1
|
Rybakova EY, Avdonin PP, Trufanov SK, Goncharov NV, Avdonin PV. Synergistic Interaction of 5-HT 1B and 5-HT 2B Receptors in Cytoplasmic Ca 2+ Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies. Int J Mol Sci 2023; 24:13833. [PMID: 37762136 PMCID: PMC10530667 DOI: 10.3390/ijms241813833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to explore the involvement of 5-HT1B and 5-HT2B receptors (5-HT1BR and 5-HT2BR) in the regulation of free cytoplasmic calcium concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC). We have shown by quantitative PCR analysis, that 5-HT1BR and 5-HT2BR mRNAs levels are almost equal in HUVEC. Immunofluorescent staining demonstrated, that 5-HT1BR and 5-HT2BR are expressed both in plasma membrane and inside the cells. Intracellular 5-HT1BR are localized mainly in the nuclear region, whereas 5-HT2BR receptors are almost evenly distributed in HUVEC. 5-HT, 5-HT1BR agonist CGS12066B, or 5-HT2BR agonist BW723C86 added to HUVEC caused a slight increase in [Ca2+]i, which was much lower than that of histamine, ATP, or SFLLRN, an agonist of protease-activated receptors (PAR1). However, activation of 5-HT1BR with CGS12066B followed by activation of 5-HT2BR with BW723C86 manifested a synergism of response, since several-fold higher rise in [Ca2+]i occurred. CGS12066B caused more than a 5-fold increase in [Ca2+]i rise in HUVEC in response to 5-HT. This 5-HT induced [Ca2+]i rise was abolished by 5-HT2BR antagonist RS127445, indicating that extracellular 5-HT acts through 5-HT2BR. Synergistic [Ca2+]i rise in response to activation of 5-HT1BR and 5-HT2BR persisted in a calcium-free medium. It was suppressed by the phospholipase C inhibitor U73122 and was not inhibited by the ryanodine and NAADP receptors antagonists dantrolene and NED-19. [Ca2+]i measurements in single cells demonstrated that activation of 5-HT2BR alone by BW723C86 caused single asynchronous [Ca2+]i oscillations in 19.8 ± 4.2% (n = 3) of HUVEC that occur with a long delay (66.1 ± 4.3 s, n = 71). On the contrary, histamine causes a simultaneous and almost immediate increase in [Ca2+]i in all the cells. Pre-activation of 5-HT1BR by CGS12066B led to a 3-4 fold increase in the number of HUVEC responding to BW723C86, to synchronization of their responses with a delay shortening, and to the bursts of [Ca2+]i oscillations in addition to single oscillations. In conclusion, to get a full rise of [Ca2+]i in HUVEC in response to 5-HT, simultaneous activation of 5-HT1BR and 5-HT2BR is required. 5-HT causes an increase in [Ca2+]i via 5-HT2BR while 5-HT1BR could be activated by the membrane-permeable agonist CGS12066B. We hypothesized that CGS12066B acts via intracellular 5-HT1BR inaccessible to extracellular 5-HT. Intracellular 5-HT1BR might be activated by 5-HT which could be accumulated in EC under certain pathological conditions.
Collapse
Affiliation(s)
- Elena Yu. Rybakova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Sergei K. Trufanov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia;
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| |
Collapse
|
2
|
Negri S, Faris P, Tullii G, Vismara M, Pellegata AF, Lodola F, Guidetti G, Rosti V, Antognazza MR, Moccia F. Conjugated polymers mediate intracellular Ca 2+ signals in circulating endothelial colony forming cells through the reactive oxygen species-dependent activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Cell Calcium 2021; 101:102502. [PMID: 34896699 DOI: 10.1016/j.ceca.2021.102502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Endothelial colony forming cells (ECFCs) represent the most suitable cellular substrate to induce revascularization of ischemic tissues. Recently, optical excitation of the light-sensitive conjugated polymer, regioregular Poly (3-hexyl-thiophene), rr-P3HT, was found to stimulate ECFC proliferation and tube formation by activating the non-selective cation channel, Transient Receptor Potential Vanilloid 1 (TRPV1). Herein, we adopted a multidisciplinary approach, ranging from intracellular Ca2+ imaging to pharmacological manipulation and genetic suppression of TRPV1 expression, to investigate the effects of photoexcitation on intracellular Ca2+ concentration ([Ca2+]i) in circulating ECFCs plated on rr-P3HT thin films. Polymer-mediated optical excitation induced a long-lasting increase in [Ca2+]i that could display an oscillatory pattern at shorter light stimuli. Pharmacological and genetic manipulation revealed that the Ca2+ response to light was triggered by extracellular Ca2+ entry through TRPV1, whose activation required the production of reactive oxygen species at the interface between rr-P3HT and the cell membrane. Light-induced TRPV1-mediated Ca2+ entry was able to evoke intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate receptors, followed by store-operated Ca2+ entry on the plasma membrane. These data show that TRPV1 may serve as a decoder at the interface between rr-P3HT thin films and ECFCs to translate optical excitation in pro-angiogenic Ca2+ signals.
Collapse
Affiliation(s)
- Sharon Negri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Pawan Faris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gabriele Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Mauro Vismara
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandro F Pellegata
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Gianni Guidetti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy.
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Chen YL, Baker TM, Lee F, Shui B, Lee JC, Tvrdik P, Kotlikoff MI, Sonkusare SK. Calcium Signal Profiles in Vascular Endothelium from Cdh5-GCaMP8 and Cx40-GCaMP2 Mice. J Vasc Res 2021; 58:159-171. [PMID: 33706307 PMCID: PMC8102377 DOI: 10.1159/000514210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Studies in Cx40-GCaMP2 mice, which express calcium biosensor GCaMP2 in the endothelium under connexin 40 promoter, have identified the unique properties of endothelial calcium signals. However, Cx40-GCaMP2 mouse is associated with a narrow dynamic range and lack of signal in the venous endothelium. Recent studies have proposed many GCaMPs (GCaMP5/6/7/8) with improved properties although their performance in endothelium-specific calcium studies is not known. METHODS We characterized a newly developed mouse line that constitutively expresses GCaMP8 in the endothelium under the VE-cadherin (Cdh5-GCaMP8) promoter. Calcium signals through endothelial IP3 receptors and TRP vanilloid 4 (TRPV4) ion channels were recorded in mesenteric arteries (MAs) and veins from Cdh5-GCaMP8 and Cx40-GCaMP2 mice. RESULTS Cdh5-GCaMP8 mice showed lower baseline fluorescence intensity, higher dynamic range, and higher amplitudes of individual calcium signals than Cx40-GCaMP2 mice. Importantly, Cdh5-GCaMP8 mice enabled the first recordings of discrete calcium signals in the intact venous endothelium and revealed striking differences in IP3 receptor and TRPV4 channel calcium signals between MAs and mesenteric veins. CONCLUSION Our findings suggest that Cdh5-GCaMP8 mice represent significant improvements in dynamic range, sensitivity for low-intensity signals, and the ability to record calcium signals in venous endothelium.
Collapse
Affiliation(s)
- Yen Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas M Baker
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Frank Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Petr Tvrdik
- Departments of Neurosurgery and Neuroscience and Bioengineering, University of Virginia, Charlottesville, Virginia, USA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA,
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
4
|
Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca 2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2019; 235:1515-1530. [PMID: 31310018 DOI: 10.1002/jcp.29071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
The neuromodulator histamine is able to vasorelax in human cerebral, meningeal and temporal arteries via endothelial histamine 1 receptors (H1 Rs) which result in the downstream production of nitric oxide (NO), the most powerful vasodilator transmitter in the brain. Although endothelial Ca 2+ signals drive histamine-induced NO release throughout the peripheral circulation, the mechanism by which histamine evokes NO production in human cerebrovascular endothelial cells is still unknown. Herein, we exploited the human cerebral microvascular endothelial cell line, hCMEC/D3, to assess the role of intracellular Ca 2+ signaling in histamine-induced NO release. To achieve this goal, hCMEC/D3 cells were loaded with the Ca 2+ - and NO-sensitive dyes, Fura-2/AM and DAF-FM/AM, respectively. Histamine elicited repetitive oscillations in intracellular Ca 2+ concentration in hCMEC/D3 cells throughout a concentration range spanning from 1 pM up to 300 μM. The oscillatory Ca 2+ response was suppressed by the inhibition of H 1 Rs with pyrilamine, whereas H 1 R was abundantly expressed at the protein level. We further found that histamine-induced intracellular Ca 2+ oscillations were initiated by endogenous Ca 2+ mobilization through inositol-1,4,5-trisphosphate- and nicotinic acid dinucleotide phosphate-sensitive channels and maintained over time by store-operated Ca 2+ entry. In addition, histamine evoked robust NO release that was prevented by interfering with the accompanying intracellular Ca 2+ oscillations, thereby confirming that the endothelial NO synthase is recruited by Ca 2+ spikes also in hCMEC/D3 cells. These data provide the first evidence that histamine evokes NO production from human cerebrovascular endothelial cells through intracellular Ca 2+ oscillations, thereby shedding novel light on the mechanisms by which this neuromodulator controls cerebral blood flow.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Mario Garcia-Carrasco
- Department of Biomedicine, Biomedicine School, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Zuccolo E, Kheder DA, Lim D, Perna A, Nezza FD, Botta L, Scarpellino G, Negri S, Martinotti S, Soda T, Forcaia G, Riboni L, Ranzato E, Sancini G, Ambrosone L, D'Angelo E, Guerra G, Moccia F. Glutamate triggers intracellular Ca 2+ oscillations and nitric oxide release by inducing NAADP- and InsP 3 -dependent Ca 2+ release in mouse brain endothelial cells. J Cell Physiol 2018; 234:3538-3554. [PMID: 30451297 DOI: 10.1002/jcp.26953] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Dlzar A Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Duhok, Kurdistan-Region of Iraq
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont "Amedeo Avogadro,", Novara, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Teresa Soda
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, Milan, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", Centre of Nanomedicine, University of Molise, Campobasso, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. Muscarinic M5 receptors trigger acetylcholine-induced Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 2018; 234:4540-4562. [PMID: 30191989 DOI: 10.1002/jcp.27234] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Basal forebrain neurons control cerebral blood flow (CBF) by releasing acetylcholine (Ach), which binds to endothelial muscarinic receptors to induce nitric (NO) release and vasodilation in intraparenchymal arterioles. Nevertheless, the mechanism whereby Ach stimulates human brain microvascular endothelial cells to produce NO is still unknown. Herein, we sought to assess whether Ach stimulates NO production in a Ca2+ -dependent manner in hCMEC/D3 cells, a widespread model of human brain microvascular endothelial cells. Ach induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+ ]i ) that was prevented by the genetic blockade of M5 muscarinic receptors (M5-mAchRs), which was the only mAchR isoform coupled to phospholipase Cβ (PLCβ) present in hCMEC/D3 cells. A comprehensive real-time polymerase chain reaction analysis revealed the expression of the transcripts encoding for type 3 inositol-1,4,5-trisphosphate receptors (InsP3 R3), two-pore channels 1 and 2 (TPC1-2), Stim2, Orai1-3. Pharmacological manipulation showed that the Ca2+ response to Ach was mediated by InsP3 R3, TPC1-2, and store-operated Ca2+ entry (SOCE). Ach-induced NO release, in turn, was inhibited in cells deficient of M5-mAchRs. Likewise, Ach failed to increase NO levels in the presence of l-NAME, a selective NOS inhibitor, or BAPTA, a membrane-permeant intracellular Ca2+ buffer. Moreover, the pharmacological blockade of the Ca2+ response to Ach also inhibited the accompanying NO production. These data demonstrate for the first time that synaptically released Ach may trigger NO release in human brain microvascular endothelial cells by stimulating a Ca2+ signal via M5-mAchRs.
Collapse
Affiliation(s)
- Estella Zuccolo
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Laura Botta
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Pawan Faris
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy.,Department of Biology, College of Science, Salahaddin University, Erbil, Iraq
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, Pavia, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, "Lazzaro Spallanzani," Laboratory of General Physiology, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
8
|
Zuccolo E, Lim D, Kheder DA, Perna A, Catarsi P, Botta L, Rosti V, Riboni L, Sancini G, Tanzi F, D'Angelo E, Guerra G, Moccia F. Acetylcholine induces intracellular Ca 2+ oscillations and nitric oxide release in mouse brain endothelial cells. Cell Calcium 2017; 66:33-47. [PMID: 28807148 DOI: 10.1016/j.ceca.2017.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 01/29/2023]
Abstract
Basal forebrain neurons increase cortical blood flow by releasing acetylcholine (Ach), which stimulates endothelial cells (ECs) to produce the vasodilating gasotransmitter, nitric oxide (NO). Surprisingly, the mechanism whereby Ach induces NO synthesis in brain microvascular ECs is unknown. An increase in intracellular Ca2+ concentration recruits a multitude of endothelial Ca2+-dependent pathways, such as Ca2+/calmodulin endothelial NO synthase (eNOS). The present investigation sought to investigate the role of intracellular Ca2+ signaling in Ach-induced NO production in bEND5 cells, an established model of mouse brain microvascular ECs, by conventional imaging of cells loaded with the Ca2+-sensitive dye, Fura-2/AM, and the NO-sensitive fluorophore, DAF-DM diacetate. Ach induced dose-dependent Ca2+ oscillations in bEND5 cells, 300 μM being the most effective dose to generate a prolonged Ca2+ burst. Pharmacological manipulation revealed that Ach-evoked Ca2+ oscillations required metabotropic muscarinic receptor (mAchR) activation and were patterned by a complex interplay between repetitive ER Ca2+ release via inositol-1,4,5-trisphosphate receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). A comprehensive real time-polymerase chain reaction analysis demonstrated the expression of the transcripts encoding for M3-mAChRs, InsP3R1 and InsP3R3, Stim1-2 and Orai2. Next, we found that Ach-induced NO production was hindered by L-NAME, a selective NOS inhibitor, and BAPTA, a membrane permeable intracellular Ca2+ buffer. Moreover, Ach-elicited NO synthesis was blocked by the pharmacological abrogation of the accompanying Ca2+ spikes. Overall, these data shed novel light on the molecular mechanisms whereby neuronally-released Ach controls neurovascular coupling in blood microvessels.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedment "Amedeo Avogadro", Novara, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; Department of Biology, University of Zakho, Kurdistan-Region of Iraq, Iraq
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, 20090 Milan, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Santis, 86100 Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
9
|
Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca 2+ signalling: A tale of ion channels, pumps and transporters. World J Biol Chem 2012; 3:127-58. [PMID: 22905291 PMCID: PMC3421132 DOI: 10.4331/wjbc.v3.i7.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Moccia
- Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies "Lazzaro Spallanzani", Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | | |
Collapse
|
10
|
Bachmann S, Menéndez-Helman RJ, Zitta K, Wertheimer EV, Miranda PV. Replacement of calcium for strontium in hamster sperm incubation media: effect on sperm function. Mol Hum Reprod 2011; 18:22-32. [PMID: 21933847 DOI: 10.1093/molehr/gar058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca(2+)) is an absolute requirement for a decisive sperm function event: the acrosome reaction (AR). Physiologically, sperm capacitation is a prerequisite for this specialized exocytosis and both events are intimately related. In an effort to separate capacitation from AR, we have been using a modified sperm incubation medium where Ca(2+) is replaced by Strontium (Sr(2+)). The aim of this report is to analyze with more detail the difference between sperm incubated with Ca(2+) or Sr(2+) in several events. We found that sperm undergo the capacitation-related changes in the chlortetracycline (CTC) pattern and tyrosine phosphorylation, and also bind to the zona pellucida (ZP) when using Sr(2+)-instead of Ca(2+)-containing media. However, the spontaneous AR typical of hamster sperm does not take place in Sr(2+)-medium, even if sperm are previously capacitated with Ca(2+). Nevertheless, Sr(2+) was able to sustain AR when cells were treated with thapsigargin or depolarized with K(+) in Na(+)-depleted medium. Considering that the absence of Na(+) increased spontaneous AR in Sr(2+)-medium, we tested whether Na(+)-transport systems could be involved in the inability of Sr(2+)-incubated sperm to undergo AR. We found that when sperm incubated in Sr(2+)-medium are treated with amiloride to inhibit epithelial Na(+) channel (ENaC), they are able to undergo spontaneous AR. The same result was obtained when analyzing AR on the ZP. On the contrary, addition of ouabain (a Na(+)/K(+)-ATPase inhibitor) or DIDS (a Na(+)/HCO3(-) co-transporter inhibitor) showed no effect. These results suggest that, differing from what happens in Ca(2+)-incubated sperm, cells incubated in Sr(2+)-modified medium would have an active ENaC.
Collapse
Affiliation(s)
- Sandra Bachmann
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
11
|
Tas PWL, Stöel C, Roewer N. The volatile anesthetic isoflurane inhibits the histamine-induced Ca2+ influx in primary human endothelial cells. Anesth Analg 2003; 97:430-435. [PMID: 12873930 DOI: 10.1213/01.ane.0000068826.97781.ce] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Although isoflurane is a known vasodilator, the mechanism of isoflurane-induced vasodilation is not clear. One of the most important systems in this context is the nitric oxide (NO)-mediated vasodilation. The activity of this system is regulated by the agonist-induced Ca(2+) influx rather than Ca(2+) release from internal stores. A number of reports have studied the effect of volatile anesthetics on the cytoplasmic calcium concentration signaling in mammalian endothelial cells. However, similar studies using human endothelial cells are lacking. In this study, therefore, we investigated whether isoflurane affects the histamine-induced Ca(2+) influx in primary cultures of human endothelial cells. Using confocal laser scanning microscopy and cells loaded with the Ca(2+) indicator Fluo-3, we studied the effect of isoflurane on the plateau phase of the histamine-induced Ca(2+) influx, which is considered to be due to capacitative Ca(2+) entry. In addition, we measured the ion flux through capacitative Ca(2+) channels directly by using Mn(2+) ions, which, on entering the cell, quench the Fura-2 fluorescence. The results of these two methods were in close agreement and showed a dose-dependent inhibition of the capacitative Ca(2+) entry by isoflurane. Isoflurane apparently depresses NO-mediated vasodilation when the observed inhibition is not compensated for downstream of the endothelial NO synthase activation. IMPLICATIONS In response to vasoactive agents, endothelial cells produce nitric oxide (NO), which relaxes the underlying smooth muscle cells. Inhaled anesthetics inhibit this system by an unknown mechanism. Using primary human endothelial cells, we showed that the anesthetic isoflurane depresses a Ca(2+) influx, which is responsible for the activation of the endothelial NO synthase.
Collapse
Affiliation(s)
- Piet W L Tas
- Department of Anesthesiology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
12
|
Steinert JR, Poston L, Mann GE, Jacob R. Abnormalities in intracellular Ca2+ regulation in fetal vascular smooth muscle in pre-eclampsia: enhanced sensitivity to arachidonic acid. FASEB J 2003; 17:307-9. [PMID: 12490537 DOI: 10.1096/fj.02-0507fje] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pre-eclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. As free fatty acid metabolism is abnormally regulated in PE, we investigated the intracellular Ca2+([Ca2+]i) response to arachidonic acid (AA) in primary cultures of human umbilical artery smooth muscle cells (HUASMC). AA (50 microM) caused a significantly greater [Ca2+]i elevation in PE than in normal HUASMC, with many cells displaying a delayed secondary increase. The nonmetabolizable AA analog ETYA did not induce a response, suggesting that the augmented PE response depends on an AA metabolite. Inhibition of the AA metabolizing cyclooxygenase or lipoxygenase pathways did not affect the AA response of PE HUASMC but induced in normal cells the secondary rise of [Ca2+]i observed in PE cells. This potentiated response and the response in PE cells were blocked by inhibitors of the monooxygenase pathway, a third AA metabolizing pathway. We conclude that the [Ca2+]i response of HUASMC is elevated in PE because of an increased level of a monooxygenase metabolite that stimulates Ca2+ influx and that this can be mimicked in normal cells by blocking cyclooxygenase or lipoxygenase to divert AA to the monooxygenase. This and our work with fetal endothelial cells (FASEB J. 10.1096/fj.01-0916fje) demonstrate phenotypic changes in the fetal vasculature in PE.
Collapse
Affiliation(s)
- Joern R Steinert
- Centre for Cardiovascular Biology and Medicine, GKT Schools of Biomedical Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
13
|
Steinert JR, Wyatt AW, Poston L, Jacob R, Mann GE. Preeclampsia is associated with altered Ca2+ regulation and NO production in human fetal venous endothelial cells. FASEB J 2002; 16:721-3. [PMID: 11923225 DOI: 10.1096/fj.01-0916fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal hypertension in pregnancy, fetal growth restriction, premature birth, and fetal and maternal mortality (1). Activation and dysfunction of the maternal and fetal endothelium in PE may be the consequence of increased oxidative stress associated with circulating lipid peroxides (2-4), and in cases of severe maternal hypertension, uterine and umbilical artery waveforms are abnormal (5). We have investigated PE-associated abnormalities in the regulation of intracellular Ca2+ ([Ca2+]i) and cyclic guanosine monophosphate (cGMP) production (index of nitric oxide [NO]) in human fetal umbilical vein endothelial cells. Basal [Ca2+]i was slightly elevated in PE cells, whereas agonist-stimulated Ca2+ entry was reduced in cells from PE compared with normal term or age-matched preterm pregnancies. Furthermore, PE cells exhibited a decreased permeability to Ba2+ but an increased permeability to Mn2+ and Gd3+, suggesting that PE is associated with phenotypic alterations in fetal endothelial cation channel(s). Basal and histamine-stimulated cGMP levels were elevated in PE compared with preterm or normal cells, implying an increased NO production in PE. However, immunoblots for endothelial NO synthase (eNOS) and soluble guanylyl cyclase (sGC) revealed reduced eNOS expression in PE and preterm cells, with negligible changes in sGC levels. This study provides important and novel insights into abnormalities of fetal endothelial cells isolated from women with PE, reveal ing an altered cation membrane permeability and activity of eNOS-sGC pathway. As these changes are sustained in culture in vitro, this may reflect long-term "programming" of the fetal cardiovascular system.
Collapse
Affiliation(s)
- Joern R Steinert
- Centre for Cardiovascular Biology & Medicine, Guy's, King's & St. Thomas' Schools of Biomedical Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
14
|
Osterhout JL, Shuttleworth TJ. A Ca(2+)-independent activation of a type IV cytosolic phospholipase A(2) underlies the receptor stimulation of arachidonic acid-dependent noncapacitative calcium entry. J Biol Chem 2000; 275:8248-54. [PMID: 10713151 DOI: 10.1074/jbc.275.11.8248] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oscillatory [Ca(2+)](i) signals typically seen following physiologically relevant stimulation of phospholipase C-linked receptors are associated with a receptor-activated entry of Ca(2+), which plays a critical role in driving the oscillations and influencing their frequency. We have recently shown that this receptor-activated entry of Ca(2+) does not conform to the widely accepted "capacitative" model and, instead, reflects the activity of a distinct, novel Ca(2+) entry pathway regulated by arachidonic acid (Shuttleworth, T. J., and Thompson, J. L. (1998) J. Biol. Chem. 273, 32636-32643). We now show that the generation of arachidonic acid under these conditions results from the activity of a type IV cytosolic phospholipase A(2) (cPLA(2)). Although cPLA(2) activation commonly involves a Ca(2+)-dependent translocation to the membrane, at these low agonist concentrations cPLA(2) activation was independent of increases in [Ca(2+)](i), and no detectable translocation to the membrane occurs. Nevertheless, stimulation of cPLA(2) activity was confined to the membrane fraction, where an increase in phosphorylation of the enzyme was observed. We suggest that, at the low agonist concentrations associated with oscillatory [Ca(2+)](i) signals, cPLA(2) activation involves an increased phosphorylation of a discrete pool of the total cellular cPLA(2) that is already localized within the membrane fraction at resting [Ca(2+)](i).
Collapse
Affiliation(s)
- J L Osterhout
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
15
|
Parpura V, Haydon PG. UV photolysis using a micromanipulated optical fiber to deliver UV energy directly to the sample. J Neurosci Methods 1999; 87:25-34. [PMID: 10065991 DOI: 10.1016/s0165-0270(98)00155-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UV photolysis of caged molecules is a powerful method for studying cellular signaling. However, UV energy is often delivered through the microscope objective which can make certain experiments difficult. We have evaluated the utility of delivering UV pulses directly to the sample through an optical fiber. Visible (635 nm) and UV (337 nm) lasers were coupled into a UV transmitting optical fiber which was micromanipulated over the sample under investigation. Positioning of the fiber, and thus the photolysis beam, was achieved using the visible laser which acted much like a flashlight. By controlling the size of the optical fiber it is also possible to control the area of the sample which is exposed to UV light. After positioning the fiber we demonstrate that the UV beam exiting the optical fiber reliably photolysed NP-EGTA that had been loaded into cells, resulting in an elevation of intracellular calcium. Additionally, caged norepinephrine in the bathing saline was photo-released to activate receptor-operated calcium signaling pathways. Since the delivery of the UV energy is independent of microscope configuration, this approach can be readily incorporated into wide-field fluorescence imaging, confocal microscopy and electrophysiological applications.
Collapse
Affiliation(s)
- V Parpura
- Laboratory of Cellular Signaling, Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
16
|
Morgan AJ, Jacob R. Differential modulation of the phases of a Ca2+ spike by the store Ca2+-ATPase in human umbilical vein endothelial cells. J Physiol 1998; 513 ( Pt 1):83-101. [PMID: 9782161 PMCID: PMC2231278 DOI: 10.1111/j.1469-7793.1998.083by.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Histamine-stimulated cytosolic free Ca2+ ([Ca2+]i) oscillations in human umbilical vein endothelial cells (HUVECs) comprise repetitive spikes generated by pulsatile release from stores. We have investigated the roles of the store Ca2+-ATPases in regulating both the upstroke and downstroke of a Ca2+ spike. 2. The sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid (CPA) dramatically affected oscillations whereas inhibition of the plasma membrane Ca2+-ATPase (PMCA) with La3+ had little effect. This and other evidence suggested that the downstroke of a spike is predominantly mediated by SERCA. 3. Artificial [Ca2+]i spiking generated by repetitive pulsatile application of 0.3 microM histamine in Ca2+-free medium did not cause net loss of Ca2+ from the cell whereas repetitive pulsatile application of 1 and 10 microM histamine did, with the higher concentration being more effective. We conclude that there is an inverse relationship between stimulus intensity and relative SERCA activity. 4. For a Ca2+ transient, the initiation of release was suppressed by SERCA during either the lag phase or the interspike period (ISP) since: (i) the ISP was shortened by low CPA concentrations, (ii) higher concentrations of CPA stimulated an explosive Ca2+ release when applied during the ISP but not when applied in the absence of agonist, and (iii) CPA synchronized the initial Ca2+ response to a low histamine dose (even recruiting silent, histamine-unresponsive cells). 5. Two aspects of the regenerative upstroke of a spike were differently affected by SERCA inhibition: Ca2+ wave velocity was entirely unaffected by CPA whereas the local rate of rise was increased. 6. The [Ca2+]i at which a Ca2+ spike terminated depended on SERCA since CPA dose dependently enhanced the peak [Ca2+]i. 7. We conclude that SERCA plays a powerful and dynamic role in regulating [Ca2+]i oscillations in HUVECs. SERCA differentially modulates the phases of Ca2+ release in addition to bringing about the falling phase of a Ca2+ spike.
Collapse
Affiliation(s)
- A J Morgan
- Vascular Biology Research Centre, Physiology Group, Biomedical Sciences Division, King's College London, London W8 7AH, UK.
| | | |
Collapse
|
17
|
Ruehlmann DO, Steinert JR, Valverde MA, Jacob R, Mann GE. Environmental estrogenic pollutants induce acute vascular relaxation by inhibiting L-type Ca2+ channels in smooth muscle cells. FASEB J 1998; 12:613-9. [PMID: 9576488 DOI: 10.1096/fasebj.12.7.613] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is an ongoing scientific debate concerning the potential threat of environmental estrogenic pollutants to animal and human health (1-5). Pollutants including the detergents 4-octylphenol and p-nonylphenol and chlorinated insecticides have recently been reported to modulate sexual differentiation by interacting with nuclear steroid receptors (6-8). So far, the focus has been on reproductive organs, but sex steroids have far more widespread actions. The lower incidence of cardiovascular disease in women has been attributed to estrogens (9-14), yet no information is available on the vascular actions of environmental estrogenic pollutants. In the present study we have investigated the effects of acute exposure to 17beta-estradiol, the antiestrogen ICI 182,780, and estrogenic pollutants on coronary vascular tone as well as on intracellular Ca2+ levels ([Ca2+]i) and Ca2+ and K+ channel activity in vascular smooth muscle cells. We report here that 4-octylphenol, p-nonylphenol, o.p'-DDT, and the antiestrogen ICI 182,780 inhibit L-type Ca2+ channels in vascular smooth muscle cells and evoke a rapid and endothelium-independent relaxation of the coronary vasculature similar to that induced by 17beta-estradiol. Thus, inhibition of Ca2+ influx via L-type Ca2+ channels in vascular smooth muscle cells may explain the acute, nongenomic vasodilator actions of environmental estrogenic pollutants.
Collapse
Affiliation(s)
- D O Ruehlmann
- Vascular Biology Research Centre, Biomedical Sciences Division, King's College London, UK
| | | | | | | | | |
Collapse
|
18
|
Barritt GJ. Does a decrease in subplasmalemmal Ca2+ explain how store-operated Ca2+ channels are opened? Cell Calcium 1998; 23:65-75. [PMID: 9570011 DOI: 10.1016/s0143-4160(98)90075-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phenomenon of store-activated Ca2+ inflow (capacitative Ca2+ entry) in which the depletion of Ca2+ in the endoplasmic reticulum (ER) increases the probability of opening of store-operated Ca2+ channels (SOCs) located in the plasma membrane is ubiquitous in 'non-excitable' animal cells and is also found in some 'excitable' cells. At present, neither the structures of SOCs nor the mechanism(s) by which a decrease in Ca2+ in the lumen of the ER activates SOCs are well understood. This paper discusses the hypothesis that a decrease in the concentration of Ca2+ in restricted regions of the subplasmalemmal space (bounded by the plasma membrane and peripheral regions of the ER) is responsible for the activation of SOCs. The hypothesis rests on observations made by others that Ca2+ is a strong feed-back inhibitor of SOCs and of the endoplasmic reticulum (Ca(2+)+Mg2+)-ATPases (SERCAs), and on the concepts (developed previously by others) of a subplasmalemmal space and the directed flow of Ca2+ through SOCs into the lumen of the ER and from there to the deep cytoplasmic space. The way in which the hypothesis might explain the actions of agonists (acting via inositol 1,4,5-trisphosphate) and thapsigargin (an inhibitor of SERCAs) in activating SOCs under physiological conditions is described. The proposed involvement of thapsigargin-insensitive SERCAs, and possible limitations of the hypothesis are discussed.
Collapse
Affiliation(s)
- G J Barritt
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
19
|
Abstract
Hormones and neurotransmitters that act through inositol 1,4,5-trisphosphate (IP3) can induce oscillations of cytosolic Ca2+ ([Ca2+]c), which render dynamic regulation of intracellular targets. Imaging of fluorescent Ca2+ indicators located within intracellular Ca2+ stores was used to monitor IP3 receptor channel (IP3R) function and to demonstrate that IP3-dependent oscillations of Ca2+ release and re-uptake can be reproduced in single permeabilized hepatocytes. This system was used to define the minimum essential components of the oscillation mechanism. With IP3 clamped at a submaximal concentration, coordinated cycles of IP3R activation and subsequent inactivation were observed in each cell. Cycling between these states was dependent on feedback effects of released Ca2+ and the ensuing [Ca2+]c increase, but did not require Ca2+ re-accumulation. [Ca2+]c can act at distinct stimulatory and inhibitory sites on the IP3R, but whereas the Ca2+ release phase was driven by a Ca2+-induced increase in IP3 sensitivity, Ca2+ release could be terminated by intrinsic inactivation after IP3 bound to the Ca2+-sensitized IP3R without occupation of the inhibitory Ca2+-binding site. These findings were confirmed using Sr2+, which only interacts with the stimulatory site. Moreover, vasopressin induced Sr2+ oscillations in intact cells in which intracellular Ca2+ was completely replaced with Sr2+. Thus, [Ca2+]c oscillations can be driven by a coupled process of Ca2+-induced activation and obligatory intrinsic inactivation of the Ca2+-sensitized state of the IP3R, without a requirement for occupation of the inhibitory Ca2+-binding site.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|