1
|
Bullock G, Johnson GS, Mhlanga-Mutangadura T, Petesch SC, Thompson S, Goebbels S, Katz ML. Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene X 2022; 830:146513. [PMID: 35447247 DOI: 10.1016/j.gene.2022.146513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele's presence.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Scott C Petesch
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
2
|
Meiman EJ, Kick GR, Jensen CA, Coates JR, Katz ML. Characterization of neurological disease progression in a canine model of CLN5 neuronal ceroid lipofuscinosis. Dev Neurobiol 2022; 82:326-344. [PMID: 35427439 PMCID: PMC9119968 DOI: 10.1002/dneu.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Golden Retriever dogs with a frameshift variant in CLN5 (c.934_935delAG) suffer from a progressive neurodegenerative disorder analogous to the CLN5 form of neuronal ceroid lipofuscinosis (NCL). Five littermate puppies homozygous for the deletion allele were identified prior to the onset of disease signs. Studies were performed to characterize the onset and progression of the disease in these dogs. Neurological signs that included restlessness, unwillingness to cooperate with the handlers, and proprioceptive deficits first became apparent at approximately 12 months of age. The neurological signs progressed over time and by 21 to 23 months of age included general proprioceptive ataxia, menace response deficits, aggressive behaviors, cerebellar ataxia, intention tremors, decreased visual tracking, seizures, cognitive decline, and impaired prehension. Due to the severity of these signs, the dogs were euthanized between 21 and 23 months of age. Magnetic resonance imaging revealed pronounced progressive global brain atrophy with a more than sevenfold increase in the volume of the ventricular system between 9.5 and 22.5 months of age. Accompanying this atrophy were pronounced accumulations of autofluorescent inclusions throughout the brain and spinal cord. Ultrastructurally, the contents of these inclusions were found to consist primarily of membrane‐like aggregates. Inclusions with similar fluorescence properties were present in cardiac muscle. Similar to other forms of NCL, the affected dogs had low plasma carnitine concentrations, suggesting impaired carnitine biosynthesis. These data on disease progression will be useful in future studies using the canine model for therapeutic intervention studies.
Collapse
Affiliation(s)
- Elizabeth J. Meiman
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| | - Joan R. Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine University of Missouri Columbia MO 65211 USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory University of Missouri Columbia MO 65212 USA
| |
Collapse
|
3
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
4
|
Katz ML, Buckley RM, Biegen V, O'Brien DP, Johnson GC, Warren WC, Lyons LA. Neuronal Ceroid Lipofuscinosis in a Domestic Cat Associated with a DNA Sequence Variant That Creates a Premature Stop Codon in CLN6. G3 (BETHESDA, MD.) 2020; 10:2741-2751. [PMID: 32518081 PMCID: PMC7407459 DOI: 10.1534/g3.120.401407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory and Department of Ophthalmology,
| | | | | | | | | | - Wesley C Warren
- Life Sciences Center, University of Missouri, Columbia, MO and
| | | |
Collapse
|
5
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Catherman AD, Li M, Tran JC, Durbin KR, Compton PD, Early BP, Thomas PM, Kelleher NL. Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal Chem 2013; 85:1880-8. [PMID: 23305238 DOI: 10.1021/ac3031527] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interrogation of intact integral membrane proteins has long been a challenge for biological mass spectrometry. Here, we demonstrate the application of top down mass spectrometry to whole membrane proteins below 60 kDa with up to 8 transmembrane helices. Analysis of enriched mitochondrial membrane preparations from human cells yielded identification of 83 integral membrane proteins, along with 163 membrane-associated or soluble proteins, with a median q value of 3 × 10(-10). An analysis of matching fragment ions demonstrated that significantly more fragment ions were found within transmembrane domains than would be expected based upon the observed protein sequence. In total, 46 proteins from the complexes of oxidative phosphorylation were identified which exemplifies the increasing ability of top down proteomics to provide extensive coverage in a biological network.
Collapse
Affiliation(s)
- Adam D Catherman
- Department of Chemistry, the Chemistry of Life Processes Institute, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, 60208, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 2008; 106:24-36. [PMID: 18384642 DOI: 10.1111/j.1471-4159.2008.05385.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most striking morphologic change in neurons during normal aging is the accumulation of autophagic vacuoles filled with lipofuscin or neuromelanin pigments. These organelles are similar to those containing the ceroid pigments associated with neurologic disorders, particularly in diseases caused by lysosomal dysfunction. The pigments arise from incompletely degraded proteins and lipids principally derived from the breakdown of mitochondria or products of oxidized catecholamines. Pigmented autophagic vacuoles may eventually occupy a major portion of the neuronal cell body volume because of resistance of the pigments to lysosomal degradation and/or inadequate fusion of the vacuoles with lysosomes. Although the formation of autophagic vacuoles via macroautophagy protects the neuron from cellular stress, accumulation of pigmented autophagic vacuoles may eventually interfere with normal degradative pathways and endocytic/secretory tasks such as appropriate response to growth factors.
Collapse
Affiliation(s)
- David Sulzer
- Department of Neurology, Columbia University, New York, NY 10036, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Katz ML, Sanders DN, Mooney BP, Johnson GS. Accumulation of glial fibrillary acidic protein and histone H4 in brain storage bodies of Tibetan terriers with hereditary neuronal ceroid lipofuscinosis. J Inherit Metab Dis 2007; 30:952-63. [PMID: 18004671 DOI: 10.1007/s10545-007-0683-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/20/2007] [Accepted: 10/04/2007] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are inherited neurodegenerative diseases characterized by massive accumulation of autofluorescent storage bodies in neurons and other cells. A late-onset form of NCL occurs in Tibetan terrier dogs. Gel electrophoretic analyses of isolated storage body proteins from brains of affected dogs indicated that a protein of approximately 50 kDa was consistently prominent and a 16 kDa component was present in some brain storage body preparations. Mass spectral analysis identified the 50 kDa protein as glial fibrillary acidic protein (GFAP), isoform 2. GFAP identification was supported by immunoblot and immunohistochemical analyses. Histone H4 was the major protein in the 16 kDa component. Specific accumulation of GFAP and histone H4 in storage bodies has not been previously reported for any of the NCLs. Tibetan terrier NCL may be the canine correlate of one of the human adult-onset NCLs for which the genetic bases and storage body compositions have not yet been determined.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, University of Missouri School of Medicine, One Hospital Dr., Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
9
|
Dirk LMA, Trievel RC, Houtz RL. 7 Non-histone protein lysine methyltransferases: Structure and catalytic roles. Enzymes 2007; 24:179-228. [PMID: 26718041 DOI: 10.1016/s1874-6047(06)80009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-histone protein lysine methyltransferases (PKMTs) represent an exceptionally diverse and large group of PKMTs. Even accepting the possibility of multiple protein substrates, if the number of different proteins with methylated lysyl residues and the number of residues modified is indicative of individual PKMTs there are well over a hundred uncharacterized PKMTs. Astoundingly, only a handful of PKMTs have been studied, and of these only a few with identifiable and well-characterized structure and biochemical properties. Four representative PKMTs responsible for trimethyllysyl residues in ribosomal protein LI 1, calmodulin, cytochrome c, and Rubisco are herein examined for enzymological properties, polypeptide substrate specificity, functional significance, and structural characteristics. Although representative of non-histone PKMTs, and enzymes for whichcollectively there is a large amount of information, individually each of the PKMTs discussed in this chapter suffers from a lack of at least some critical information. Other than the obvious commonality in the AdoMet substrate cofactor and methyl group transfer, these enzymes do not have common structural features, polypeptide substrate specificity, or protein sequence. However, there may be a commonality that supports the hypothesis that methylated lysyl residues act as global determinants regulating specific protein-protein interactions.
Collapse
Affiliation(s)
- Lynnette M A Dirk
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| | - Raymond C Trievel
- Department of Biological Chemistry University of Michigan Medical School Medical Science Building 1 Ann Arbor, MI 48109, USA
| | - Robert L Houtz
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| |
Collapse
|
10
|
Bota DA, Davies KJ. Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 2005; 1:33-49. [PMID: 16120267 DOI: 10.1016/s1567-7249(01)00005-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 03/16/2001] [Indexed: 01/12/2023]
Abstract
The mitochondrial genome encodes just a small number of subunits of the respiratory chain. All the other mitochondrial proteins are encoded in the nucleus and produced in the cytosol. Various enzymes participate in the activation and intramitochondrial transport of imported proteins. To finally take their place in the various mitochondrial compartments, the targeting signals of imported proteins have to be cleaved by mitochondrial processing peptidases. Mitochondria must also be able to eliminate peptides that are internally synthesized in excess, as well as those that are improperly assembled, and those with abnormal conformation caused by mutation or oxidative damage. Damaged mitochondrial proteins can be removed in two ways: either through lysosomal autophagy, that can account for at most 25-30% of the biochemically estimated rates of average mitochondrial catabolism; or through an intramitochondrial proteinolytic pathway. Mitochondrial proteases have been extensively studied in yeast, but evidence in recent years has demonstrated the existence of similar systems in mammalian cells, and has pointed to the possible importance of mitochondrial proteolytic enzymes in human diseases and ageing. A number of mitochondrial diseases have been identified whose mechanisms involve proteolytic dysfunction. Similar mechanisms probably play a role in diminished resistance to oxidative stress, and in the aging process. In this paper we review current knowledge of mammalian mitochondrial proteolysis, under normal conditions and in several disease states, and we propose an etiological classification of human diseases characterized by a decline or loss of function of mitochondrial proteolytic enzymes.
Collapse
Affiliation(s)
- D A Bota
- Ethel Percy Andrus Gerontology Center and Division of Molecular Biology, University of Southern California, Los Angeles, CA-90089-0191, USA
| | | |
Collapse
|
11
|
Chen R, Fearnley IM, Palmer DN, Walker JE. Lysine 43 is trimethylated in subunit C from bovine mitochondrial ATP synthase and in storage bodies associated with batten disease. J Biol Chem 2004; 279:21883-7. [PMID: 15010464 DOI: 10.1074/jbc.m402074200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrophobic membrane protein, subunit c, has been isolated from ATP synthase purified from bovine heart mitochondria. It has also been obtained from lysosomal storage bodies associated with ceroid lipofuscinosis from ovine liver and from human brain tissue of a victim of Batten disease. It is likely that the lysosomal protein has originated from the mitochondrion. These samples have been characterized by mass spectrometric methods. Irrespective of its source, subunit c has an intact molecular mass of 7650 Da, 42 Da greater than the value calculated from the amino acid sequence, and the protein has been modified post-translationally. In all three samples, the modification is associated with lysine 43, which lies in a polar loop region linking the two transmembrane alpha-helices of the protein. This residue is conserved throughout vertebrate sequences. The additional mass arises from trimethylation and not acetylation at the epsilon-N-position of the residue. These experiments show that the post-translational modification of subunit c is not, as has been suggested, an abnormal phenomenon associated with the etiology of Batten disease and ceroid lipofucinoses. Evidently, it occurs either before or during import of the protein into mitochondria or at a mitochondrial location after completion of the import process. The function of the trimethyllysine residue in the assembled ATP synthase complex is obscure. The residue and the modification are not conserved in all ATP synthases, and their role in the assembly and (or) functioning of the enzyme appear to be confined to higher organisms.
Collapse
Affiliation(s)
- Ruming Chen
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge, CB2 2XY, United Kingdom
| | | | | | | |
Collapse
|
12
|
Katz ML, Sanders DA, Sanders DN, Hansen EA, Johnson GS. Assessment of plasma carnitine concentrations in relation to ceroid lipofuscinosis in Tibetan Terriers. Am J Vet Res 2002; 63:890-5. [PMID: 12061538 DOI: 10.2460/ajvr.2002.63.890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether the late onset form of inherited ceroid lipofuscinosis (CL) in Tibetan Terriers is accompanied by low plasma carnitine concentrations prior to the appearance of clinical signs. ANIMALS 129 healthy Tibetan Terriers, 12 Tibetan Terriers with CL, and 95 healthy purebred dogs of other breeds. PROCEDURE After withholding food, blood samples were collected from all dogs into tubes containing EDTA. Blood samples were analyzed for plasma-free carnitine and acyl-carnitines concentrations. RESULTS Neither the mean plasma total carnitine concentration nor the mean fraction of carnitine in the free form differed significantly between Tibetan Terriers with CL and healthy Tibetan Terriers. Among Tibetan Terriers and the general dog population, plasma carnitine concentration increased with age. Castrated males had an overall increase in plasma carnitine concentrations and variability, compared with sexually intact males. By comparison, plasma carnitine concentrations were not significantly different between spayed and sexually intact females. The mean plasma carnitine concentration in the Tibetan Terriers was approximately 22% higher than in the general population of healthy dogs of other breeds. CONCLUSIONS AND CLINICAL RELEVANCE Contrary to what is seen in early onset CL in English Setters and in humans with some forms of CL, plasma carnitine concentrations are not decreased in the late-onset disorder in Tibetan Terriers. Our large-scale study establishes reference range values for plasma carnitine concentrations in dogs as functions of age and sex that will be useful in evaluating potential carnitine deficiencies in other disorders in dogs.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
13
|
Katz ML, Shibuya H, Johnson GS. Animal models for the ceroid lipofuscinoses. ADVANCES IN GENETICS 2001; 45:183-203. [PMID: 11332773 DOI: 10.1016/s0065-2660(01)45011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M L Katz
- University of Missouri School of Medicine, Mason Eye Institute, Columbia 65212, USA.
| | | | | |
Collapse
|
14
|
Katz ML, Johnson GS. Mouse gene knockout models for the CLN2 and CLN3 forms of ceroid lipofuscinosis. Eur J Paediatr Neurol 2001; 5 Suppl A:109-14. [PMID: 11588979 DOI: 10.1053/ejpn.2000.0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The childhood neuronal ceroid-lipofuscinoses (NCLs) are autosomal-recessively inherited neurodegenerative disorders that result in severe cognitive decline and premature death. The genetic bases for a number of different forms of NCL, including those designated CLN2 and CLN3, have now been determined. However, the mechanisms by which the gene defects cause the disease pathology are not known and no effective treatments for these disorders have been developed. To provide tools for studying the mechanisms underlying the disease pathologies and for screening potential therapeutic interventions, work is under way to develop mouse models for the CLN2 and CLN3 disorders. Targeted gene replacement was used to generate mice in which the murine orthologue of the CLN3 gene has been knocked out. Mice that are homozygous for the Cln3 knockout allele develop a number of pathological features similar to those that occur in the human disorder. Among these are accumulation of autofluorescent lysosomal storage bodies, behavioural abnormalities, retinal degeneration, and premature death. On a mixed strain genetic background, the appearance of these symptoms was quite variable, suggesting that other genes can modify the effects of CLN3 mutations. Work to develop a similar mouse gene knockout model for the CLN2 disorder is well under way. Chimaeric mice have been developed with cells that carry an induced mutation in the mouse orthologue of the CLN2 gene that would prevent synthesis of a functional CLN2 protein in mice that are homozygous for the mutation. Mice will be developed that are homozygous for this mutation, and these animals will be evaluated for the development of pathologies similar to those that occur in the human disorder.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, Department of Veterinary Pathobiology, University of Missouri, School of Medicine, One Hospital Drive, Columbia, Missouri 65212, USA.
| | | |
Collapse
|
15
|
Kato Y, Maruyama W, Naoi M, Hashizume Y, Osawa T. Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett 1998; 439:231-4. [PMID: 9845328 DOI: 10.1016/s0014-5793(98)01372-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipofuscin is a yellowish brown fluorescent pigment which is sequestered within cytoplasmic granules during aging. To examine the contribution of protein oxidation to lipofuscin accumulation, we performed immunohistochemical detection of dityrosine, which is considered one of the specific markers for protein oxidation, in lipofuscin in the aged human brain using an antibody specific to dityrosine. By characterization using competitive enzyme-linked immunosorbent assay, the specificity of the antibody to dityrosine was confirmed. None of the other tyrosine-related compounds such as L-tyrosine, 3-nitrotyrosine, 3-chlorotyrosine, or 3,4-dihydroxyphenylalanine cross-reacted with the antibody. The anti-dityrosine antibody reacted with lipofuscin granules in the pyramidal neurons of the aged human brain. The results suggest that protein oxidation by free radicals and/or peroxidases may play an important role in lipofuscin accumulation.
Collapse
Affiliation(s)
- Y Kato
- School of Humanity for Environment Policy and Technology, Himeji Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
16
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs, also known as Batten disease) are the most common childhood neurodegenerative disease. They are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent storage material in many cell types. Clinical features include seizures, psychomotor deterioration, and blindness, the ages and order of onset of which differ for each NCL type. An increasing number of subtypes caused by mutations in different genes are now recognized. With the advent of molecular genetics the basic genetic defect underlying each NCL phenotype is being determined, thus shedding light on the molecular basis of the NCLs and opening the way for the development of effective treatment. Four genes have been identified to date. The function of two of these is known and suggests that the primary defect in the NCLs lies in lysosomal proteolysis, the first example of this type of disease. However, since the function of the other two genes remains elusive, and at least four more genes remain to be identified, the molecular basis underlying the NCLs may be more complex than originally predicted.
Collapse
Affiliation(s)
- S E Mole
- Department of Paediatrics, University College London Medical School, United Kingdom
| |
Collapse
|
17
|
Katz ML, Rice LM, Gao CL. Dietary carnitine supplements slow disease progression in a putative mouse model for hereditary ceroid-lipofuscinosis. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19971001)50:1<123::aid-jnr13>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Katz ML, Siakotos AN, Gao Q, Freiha B, Chin DT. Late-infantile ceroid-lipofuscinosis: lysine methylation of mitochondrial ATP synthase subunit c from lysosomal storage bodies. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1361:66-74. [PMID: 9247091 DOI: 10.1016/s0925-4439(97)00017-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Late-infantile ceroid-lipofuscinosis is a fatal autosomal recessively inherited disease characterized by massive accumulations of lysosomal storage bodies in many tissues. A major constituent of the storage bodies is the subunit c protein of mitochondrial ATP synthase. Juvenile ceroid-lipofuscinosis, a disease that is similar to but genetically distinct from the late-infantile disorder, also involves lysosomal accumulation of the subunit c protein. In the juvenile disease, the stored form of the protein contains an epsilon-N-trimethyllysine (TML) residue at position 43. Analyses were performed to determine whether subunit c protein stored in the late-infantile disease is also trimethylated at lysine residue 43. Amino acid composition analysis of the subunit c protein stored in brains from subjects with the late-infantile disease indicated that one of the two lysine residues in the protein is trimethylated. Data from molecular mass analysis of the protein was consistent with the presence of three methyl groups not present in the unmodified protein. The TML in the storage body subunit c protein was found by amino acid sequence analysis to occur exclusively at residue 43. The lysine at this position in the stored protein was completely methylated. Recent studies suggest that the subunit c protein from normal mitochondria may also have the same amino acid modification. Thus, it appears that specific methylation of lysine residue 43 of mitochondrial ATP synthase subunit c is probably a normal post-translational modification, and that the lysosomal storage of this protein in late-infantile, as well as in juvenile ceroid-lipofuscinosis, does not result from a defect in its methylation.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, University of Missouri, School of Medicine, Columbia 65212, USA.
| | | | | | | | | |
Collapse
|
19
|
Katz ML. Decreased plasma carnitine and trimethyl-L-lysine levels associated with lysosomal accumulation of a trimethyl-L-lysine containing protein in Batten disease. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1317:192-8. [PMID: 8988235 DOI: 10.1016/s0925-4439(96)00054-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Batten disease, or juvenile neuronal ceroid-lipofuscinosis, is an autosomal-recessive hereditary disorder that leads to blindness, severe neurological degeneration, and premature death. The disease is characterized by massive accumulation of lysosomal storage bodies in most tissues. A significant constituent of the storage material is a protein that appears to be almost identical to a small hydrophobic inner mitochondrial membrane protein, subunit c of ATP synthase. The protein isolated from the storage bodies contains an epsilon-N-trimethyl-L-lysine (TML) residue at amino acid position 43. The presence of TML in the stored protein suggests that one of the lysine residues in subunit c is normally trimethylated, and this trimethylation may act as a signal to initiate degradation of the protein. Free TML produced by the degradation of TML-containing proteins is the first intermediate in the carnitine biosynthetic pathway. It is possible that trimethylated subunit c is a major source of the free TML used in carnitine biosynthesis. If this is the case, one would predict that the genetic defect resulting in the accumulation of TML containing subunit c would also reduce systemic levels of free TML and carnitine. To evaluate this possibility, plasma TML and carnitine levels were measured in affected human subjects, heterozygous carriers, and normal controls. Both TML and carnitine levels were significantly depressed in the affected individuals. This suggests that subunit c is normally a major source of TML for carnitine biosynthesis. In Batten disease, failure to degrade the TML-containing form of subunit c is probably responsible for the reduction in plasma TML and carnitine levels.
Collapse
Affiliation(s)
- M L Katz
- Mason Eye Institute, University of Missouri School of Medicine, Columbia 65212, USA.
| |
Collapse
|