heparinum. Mapping and characterization of the heparin binding domain. J Biol Chem 1996; 271:3124-31. [PMID: 8621711 DOI: 10.1074/jbc.271.6.3124] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study we have identified the primary heparin binding site of heparinase I (EC 4.2.2.7). Chemical and proteolytic digests of heparinase I were used in direct binding and competition assays, to map the regions of heparinase I that interact specifically with heparin. We find the heparin binding site contains two Cardin-Weintraub heparin binding consensus sequences and a calcium co-ordination consensus motif. We show that heparin binding to heparinase I is independent of calcium (Kd of 60 nm) and that calcium is able to activate heparinase I catalytically. We find that sulfhydryl selective labeling of cysteine 135 of heparinase I protects the lysines of the heparin binding sequence from proteolytic cleavage, suggesting the close proximity of the heparin binding site to the active site. Site-directed mutagenesis of H203A (contained in the heparin binding site) inactivated heparinase I; however, a H203D mutant retained marginal activity, indicating a role for this residue in catalysis. The above results taken together suggest that histidine 203 (hence the heparin binding site) is immediately adjacent to the scissile bond. We propose that the heparin binding site and active site are in close proximity to each other and that the calcium coordination motif, contained in the heparin binding site, may bridge heparin to heparinase I through calcium in a ternary complex during catalysis.
Collapse
Affiliation(s)
- R Sasisekharan
- Harvard-MIT Division of Health Sciences and Technology, and the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The objective of this study was to extend our understanding of the stability of heparin. Sodium heparin, derived from porcine intestinal mucosa, was first incubated in 0.1 N hydrochloric acid and 0.1 N sodium hydroxide at 30 and 60 degrees C and sampled at times ranging from 0 to 1000 h. The absorbance spectra of the products formed under basic conditions showed an ultraviolet maxima at 232 nm associated with chemically catalyzed beta-elimination at the uronic acid residues. The products formed under acidic conditions showed a decreased staining intensity consistent with desulfation and a decrease in molecular weight corresponding to hydrolysis of glycosidic linkages when analyzed by gradient polyacrylamide gel electrophoresis. Heparin samples were next prepared in 10 mM sodium phosphate buffer at pH 7.0 in sealed ampules that had been flushed with nitrogen and incubated at 100 degrees C. Samples taken at times ranging from 0 to 4000 h were then analyzed. Heparin was relatively stable over the first 500 h, after which it rapidly degraded. Heparin, assayed using both anti-factor Xa and anti-factor IIa amidolytic methods retained 80-90% of its activity over the first 500 h, but these activities dropped precipitously, to approximately 6% and approximately 0.5% of the initial activity at 1000 h and 2000 h, respectively. This rapid decomposition began only after the buffering capacity of the solution was overwhelmed by acidic degradants, which caused the pH to decrease. Decomposition processes observed under these conditions included the endolytic hydrolysis of glycosidic linkages and loss of sulfation, particularly N-sulfate groups, and were similar to the degradation processes observed in 0.1 N hydrochloric acid. This study provides initial observations on heparin degradation pathways. More complete, quantitative studies and studies leading to the isolation and characterization of specific degradants are still required.
Collapse
Affiliation(s)
- K A Jandik
- College of Pharmacy, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|