1
|
Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca(2+) elevation and Akt phosphorylation to constitute a major mechanism of thromboxane A2 formation in human platelets. Cell Signal 2015; 27:1488-98. [PMID: 25797048 DOI: 10.1016/j.cellsig.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol trisphosphate (PIP3) has been implicated in many platelet functions however many of the mechanisms need clarification. We have used cell permeable analogues of PIP3,1-O-(1,2-di-palmitoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC16-PIP3) or 1-O-(1,2-di-octanoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC8-PIP3) to study their effects on activation on washed human platelets. Addition of either DiC8- or DiC16-PIP3 to human platelets induced aggregation in the presence of extracellular Ca(2+). This was reduced by the presence of indomethacin, the phospholipase C inhibitor U73122 and apyrase. DiC8-PIP3 induced the phosphorylation of Akt-Ser(473) which was reduced by the Akt inhibitor IV, wortmannin and EGTA (suggesting a dependence on Ca(2+) entry). In Fura2 loaded platelets DiC8-PIP3 was effective at increasing intracellular Ca(2+) in a distinct and transient manner that was reduced in the presence of indomethacin, U73122 and 2-aminoethyl diphenylborinate (2APB). Ca(2+) elevation was reduced by the non-SOCE inhibitor LOE908 and also by the SOCE inhibitor BTP2. DiC8-PIP3 induced the release of Ca(2+) from stores which was not affected by the proton dissipating agent bafilomycin A1 and was more potent than the two-pore channel agonist DiC8-PI[3,5]P2 suggesting release from an endoplasmic reticulum type store. DiC8-PIP3 weakly induced the tyrosine phosphorylation of Syk but not of PLCγ2. Finally like thrombin DiC8-PIP3 induced the formation of thromboxane B2 that was inhibited by the Akt inhibitor IV. These studies suggest that PIP3 via Ca(2+) elevation and Akt phosphorylation forms a central role in thromboxane A2 formation and the amplification of platelet activation.
Collapse
|
2
|
Van den Abbeele A, De Clercq S, De Ganck A, De Corte V, Van Loo B, Soror SH, Srinivasan V, Steyaert J, Vandekerckhove J, Gettemans J. A llama-derived gelsolin single-domain antibody blocks gelsolin-G-actin interaction. Cell Mol Life Sci 2010; 67:1519-35. [PMID: 20140750 PMCID: PMC11115616 DOI: 10.1007/s00018-010-0266-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 12/24/2022]
Abstract
RNA interference has tremendously advanced our understanding of gene function but recent reports have exposed undesirable side-effects. Recombinant Camelid single-domain antibodies (VHHs) provide an attractive means for studying protein function without affecting gene expression. We raised VHHs against gelsolin (GsnVHHs), a multifunctional actin-binding protein that controls cellular actin organization and migration. GsnVHH-induced delocalization of gelsolin to mitochondria or the nucleus in mammalian cells reveals distinct subpopulations including free gelsolin and actin-bound gelsolin complexes. GsnVHH 13 specifically recognizes Ca(2+)-activated gelsolin (K (d) approximately 10 nM) while GsnVHH 11 binds gelsolin irrespective of Ca(2+) (K (d) approximately 5 nM) but completely blocks its interaction with G-actin. Both GsnVHHs trace gelsolin in membrane ruffles of EGF-stimulated MCF-7 cells and delay cell migration without affecting F-actin severing/capping or actin nucleation activities by gelsolin. We conclude that VHHs represent a potent way of blocking structural proteins and that actin nucleation by gelsolin is more complex than previously anticipated.
Collapse
Affiliation(s)
- Anske Van den Abbeele
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sarah De Clercq
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Ariane De Ganck
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Veerle De Corte
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Berlinda Van Loo
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sameh Hamdy Soror
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Vasundara Srinivasan
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions, VIB, 1050 Brussels, Belgium
- Structural Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joël Vandekerckhove
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Jan Gettemans
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
4
|
Kawaji A, Ohnaka Y, Osada S, Nishizuka M, Imagawa M. Gelsolin, an Actin Regulatory Protein, is Required for Differentiation of Mouse 3T3-L1 Cells into Adipocytes. Biol Pharm Bull 2010; 33:773-9. [DOI: 10.1248/bpb.33.773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsuko Kawaji
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuki Ohnaka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Makoto Nishizuka
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Masayoshi Imagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
5
|
Huang CH, Crain RC. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton. PLANTA 2009; 230:925-33. [PMID: 19672622 DOI: 10.1007/s00425-009-0990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/13/2009] [Indexed: 05/13/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.
Collapse
Affiliation(s)
- Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Pei-tun District, Taichung 40601, Taiwan.
| | | |
Collapse
|
6
|
Defacque H, Bos E, Garvalov B, Barret C, Roy C, Mangeat P, Shin HW, Rybin V, Griffiths G. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol Biol Cell 2002; 13:1190-202. [PMID: 11950931 PMCID: PMC102261 DOI: 10.1091/mbc.01-06-0314] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P(2)-binding proteins ezrin and/or moesin were essential for this process (). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P(2), and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P(2) antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P(2) into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P(2)-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane.
Collapse
Affiliation(s)
- Hélène Defacque
- European Molecular Biology Laboratory, 69012 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Panebra A, Ma SX, Zhai LW, Wang XT, Rhee SG, Khurana S. Regulation of phospholipase C-gamma(1) by the actin-regulatory protein villin. Am J Physiol Cell Physiol 2001; 281:C1046-58. [PMID: 11502583 DOI: 10.1152/ajpcell.2001.281.3.c1046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-regulatory protein villin is tyrosine phosphorylated and associates with phospholipase C-gamma(1) (PLC-gamma(1)) in the brush border of intestinal epithelial cells. To study the mechanism of villin-associated PLC-gamma(1) activation, we reconstituted in vitro the tyrosine phosphorylation of villin and its association with PLC-gamma(1). Recombinant villin was phosphorylated in vitro by the nonreceptor tyrosine kinase c-src or by expression in the TKX1 competent cells that carry an inducible tyrosine kinase gene. Using in vitro binding assays, we demonstrated that tyrosine-phosphorylated villin associates with the COOH-terminal Src homology 2 (SH2) domain of PLC-gamma(1). The catalytic activity of PLC-gamma(1) was inhibited by villin in a dose-dependent manner with half-maximal inhibition at a concentration of 12.4 microM. Villin inhibited PLC-gamma(1) activity by sequestering the substrate phosphatidylinositol 4,5-bisphosphate (PIP(2)), since increasing concentrations of PIP(2) reversed the inhibitory effects of villin on PLC activity. The inhibition of PLC-gamma(1) activity by villin was reversed by the tyrosine phosphorylation of villin. Further, we demonstrated that tyrosine phosphorylation of villin abolished villin's ability to associate with PIP(2). In conclusion, tyrosine-phosphorylated villin associates with the COOH-terminal SH2 domain of PLC-gamma(1) and activates PLC-gamma(1) catalytic activity. Villin regulates PLC-gamma(1) activity by modifying its own ability to bind PIP(2). This study provides biochemical proof of the functional relevance of tyrosine phosphorylation of villin and identifies the molecular mechanisms involved in the activation of PLC-gamma(1) by villin.
Collapse
Affiliation(s)
- A Panebra
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
8
|
Mitchell CJ, Kelly MM, Blewitt M, Wilson JR, Biden TJ. Phospholipase C-gamma mediates the hydrolysis of phosphatidylinositol, but not of phosphatidylinositol 4,5-bisphoshate, in carbamylcholine-stimulated islets of langerhans. J Biol Chem 2001; 276:19072-7. [PMID: 11274217 DOI: 10.1074/jbc.m101406200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In pancreatic islets the activation of phospholipase C (PLC) by the muscarinic receptor agonist carbamyolcholine (carbachol) results in the hydrolysis of both phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) and phosphatidylinositol (PtdIns). Here we tested the hypothesis that PtdIns hydrolysis is mediated by PLCgamma1, which is known to be regulated by activation of tyrosine kinases and PtdIns 3-kinase. PtdIns breakdown was more sensitive than that of PtdInsP(2) to the tyrosine kinase inhibitor, genistein. Conversely, the tyrosine phosphatase inhibitor, vanadate, alone promoted PtdIns hydrolysis and acted non-additively with carbachol. Vanadate did not stimulate PtdInsP(2) breakdown. Carbachol also stimulated a rapid (maximal at 1-2 min) tyrosine phosphorylation of several islet proteins, although not of PLCgamma1 itself. Two structurally unrelated inhibitors of PtdIns 3-kinase, wortmannin and LY294002, more effectively attenuated the hyrolysis of PtdIns compared with PtdInsP(2). Adenovirally mediated overexpression of PLCgamma1 significantly increased carbachol-stimulated PtdIns hydrolysis without affecting that of PtdInsP(2). Conversely overexpression of PLCbeta1 up-regulated the PtdInsP(2), but not PtdIns, response. These results indicate that the hydrolysis of PtdIns and PtdInsP(2) are independently regulated in pancreatic islets and that PLCgamma1 selectively mediates the breakdown of PtdIns. The activation mechanism of PLCgamma involves tyrosine phosphorylation (but not of PLCgamma directly) and PtdIns 3-kinase. Our findings point to a novel bifurcation of signaling pathways downstream of muscarinic receptors and suggest that hydrolysis of PtdIns and PtdInsP(2) might serve different physiological ends.
Collapse
Affiliation(s)
- C J Mitchell
- Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney 2010, Australia
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- L D Burtnick
- Chemistry Department, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | | | | |
Collapse
|
10
|
Abstract
Gelsolin is an actin filament severing protein composed of six similar structured domains that differ with respect to actin, calcium and polyphospho-inositide binding. Previous work has established that gelsolin binds tropomyosin [Koepf, E.K. and Burtnick, L.D. (1992) FEBS Lett. 309, 56-58]. We have produced various specific gelsolin domains in Escherichia coli in order to establish which of the six domains binds tropomyosin. Gelsolin domains 1-3 (G1-3), G1-2 and G2 all bind tropomyosin in a pH and calcium insensitive manner whereas binding of G4-6 to tropomyosin was barely detectable under the conditions tested. We conclude that gelsolin binds tropomyosin via domain 2 (G2).
Collapse
Affiliation(s)
- S K Maciver
- Genes and Development Group, Department of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK.
| | | | | |
Collapse
|
11
|
Funatsu N, Kumanogoh H, Sokawa Y, Maekawa S. Identification of gelsolin as an actin regulatory component in a triton insoluble low density fraction (raft) of newborn bovine brain. Neurosci Res 2000; 36:311-7. [PMID: 10771109 DOI: 10.1016/s0168-0102(99)00125-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A membrane microdomain enriched in cholesterol and glycosphingolipids, or so called 'raft' region, was found to contain many signal transducing proteins such as GPI-anchored cell adhesion molecules, trimeric G proteins, and protein tyrosine kinases. In previous studies, we showed that the raft region obtained from rat brain contains two cytoskeletal proteins, tubulin and actin, as the major components in addition to these signal transducing proteins. In this study, to know the biochemical mechanisms regulating the cytoskeletal organization in this region, actin regulatory activities in raft were surveyed. We found the presence of a Ca(2+)-dependent actin nucleation promoting activity in raft. The solubilization and column fractionation of this activity combined with western blotting and immunoprecipitation showed that gelsolin is one of the actin regulatory proteins in raft.
Collapse
Affiliation(s)
- N Funatsu
- Department of Biotechnology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca++ signaling, that could not be reconciled with the basic principles of the current hypothesis, are intrinsic properties of the new concept. Quantal Ca++ release, Ca(++)-induced Ca++ release (CICR), the coupling phenomen between the filling state of the Ca++ store and the activity of the Ca++ influx pathway, as well as the various yet unexplained complex kinetics of Ca++ uptake and release can be explained on a common mechanistic basis.
Collapse
|
13
|
Hodson EA, Ashley CC, Lymn JS. Association of heterotrimeric G-proteins with bovine aortic phospholipase C gamma. Biochem Biophys Res Commun 1999; 258:425-30. [PMID: 10329403 DOI: 10.1006/bbrc.1999.0657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The widely expressed phospholipase C gamma1 (PLCgamma1) isoform has been implicated in the signalling of cell growth through its ability to hydrolyse phosphatidylinositol 4,5-bisphosphate to give inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. Stimulation of PLCgamma1 activity occurs upon phosphorylation of specific tyrosine residues, although it is unclear how this phosphorylation actually stimulates catalytic activity. Indeed recent reports suggest that accessory factors such as GTP-binding proteins may also be required for complete activation of PLCgamma1 in some cells. This may be of importance in vascular smooth muscle where traditionally G-protein linked PLCbeta isoforms are often absent. Here, we show that bovine aortic PLCgamma1 activity is substantially enhanced by both GTPgammaS and sodium fluoride. Similarly, immunoprecipitated PLCgamma1 is associated with an approximately 40kDa GTPgammaS-binding protein and both Galphai and Galphaq were detected in this immunoprecipitate. This data suggests that bovine aortic PLCgamma1 is both associated with, and may be activated by, heterotrimeric G-proteins.
Collapse
Affiliation(s)
- E A Hodson
- Physiology Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | | | |
Collapse
|
14
|
Abstract
Several new members of the gelsolin family have been discovered in the past year. Determination of the structure of gelsolin and identification of lysophosphatidic acid as a negative regulator provide novel functional insights. Gelsolin is an obligate downstream effector of Rac for motility in dermal fibroblasts, regulates phosphoinositide signaling pathways and ion channel function in vivo, and acts as both a regulator and effector of apoptosis.
Collapse
Affiliation(s)
- D J Kwiatkowski
- Genetics Laboratory Hematology Division Brigham and Women's Hospital 221 Longwood Avenue Boston MA 02115 USA.
| |
Collapse
|
15
|
De Corte V, Demol H, Goethals M, Van Damme J, Gettemans J, Vandekerckhove J. Identification of Tyr438 as the major in vitro c-Src phosphorylation site in human gelsolin: a mass spectrometric approach. Protein Sci 1999; 8:234-41. [PMID: 10210201 PMCID: PMC2144107 DOI: 10.1110/ps.8.1.234] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin is an actin-binding protein (82 kDa) consisting of six repeated segments (S1-S6), each approximately 120 residues long. It interacts with phospholipids and we previously showed that phosphatidylinositol 4,5-bisphosphate promotes phosphorylation of gelsolin by the tyrosine kinase c-Src. We used a combination of different methods, such as thin-layer chromatography and anti-phosphotyrosine-agarose immunoprecipitation of phosphopeptides combined with matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and post source decay (PSD) analysis, to identify the phosphorylation sites in gelsolin. The major phosphorylation site (Tyr438) was located in subdomain 4 (S4). Phosphorylation of gelsolin in the gelsolin-actin2 complex was inhibited by 90%. Gelsolin phosphorylation by c-Src in the presence of lysophosphatidic acid also revealed Tyr438 as the most prominent site. Additional minor sites were found using the anti-phosphotyrosine bead immunoprecipitation method followed by MALDI-MS and PSD analysis. These sites, representing approximately 5% of the total phosphate incorporation, were identified as Tyr59, Tyr382, Tyr576, and Tyr624. Based on these results we generated antibodies which specifically recognize Tyr438 phosphorylated gelsolin.
Collapse
Affiliation(s)
- V De Corte
- Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, Faculty of Medicine, Universiteit Gent, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Kinosian HJ, Newman J, Lincoln B, Selden LA, Gershman LC, Estes JE. Ca2+ regulation of gelsolin activity: binding and severing of F-actin. Biophys J 1998; 75:3101-9. [PMID: 9826630 PMCID: PMC1299981 DOI: 10.1016/s0006-3495(98)77751-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.
Collapse
Affiliation(s)
- H J Kinosian
- Department of Physiology and Cell Biology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Actin and actin-binding proteins have been identified in eukaryotic organisms across the evolutionary spectrum. Although many actin-binding proteins have been purified and studied in vitro, our understanding of the in vivo functions of these proteins has, until recently, lagged behind. In the past year, in vivo studies, especially those using genetic approaches, have led to significant advances in our understanding of how actin-binding proteins function in a cellular environment.
Collapse
Affiliation(s)
- K R Ayscough
- Department of Biochemistry, University of Dundee, UK.
| |
Collapse
|