1
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
2
|
See Hoe LE, Foster SR, Wendt L, Patel HH, Headrick JP, Peart JN. Regulation of the β-Adrenergic Receptor Signaling Pathway in Sustained Ligand-Activated Preconditioning. J Pharmacol Exp Ther 2019; 369:37-46. [DOI: 10.1124/jpet.118.251660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
|
3
|
Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch 2018; 470:1391-1403. [PMID: 29748710 DOI: 10.1007/s00424-018-2153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.
Collapse
|
4
|
Filipeanu CM. Temperature-Sensitive Intracellular Traffic of α2C-Adrenergic Receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:245-65. [DOI: 10.1016/bs.pmbts.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Wnorowski A, Jozwiak K. Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal 2014; 26:2259-65. [PMID: 25049076 DOI: 10.1016/j.cellsig.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
The β2-adrenergic receptor (β2AR) is the prototypic member of G protein-coupled receptors (GPCRs) involved in the production of physiological responses to adrenaline and noradrenaline. Research done in the past few years vastly demonstrated that β2AR can form homo- and hetero-oligomers. Despite the fact that currently this phenomenon is widely accepted, the spread and relevance of β2AR oligomerization are still a matter of debate. This review considers the progress achieved in the field of β2AR oligomerization with focus on the implications of the receptor-receptor interactions to β2AR trafficking, pharmacology and downstream signal transduction pathways.
Collapse
Affiliation(s)
- Artur Wnorowski
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Krzysztof Jozwiak
- Laboratory of Medicinal Chemistry and Neuroengineering, Department of Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| |
Collapse
|
6
|
Borroto-Escuela DO, Brito I, Romero-Fernandez W, Di Palma M, Oflijan J, Skieterska K, Duchou J, Van Craenenbroeck K, Suárez-Boomgaard D, Rivera A, Guidolin D, Agnati LF, Fuxe K. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 2014; 15:8570-90. [PMID: 24830558 PMCID: PMC4057749 DOI: 10.3390/ijms15058570] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023] Open
Abstract
G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/~ismel/GPCR-Nets/index.html.
Collapse
Affiliation(s)
| | - Ismel Brito
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | | | - Michael Di Palma
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | - Julia Oflijan
- Department of Physiology, Faculty of Medicine, University of Tartu, Tartu 50411, Estonia.
| | - Kamila Skieterska
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Jolien Duchou
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium.
| | - Diana Suárez-Boomgaard
- Department of Cell Biology, School of Science, University of Málaga, 29071 Málaga, Spain.
| | - Alicia Rivera
- Department of Cell Biology, School of Science, University of Málaga, 29071 Málaga, Spain.
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| | - Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|
7
|
Rivero-Müller A, Jonas KC, Hanyaloglu AC, Huhtaniemi I. Di/Oligomerization of GPCRs—Mechanisms and Functional Significance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:163-85. [DOI: 10.1016/b978-0-12-386931-9.00007-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Ng SYL, Lee LTO, Chow BKC. Receptor oligomerization: from early evidence to current understanding in class B GPCRs. Front Endocrinol (Lausanne) 2012; 3:175. [PMID: 23316183 PMCID: PMC3539651 DOI: 10.3389/fendo.2012.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/11/2012] [Indexed: 01/06/2023] Open
Abstract
Dimerization or oligomerization of G protein-coupled receptors (GPCRs) are known to modulate receptor functions in terms of ontogeny, ligand-oriented regulation, pharmacological diversity, signal transduction, and internalization. Class B GPCRs are receptors to a family of hormones including secretin, growth hormone-releasing hormone, vasoactive intestinal polypeptide and parathyroid hormone, among others. The functional implications of receptor dimerization have extensively been studied in class A GPCRs, while less is known regarding its function in class B GPCRs. This article reviews receptor oligomerization in terms of the early evidence and current understanding particularly of class B GPCRs.
Collapse
Affiliation(s)
| | | | - Billy K. C. Chow
- *Correspondence: Billy K. C. Chow, Endocrinology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China. e-mail:
| |
Collapse
|
9
|
Somvanshi RK, Chaudhari N, Qiu X, Kumar U. Heterodimerization of β2 adrenergic receptor and somatostatin receptor 5: Implications in modulation of signaling pathway. J Mol Signal 2011; 6:9. [PMID: 21838893 PMCID: PMC3166894 DOI: 10.1186/1750-2187-6-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/12/2011] [Indexed: 12/17/2022] Open
Abstract
Background In the present study, we describe heterodimerization between human-Somatostatin Receptor 5 (hSSTR5) and β2-Adrenergic Receptor (β2AR) and its impact on the receptor trafficking, coupling to adenylyl cyclase and signaling including mitogen activated protein kinases and calcineurin-NFAT pathways. Methods We used co-immunoprecipitation, photobleaching- fluorescence resonance energy transfer and Fluorescence assisted cell sorting analysis to characterize heterodimerization between SSTR5 and β2AR. Results Our results indicate that hSSTR5/β2AR exist as preformed heterodimers in the basal condition which is enhanced upon co-activation of both receptors. In contrast, the activation of individual receptors leads to the dissociation of heterodimers. Receptor coupling to adenylyl cyclase displayed predominant effect of β2AR, however, somatostatin mediated inhibition of cAMP was enhanced upon blocking β2AR. Our results indicate hSSTR5 mediated significant activation of ERK1/2 and inhibition of phospho-p38. The phospho-NFAT level was enhanced in cotransfected cells indicating the blockade of calcineurin mediated dephosphorylation of NFAT upon receptor heterodimerization. Conclusion These data for the first time unveil a novel insight for the role of hSSTR5/β2AR in the modulation of signaling pathways which has not been addressed earlier.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
10
|
Somvanshi RK, War SA, Chaudhari N, Qiu X, Kumar U. Receptor specific crosstalk and modulation of signaling upon heterodimerization between β1-adrenergic receptor and somatostatin receptor-5. Cell Signal 2011; 23:794-811. [PMID: 21238583 DOI: 10.1016/j.cellsig.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 01/08/2023]
Abstract
In the present study we describe heterodimerization, trafficking, coupling to adenylyl cyclase and signaling in HEK-293 cells cotransfected with human-somatostatin receptor 5 (hSSTR5) and β(1)-adrenergic receptor (β(1)AR). hSSTR5/β(1)AR exists as heterodimers in basal conditions which was further enhanced upon synergistic activation of both receptors. Activation of either β(1)AR or hSSTR5 displayed dissociation of heterodimerization. In cotransfectants, β(1)AR effect on cAMP was predominant; however, blocking β(1)AR with antagonist resulted in 60% inhibition of forskolin-stimulated cAMP in the presence of hSSTR5 agonists. cAMP/PKA pathway in cotransfected cells was regulated in receptor-specific manner, in contrast, the status of pERK1/2 and pPI3K/AKT was predominantly regulated by hSSTR5. The expression levels of phosphorylated NFAT remained unchanged indicating blockade of calcineurin-mediated dephosphorylation and nuclear translocation of NFAT, the process predominantly regulated by pJNK in SSTR5 dependent manner. Taken together, the functional consequences of results described here might have relevance in the cardiovascular system where SSTR and AR subtypes play important roles.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
11
|
Pétrin D, Hébert TE. Imaging-based approaches to understanding g protein-coupled receptor signalling complexes. Methods Mol Biol 2011; 756:37-60. [PMID: 21870219 DOI: 10.1007/978-1-61779-160-4_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the last 10 years, imaging assays based on resonance energy transfer (RET) and protein fragment complementation have made it possible to study interactions between components of G protein-coupled receptor (GPCR) signalling complexes in living cells under physiological conditions. Here, we consider the history of such approaches, the current tools available and how they have changed our understanding of GPCR signalling. We also discuss some theoretical and methodological issues important when combining the different types of assay.
Collapse
Affiliation(s)
- Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
12
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
13
|
Undieh AS. Pharmacology of signaling induced by dopamine D(1)-like receptor activation. Pharmacol Ther 2010; 128:37-60. [PMID: 20547182 DOI: 10.1016/j.pharmthera.2010.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022]
Abstract
Dopamine D(1)-like receptors consisting of D(1) and D(5) subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D(1)-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D(1)-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D(1)-like receptor agonists is reliably associated with the D(1) subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D(5) receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D(5) coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D(5) versus D(1) subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D(1) or D(5) interactions with D(2)-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway.
Collapse
Affiliation(s)
- Ashiwel S Undieh
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, 130 South 9th Street, Suite 1510, Philadelphia, PA 19107, USA.
| |
Collapse
|
14
|
Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 2009; 391:85-90. [PMID: 19896468 DOI: 10.1016/j.bbrc.2009.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/23/2022]
Abstract
Although angiotensin II (Ang II) binds to Ang II type 1 (AT(1)) and type 2 (AT(2)) receptors, AT(1) and AT(2) receptors have antagonistic actions with regard to cell signaling. The molecular mechanisms that underlie this antagonism are not well understood. We examined AT(1) and AT(2) receptor-induced signal cross-talk in the cytoplasm and the importance of the hetero-dimerization of AT(1) receptor with AT(2) receptor on the cell surface. AT(1) and AT(2) receptors showed antagonistic effects toward inositol phosphate production. AT(1) receptors mainly formed homo-dimers, rather than hetero-dimers with AT(2) receptor, on the cell surface as determined by immunoprecipitation, and subsequently induced cell signals. AT(2) receptor mainly formed homo-dimers, rather than hetero-dimers with AT(1) receptor, on the cell surface. The expression levels of homo-dimerized AT(1) receptor or AT(2) receptor on the cell surface did not change after treatment with Ang II, the AT(1) receptor antagonist telmisartan or the AT(2) receptor antagonist PD123319. Finally, AT(1) and AT(2) receptor-induced signals antagonized phospholipase C-beta(3) phosphorylation. In conclusion, Ang II-induced AT(1) receptor signals may be mainly blocked by AT(2) receptor signals through their negative cross-talk in the cytoplasm rather than by the hetero-dimerization of both receptors on the cell surface. The proper balance of the expression levels of AT(1) and AT(2) receptors might be critical for the antagonistic action between these receptors.
Collapse
|
15
|
Dalrymple MB, Pfleger KDG, Eidne KA. G protein-coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol Ther 2008; 118:359-71. [PMID: 18486226 DOI: 10.1016/j.pharmthera.2008.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
With an ever-expanding need for reliable therapeutic agents that are highly effective and exhibit minimal deleterious side effects, a greater understanding of the mechanisms underlying G protein-coupled receptor (GPCR) regulation is fundamental. GPCRs comprise more than 30% of all therapeutic drug targets and it is likely that this will only increase as more orphan GPCRs are identified. The past decade has seen a dramatic shift in the prevailing concept of how GPCRs function, in particular the growing acceptance that GPCRs are capable of interacting with one another at a molecular level to form complexes, with significantly different pharmacological properties to their monomeric selves. While the ability of like-receptors to associate and form homodimers raises some interesting mechanistic issues, the possibility that unlike-receptors could heterodimerise in certain tissue types, producing a functionally unique signalling complex that binds specific ligands, provides an invaluable opportunity to refine and redefine pharmacological interventions with greater specificity and efficacy.
Collapse
Affiliation(s)
- Matthew B Dalrymple
- Laboratory for Molecular Endocrinology - GPCRs, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | | | | |
Collapse
|
16
|
Current issues with beta2-adrenoceptor agonists: pharmacology and molecular and cellular mechanisms. Clin Rev Allergy Immunol 2007; 31:119-30. [PMID: 17085788 DOI: 10.1385/criai:31:2:119] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Beta2-adrenoceptors are widely, almost ubiquitously, expressed. Activation of these receptors on bronchial smooth muscle by short- and long-acting beta2-adrenoceptor agonists causes bronchodilation. Here, the beta2-adrenoceptor is linked by the G protein, Gs, to adenylyl cyclase, which increases cyclic adenosine monophosphate (cAMP), thus activating protein kinase A, which affects calcium levels and reduces the efficiency of myosin light-chain kinase, causing relaxation. Activation also entrains numerous acute and longer term downregulation responses affecting the number, location, and net efficiency of signaling of the receptor. Synthetic beta2-agonists are all "partial agonists," incompletely able to optimally stimulate cAMP signal transduction. However, compared with some cells (such as mast cells) involved in exercise- induced asthma induction, airway smooth muscle is privileged in that transduction efficiency is intrinsically high and the tissue is very resistant to complete downregulation. Glucocorticosteroids have broadly beneficial interactions with beta2-adrenoceptors. Researchers have recently discovered that the beta2-adrenoceptor may function as a homodimer and that it can form heterodimers with both the beta1- and beta3-adrenoceptors, and possibly other receptors. This further complicates interpretation of the effect of beta2-adrenoceptor polymorphisms, but it is unknown whether this occurs in humans in vivo. Researchers have known for some time that strong contraction involving receptors coupled to the Gq G protein (e.g., cholinergic and leukotriene receptors via negative biochemical crosstalk), virus infection (via uncoupling), and inflammation (via kinases) can impair relaxation. Most recently, researchers have discovered that the beta2-adrenoceptor can also send potentially adverse signals after "atypical coupling" to Gq rather than Gs. The clinical implications of these uncouplings, crosstalk, and atypical coupling possibilities are not well-understood.
Collapse
|
17
|
Bartels NK, Börgel J, Wieczorek S, Büchner N, Hanefeld C, Bulut D, Mügge A, Rump LC, Sanner BM, Epplen JT. Risk factors and myocardial infarction in patients with obstructive sleep apnea: impact of beta2-adrenergic receptor polymorphisms. BMC Med 2007; 5:1. [PMID: 17198546 PMCID: PMC1785383 DOI: 10.1186/1741-7015-5-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/01/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increased sympathetic nervous activity in patients with obstructive sleep apnea (OSA) is largely responsible for the high prevalence of arterial hypertension, and it is suggested to adversely affect triglyceride and high-density lipoprotein (HDL) cholesterol levels in these patients. The functionally relevant polymorphisms of the beta2-adrenergic receptor (Arg-47Cys/Arg16Gly and Gln27Glu) have been shown to exert modifying effects on these risk factors in previous studies, but results are inconsistent. METHODS We investigated a group of 429 patients (55 +/- 10.7 years; 361 men, 68 women) with moderate to severe obstructive sleep apnea (apnea/hypopnea index (AHI) 29.1 +/- 23.1/h) and, on average, a high cardiovascular risk profile (body mass index 31.1 +/- 5.6, with hypertension in 60.1%, dyslipidemia in 49.2%, and diabetes in 17.2% of patients). We typed the beta2-adrenergic receptor polymorphisms and investigated the five most frequent haplotypes for their modifying effects on OSA-induced changes in blood pressure, heart rate, and lipid levels. The prevalence of cardiovascular risk factors and coronary heart disease (n = 55, 12.8%) and survived myocardial infarction (n = 27, 6.3%) were compared between the genotypes and haplotypes. RESULTS Multivariate linear/logistic regressions revealed a significant and independent (from BMI, age, sex, presence of diabetes, use of antidiabetic, lipid-lowering, and antihypertensive medication) influence of AHI on daytime systolic and diastolic blood pressure, heart rate, prevalence of hypertension, and triglyceride and HDL levels. The beta2-adrenergic receptor genotypes and haplotypes showed no modifying effects on these relationships or on the prevalence of dyslipidemia, diabetes, and coronary heart disease, yet, for all three polymorphisms, heterozygous carriers had a significantly lower relative risk for myocardial infarction (Arg-47Cys: n = 195, odds ratio (OR) = 0.32, P = 0.012; Arg16Gly: n = 197, OR = 0.39, P = 0.031; Gln27Glu: OR = 0.37, P = 0.023). Carriers of the most frequent haplotype (n = 113) (haplotype 1; heterozygous for all three polymorphisms) showed a five-fold lower prevalence of survived myocardial infarction (OR = 0.21, P = 0.023). CONCLUSION Our study showed no significant modifying effect of the functionally relevant beta2-adrenergic receptor polymorphisms on OSA-induced blood pressure, heart rate, or lipid changes. Nevertheless, heterozygosity of these polymorphisms is associated with a lower prevalence of survived myocardial infarction in this group with, on average, a high cardiovascular risk profile.
Collapse
Affiliation(s)
| | - Jan Börgel
- Medical Clinic II Cardiology and Angiology, St. Josef-Hospital/Bergmannsheil, Ruhr-University Bochum, Germany
| | | | - Nikolaus Büchner
- Medical Clinic I, Marien-Hospital Herne, Ruhr-University Bochum, Germany
| | - Christoph Hanefeld
- Medical Clinic II Cardiology and Angiology, St. Josef-Hospital/Bergmannsheil, Ruhr-University Bochum, Germany
| | - Daniel Bulut
- Medical Clinic II Cardiology and Angiology, St. Josef-Hospital/Bergmannsheil, Ruhr-University Bochum, Germany
| | - Andreas Mügge
- Medical Clinic II Cardiology and Angiology, St. Josef-Hospital/Bergmannsheil, Ruhr-University Bochum, Germany
| | - Lars C Rump
- Medical Clinic I, Marien-Hospital Herne, Ruhr-University Bochum, Germany
| | | | | |
Collapse
|
18
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Prinster SC, Hague C, Hall RA. Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance. Pharmacol Rev 2005; 57:289-98. [PMID: 16109836 DOI: 10.1124/pr.57.3.1] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.
Collapse
Affiliation(s)
- Steven C Prinster
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
20
|
Nemoto W, Imai T, Takahashi T, Kikuchi T, Fujita N. Detection of pairwise residue proximity by covariation analysis for 3D-structure prediction of G-protein-coupled receptors. Protein J 2005; 23:427-35. [PMID: 15517989 DOI: 10.1023/b:jopc.0000039556.95629.cf] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptor (GPCR) is one of the most important targets for medicines. Homology modeling based on the crystal structure of bovine rhodopsin is currently the most frequently used method for GPCR targeted drug design. Information about residue-residue contacts and the structural specificity in the subfamily is essential for constructing more precise 3D structures, to distinguish the structural differences between the template and targets. In this study, we adopted the covariation analysis to extract information about residue-residue interactions from the amino acid sequence. In the opsin family, a large number of adjacent covarying residue pairs were detected. The detected residue pairs have a strong tendency to gather in some regions important for the structure and function. These results suggest that the covariation analysis is practically utilized to detect adjacent residue pairs and also to apply for predicting functional sites. Analyses of other GPCR subfamilies, olfactory receptor and chemokine receptor families, demonstrated that some adjacent covarying residue pairs were common. Thus, the covariation analysis has possibilities in the substantial improvement of the 3D-structure modeling of GPCRs and in the detection of functional sites such as the ligand-binding sites.
Collapse
Affiliation(s)
- Wataru Nemoto
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
21
|
Giguère V, Gallant MA, de Brum-Fernandes AJ, Parent JL. Role of extracellular cysteine residues in dimerization/oligomerization of the human prostacyclin receptor. Eur J Pharmacol 2005; 494:11-22. [PMID: 15194446 DOI: 10.1016/j.ejphar.2004.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/15/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022]
Abstract
Prostacyclin activation of prostanoid IP receptors may result in pain sensation, inflammatory responses, inhibition of platelet aggregation, and vasodilation in vascular tissue. The prostanoid IP receptor is a G-protein-coupled receptor. In the present study, we investigated the determinants responsible, at least in part, for the prostacyclin receptor (IP) dimerization/oligomerization. Using co-immunoprecipitation of differentially tagged IP expressed in COS-7 cells, we demonstrate that IP can form dimers and oligomers. Treatment of IP-expressing cells with the stable agonist carbaprostacyclin failed to alter the ratios of oligomeric/dimeric/monomeric forms of the receptor, suggesting that IP dimerization/oligomerization is an agonist-independent process. The reducing agents dithiothreitol and 2-mercaptoethanol were highly efficient in converting the receptor from its oligomeric form to the monomeric state, indicating the involvement of disulfide bonds in IP oligomerization. Immunoblotting of the osteoblastic MG-63 cell line lysates with an anti-IP specific antibody revealed the presence of endogenous IP oligomers which were converted to dimers and monomers upon treatment with dithiothreitol. Individual substitutions of the four extracellular IP Cys residues (Cys(5), Cys(92), Cys(165) and Cys(170)) for Ser resulted in greatly decreased receptor protein expression in COS-7 cells. The C92-170S double mutant showed receptor protein expression level similar to the individual mutants. However, expression of the C92-165S and C165-170S mutants was drastically reduced, suggesting that there was formation of disulfide bonds between Cys(5) and Cys(165), and between Cys(92) and Cys(170). The Cys receptor mutants showed altered oligomer/dimer/monomer ratios. Dimerization/oligomerization likely occurs intracellularly since these Cys receptor mutants could still form dimers/oligomers despite their lack of expression at the cell surface.
Collapse
Affiliation(s)
- Vincent Giguère
- Division of Rheumatology, Faculty of Medecine and Clinical Research Center, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
22
|
Guimond J, Mamarbachi AM, Allen BG, Rindt H, Hébert TE. Role of specific protein kinase C isoforms in modulation of β1- and β2-adrenergic receptors. Cell Signal 2005; 17:49-58. [PMID: 15451024 DOI: 10.1016/j.cellsig.2004.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 05/14/2004] [Accepted: 05/24/2004] [Indexed: 11/30/2022]
Abstract
The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.
Collapse
Affiliation(s)
- Julie Guimond
- Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8
| | | | | | | | | |
Collapse
|
23
|
Nemoto W, Toh H. Prediction of interfaces for oligomerizations of G-protein coupled receptors. Proteins 2004; 58:644-60. [DOI: 10.1002/prot.20332] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Hansen JL, Sheikh SP. Functional consequences of 7TM receptor dimerization. Eur J Pharm Sci 2004; 23:301-17. [PMID: 15567283 DOI: 10.1016/j.ejps.2004.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/11/2004] [Indexed: 12/31/2022]
Abstract
7TM receptors work as signaling platforms that activate multiple signalling systems at the intracellular face of the plasma membrane. It is an emerging concept that 7TM receptors form homo- and hetero-dimers or -oligomers in vitro and in vivo. Numerous studies suggest dimerization is important for receptor function including agonist/antagonist affinity, efficacy, trafficking, and specificity of signal transduction, yet it remains unknown whether dimerization is a prerequisite for 7TM receptor signaling. The current review provides an overview of the biochemical support for 7TM homodimerization, followed by a discussion of the characteristics of homodimerization, with focus on dimer organization, and the functional consequences of dimerization. Heterodimerization will not generally be discussed in this review although we have included a few examples to illustrate specific points, and a table that summarises the current literature on this subject.
Collapse
Affiliation(s)
- Jakob Lerche Hansen
- Laboratory of Molecular Cardiology, The Heart Centre and Copenhagen Heart Arrhythmia Research Centre (CHARC), Copenhagen University Hospital, Faculty of Health, University of Copenhagen, 20 Juliane Mariesvej, Denmark.
| | | |
Collapse
|
25
|
Cao TT, Brelot A, von Zastrow M. The Composition of the β-2 Adrenergic Receptor Oligomer Affects Its Membrane Trafficking after Ligand-Induced Endocytosis. Mol Pharmacol 2004; 67:288-97. [PMID: 15492118 DOI: 10.1124/mol.104.003608] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The beta-2 adrenergic receptor (B2AR) is well known to form oligomeric complexes in vivo, but the functional significance of this process is not fully understood. The present results identify an effect of oligomerization of the human B2AR on the membrane trafficking of receptors after agonist-induced endocytosis in stably transfected human embryonic kidney 293 cells. A sequence present in the cytoplasmic tail of the B2AR has been shown previously to be required for efficient recycling of internalized receptors. Mutation of this sequence was observed to inhibit recycling not only of the receptor containing the mutation but also of the coexpressed wild-type B2AR. Coexpression of recycling-defective mutant B2ARs also enhanced proteolytic degradation of the wild-type B2AR after agonist-induced endocytosis, consistent with trafficking of both receptors to lysosomes in an oligomeric complex. Coexpression of the delta opioid receptor (DOR) at similar levels produced a much smaller effect on endocytic trafficking of the B2AR, even though DOR traverses a similar membrane pathway as recycling-defective mutant B2ARs. Biochemical studies confirmed that B2AR/B2AR-ala homomeric complexes form more readily than DOR/B2AR heteromers in expression-matched cell clones and support the hypothesis that B2AR/B2AR-ala complexes are not disrupted by agonist. These results suggest that a significant fraction of B2ARs exists in oligomeric complexes after ligand-induced endocytosis and that the composition of the oligomeric complex influences the sorting of endocytosed receptors between functionally distinct recycling and degradative membrane pathways.
Collapse
Affiliation(s)
- Tracy T Cao
- Genentech Hall, Rm N212E, University of California-San Francisco, 600 16th Street, San Francisco, CA 94143-2140, USA
| | | | | |
Collapse
|
26
|
Hansen JL, Theilade J, Haunsø S, Sheikh SP. Oligomerization of Wild Type and Nonfunctional Mutant Angiotensin II Type I Receptors Inhibits Gαq Protein Signaling but Not ERK Activation. J Biol Chem 2004; 279:24108-15. [PMID: 15056658 DOI: 10.1074/jbc.m400092200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.
Collapse
Affiliation(s)
- Jakob Lerche Hansen
- Laboratory of Molecular Cardiology, the Heart Centre and Copenhagen Heart Arrhythmia Research Centre, Copenhagen University Hospital Section 9312 and the Faculty of Health, University of Copenhagen, 20 Juliane Mariesvej, Copenhagen DK-2100, Denmark
| | | | | | | |
Collapse
|
27
|
Abstract
Recently, many G-protein-coupled receptors (GPCRs) have been demonstrated to form constitutive dimers consisting of identical or distinct monomeric subunits. The discovery of GPCR dimerization has revealed a new level of molecular cross-talk between signalling molecules and may define a general mechanism that modulates the function of GPCRs under both physiological and pathological conditions. The heterodimerization between distinct GPCRs could be responsible for the generation of pharmacologically defined receptors for which no gene has been identified so far. Elucidating the role of dimerization in the activation processes of GPCRs will lead us to develop novel pharmaceutical agents that allosterically promote activation or inhibition of GPCR signalling.
Collapse
Affiliation(s)
- Mei Bai
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Abstract
The cardiovascular system is richly endowed with G protein–coupled receptors (GPCRs), members of the largest family of plasma membrane-localized receptors. During the last 10 years, it has become increasingly clear that many, if not all, GPCRs function in oligomeric complexes, as either homo- or hetero-oligomers. This review explores the mechanistic implications of GPCR dimerization and/or oligomerization on receptor activation and interactions with G proteins. The effects of GPCR oligomerization on receptor pharmacology, GPCR-mediated signaling, and potential contributions to GPCR crosstalk will be considered in the context of receptors important in the cardiovascular system. Our evolving understanding of the structural and functional consequences of GPCR oligomerization may provide novel and more selective sites for pharmacological tuning of cardiovascular function.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Department of Biology, Syracuse University, 122 Lyman Hall, 108 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
29
|
Abstract
Protein-protein interactions are fundamental processes for many biological systems including those involving the superfamily of G-protein coupled receptors (GPCRs). A growing body of biochemical and functional evidence supports the existence of GPCR-GPCR homo- and hetero-oligomers. In particular, hetero-oligomers can display pharmacological and functional properties distinct from those of the homodimer or oligomer thus adding another level of complexity to how GPCRs are activated, signal and traffick in the cell. Dimerization may also play a role in influencing the activity of agonists and antagonists. We are only beginning to unravel how and why such complexes are formed, the functional implications of which will have an enormous impact on GPCR biology. Future research that studies GPCRs as dimeric or oligomeric complexes will enhance not only our understanding of GPCRs in cellular function but will also be critical for novel drug design and improved treatment of the vast array of GPCR-related conditions.
Collapse
Affiliation(s)
- Karen M Kroeger
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, 6009, Perth, WA, Australia
| | | | | |
Collapse
|
30
|
Roess DA, Smith SML. Self-association and raft localization of functional luteinizing hormone receptors. Biol Reprod 2003; 69:1765-70. [PMID: 12890728 DOI: 10.1095/biolreprod.103.018846] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Membrane motions of LH receptors following binding of hormone agonists are consistent with hormone-driven aggregation. It is increasingly apparent that G protein-coupled receptors, including the LH receptor, are engaged in dynamic interactions with one another and other membrane components. These interactions are governed, in part, by a number of factors including whether the receptor has bound ligand, whether the receptor is capable of transducing a hormone-mediated signal, and the nature of the membrane environment within which the receptor is found. Microscopic methods, including laser-optical techniques, are ideally suited to probe dynamic events on cell membranes and provide an opportunity to examine interactions between receptors and other membrane components on viable cells. We and others have used a variety of techniques, some of which are summarized below, to examine functional and nonfunctional LH receptors on viable cells and the membrane environment of these receptors during cell signaling events.
Collapse
Affiliation(s)
- Deborah A Roess
- Department of Biomedical Sciences and Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
31
|
Stanasila L, Perez JB, Vogel H, Cotecchia S. Oligomerization of the alpha 1a- and alpha 1b-adrenergic receptor subtypes. Potential implications in receptor internalization. J Biol Chem 2003; 278:40239-51. [PMID: 12888550 DOI: 10.1074/jbc.m306085200] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Cricetinae
- Fluorescence Resonance Energy Transfer
- Fluorescent Dyes
- Green Fluorescent Proteins
- Humans
- In Vitro Techniques
- Luminescent Proteins/chemistry
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Mutagenesis, Site-Directed
- Protein Structure, Quaternary
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Laura Stanasila
- Institut de Pharmacologie et de Toxicologie, Université de Lausanne, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
32
|
Joos L, Weir TD, Connett JE, Anthonisen NR, Woods R, Paré PD, Sandford AJ. Polymorphisms in the beta2 adrenergic receptor and bronchodilator response, bronchial hyperresponsiveness, and rate of decline in lung function in smokers. Thorax 2003; 58:703-7. [PMID: 12885990 PMCID: PMC1746784 DOI: 10.1136/thorax.58.8.703] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Non-specific bronchial hyperresponsiveness (NSBH) is a known predictor of accelerated rate of decline in lung function in smokers. Polymorphisms of the beta(2) adrenergic receptor (ADRB2) have previously been associated with NSBH and bronchodilator response (BDR) in asthmatics. Based on these associations, we hypothesised that ADRB2 polymorphisms would be associated with NSBH and BDR as well as an accelerated rate of decline in lung function among smokers. METHODS The prevalence of two ADRB2 polymorphisms, Arg16-->Gly and Gln27-->Glu, was examined in 587 smokers chosen from the NHLBI Lung Health Study for having the fastest (n=282) and slowest (n=305) 5 year rate of decline in forced expiratory volume in 1 second (FEV(1); mean DeltaFEV(1) -4.14 and +1.08% predicted/year, respectively). RESULTS Contrary to our hypothesis, no ADRB2 allele or haplotype was associated with NSBH, BDR, or rate of decline in lung function. However, there was a significant negative association between heterozygosity at position 27 and a fast decline in lung function (adjusted odds ratio 0.56, 95% CI 0.40 to 0.78, p=0.0007). CONCLUSIONS Heterozygosity at position 27 may be protective against an accelerated rate of decline in lung function. The polymorphism at position 16 does not contribute to the rate of decline in lung function, measures of NSBH, or BDR in smokers.
Collapse
Affiliation(s)
- L Joos
- UBC McDonald Research Laboratories/iCAPTURE Center, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Carron C, Pascal A, Djiane A, Boucaut JC, Shi DL, Umbhauer M. Frizzled receptor dimerization is sufficient to activate the Wnt/beta-catenin pathway. J Cell Sci 2003; 116:2541-50. [PMID: 12734397 DOI: 10.1242/jcs.00451] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wnt signaling has an important role in cell-fate determination, tissue patterning and tumorigenesis. Wnt proteins signal through seven-pass transmembrane receptors of the frizzled family to activate beta-catenin-dependent transcription of target genes. Using early Xenopus embryos, we show that frizzled receptors can dimerize and that dimerization is correlated with activation of the Wnt/beta-catenin pathway. Co-immunoprecipitation studies revealed that the receptor Xfz3 exists as a dimer when expressed in Xenopus embryos, and it has been shown to activate the Wnt/beta-catenin pathway as revealed by expression of the target gene siamois. Xfz3 dimerization requires intramolecular and/or intermolecular disulfide linkages, and the N-terminal extracellular region of the receptor, including the cysteine-rich domain (CRD), is sufficient for dimerization. The receptor Xfz7 behaves differently from Xfz3 when overexpressed in the embryo as Xfz7 is monomeric and is unable to directly activate the Wnt/beta-catenin pathway. However, activation of this pathway can be achieved by artificially forcing Xfz7 dimerization. These results provide the first direct evidence for the dimerization of frizzled receptors and suggest that dimerization contributes to transducing the Wnt/beta-catenin signal.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratoire de Biologie du Développement, Groupe de Biologie Expérimentale, UMR CNRS 7622, Université Paris VI, 9 quai Saint-Bernard, France
| | | | | | | | | | | |
Collapse
|
34
|
Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem 2003; 278:10770-7. [PMID: 12529373 DOI: 10.1074/jbc.m207968200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta- and alpha(2)-adrenergic receptors are known to exhibit substantial cross-talk and mutual regulation in tissues where they are expressed together. We have found that the beta(1)-adrenergic receptor (beta(1)AR) and alpha(2A)-adrenergic receptor (alpha(2A)AR) heterodimerize when coexpressed in cells. Immunoprecipitation studies with differentially tagged beta(1)AR and alpha(2A)AR expressed in HEK-293 cells revealed robust co-immunoprecipitation of the two receptors. Moreover, agonist stimulation of alpha(2A)AR was found to induce substantial internalization of coexpressed beta(1)AR, providing further evidence for a physical association between the two receptors in a cellular environment. Ligand binding assays examining displacement of [(3)H]dihydroalprenolol binding to the beta(1)AR by various ligands revealed that beta(1)AR pharmacological properties were significantly altered when the receptor was coexpressed with alpha(2A)AR. Finally, beta(1)AR/alpha(2A)AR heterodimerization was found to be markedly enhanced by a beta(1)AR point mutation (N15A) that blocks N-linked glycosylation of the beta(1)AR as well as by point mutations (N10A/N14A) that block N-linked glycosylation of the alpha(2A)AR. These data reveal an interaction between beta(1)AR and alpha(2A)AR that is regulated by glycosylation and that may play a key role in cross-talk and mutual regulation between these receptors.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lavoie C, Hébert TE. Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. Can J Physiol Pharmacol 2003; 81:186-95. [PMID: 12710533 DOI: 10.1139/y02-167] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last few years, significant experimental evidence has accumulated showing that many G protein coupled receptors (GPCRs) are structurally and perhaps functionally homodimers. Recently, a number of studies have demonstrated that many GPCRs, notably GABA(B), somatostatin, and delta and kappa opioid receptors form heterodimers, as well. Based on these observations, we undertook a pharmacological and functional analysis of HEK 293 cells transiently transfected with the beta1AR or beta2AR or with both subtypes together. High-affinity binding for subtype-specific ligands (betaxolol and xamoterol for the beta1AR, and ICI 118,551 and procaterol for the beta2AR) was detected in cells expressing the cognate receptors alone with values similar to those reported in the literature. However, a significant portion of these high-affinity interactions were lost when both receptors were expressed together while nonspecific ligands (propranolol and isoproterenol) retained their normal affinities. When competition assays were performed with each subtype-specific ligand in the presence of a constant concentration of the other subtype-specific ligand, the high-affinity binding site was rescued, suggesting that the two receptor subtypes were interacting in a fashion consistent with positive cooperativity. Our data suggest that the beta1AR and beta2AR can form heterodimers and that these receptors have altered pharmacological properties from the receptor homodimers.
Collapse
MESH Headings
- Adenylyl Cyclases/analysis
- Adenylyl Cyclases/drug effects
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Blotting, Western/methods
- Cells, Cultured
- Dimerization
- In Vitro Techniques
- Lipids/genetics
- Rats
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Time Factors
- Transfection/methods
- Transformation, Genetic/genetics
Collapse
Affiliation(s)
- Catherine Lavoie
- Centre de recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, QC H1T 1C8, Canada
| | | |
Collapse
|
36
|
Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 2003; 278:3378-85. [PMID: 12433920 DOI: 10.1074/jbc.m210140200] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCR4, a member of the G protein-coupled receptor family of proteins, is the receptor for stromal cell-derived factor (SDF-1 alpha) and is a principal coreceptor for human immunodeficiency virus type 1 (HIV-1). CXCR4 has also been implicated in breast cancer metastasis. We examined the ability of CXCR4 to homomultimerize in detergent-solubilized cell lysates and in the membranes of intact cells. CXCR4 was found to multimerize in cell lysates containing the detergents CHAPSO or Cymal-7 but not other detergents that have been shown to disrupt the native conformation of CXCR4. CXCR4 expression levels did not affect the observed multimerization and differentially tagged CXCR4 molecules associated only when coexpressed in the same cell. CXCR4 did not interact with CCR5, the other principal HIV-1 coreceptor, when the two proteins were coexpressed. Using bioluminescence resonance energy transfer (BRET(2)), we demonstrated that CXCR4 multimers are found naturally in the intact cell membrane, in both the presence and absence of multiple CXCR4 ligands. Ligand binding did not significantly alter the observed BRET(2) signal, suggesting that CXCR4 exists as a constitutive oligomer. In cell lysates prepared with non-denaturing detergents, CXCR4 sedimented in a manner consistent with a dimer, whereas CCR5 sedimented as a monomer under these conditions. The stable, constitutive dimerization of CXCR4 may contribute to its biological functions in chemokine binding, signaling, and HIV-1 entry.
Collapse
Affiliation(s)
- Gregory J Babcock
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
37
|
Miura SI, Saku K, Karnik SS. Molecular Analysis of the Structure and Function of the Angiotensin II Type 1 Receptor. Hypertens Res 2003; 26:937-43. [PMID: 14717335 DOI: 10.1291/hypres.26.937] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The renin-angiotensin system hormone angiotensin II (Ang II) plays a central role in the pathophysiology of hypertension, cardiac hypertrophy, congestive heart failure, and coronary heart disease. Two distinct subtypes of Ang II receptor, type 1 (AT1) and type 2 (AT2), have been identified, and both have been shown to belong to the G-protein-coupled receptor superfamily (GPCRs). The recent Human Genome Project has revealed more than 1,000 transmembrane (TM) receptors that belong to this superfamily, and it has been estimated that 50% of all clinically used medicines modulate GPCRs activity. Recently, there have been many new insights regarding Ang II receptors and other GPCRs, such as on homo- and hetero-oligomerization, constitutive activation, movement of TM helices, internalization, desensitization and phosphorylation, trafficking, nuclear localization, intracellular protein-induced receptor activation, and receptor-associated proteins. Although AT1 receptor antagonists which prevent Ang II-induced signaling are already clinically available, we here summarize new findings regarding their structure and function, and the possibility of new therapeutic strategies for targeting Ang II receptors through molecular biological techniques.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | |
Collapse
|
38
|
Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. J Biol Chem 2002; 277:37881-7. [PMID: 12130653 PMCID: PMC4426997 DOI: 10.1074/jbc.m206644200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A. Knepper
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | | | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | | |
Collapse
|
39
|
Biswas SK, Sodhi A. Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol 2002; 2:1095-107. [PMID: 12349947 DOI: 10.1016/s1567-5769(02)00055-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in the recruitment of monocytes/macrophages associated with several inflammatory diseases and malignancies. The early signal transduction mechanism of macrophage activation in response to in vitro MCP-1 treatment was investigated. The treatment of murine peritoneal macrophages with MCP-1 resulted in a significant enhancement in the tyrosine phosphorylation of cellular proteins, which peaked within 2.5-5 min of MCP-1 treatment. The MCP-1-induced tyrosine phosphorylation of cellular proteins involved the phosphorylation of non-receptor tyrosine kinases Lyn, JAK2, cytoskeletal binding protein paxillin and downstream transcription factors STAT3 and STAT5. Immunoflourescence microscopical studies on MCP-1-treated macrophages showed the cellular localization of the tyrosine-phosphorylated proteins and bundling of actin filaments at the focal adhesion points. MCP-1-induced association of focal adhesion proteins Lyn/phospho-paxillin with CCR2 was also observed by co-precipitation. Inhibitor studies with genistein on MCP-1-induced macrophage TNF and IL-1 production additionally supported the role of protein tyrosine phosphorylation in the process of macrophage activation with MCP-1. Present investigations suggest that the early events in the tyrosine kinase signal transduction pathway for macrophage activation in response to MCP-1 probably involve (1) CCR2 receptor dimerization, (2) enhanced tyrosine phosphorylation and assembly of focal adhesion complex, and (3) the activation of JAK/STAT pathway in the murine peritoneal macrophages.
Collapse
|
40
|
Park PSH, Sum CS, Pawagi AB, Wells JW. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry 2002; 41:5588-604. [PMID: 11969420 DOI: 10.1021/bi011746s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muscarinic cholinergic receptors can appear to be more numerous when labeled by [(3)H]quinuclidinylbenzilate (QNB) than by N-[(3)H]methylscopolamine (NMS). The nature of the implied heterogeneity has been studied with M(2) receptors in detergent-solubilized extracts of porcine atria. The relative capacity for [(3)H]NMS and [(3)H]QNB was about 1 in digitonin-cholate, 0.56 in cholate-NaCl, and 0.44 in Lubrol-PX. Adding digitonin to extracts in cholate-NaCl increased the absolute capacity for both radioligands, and the relative capacity increased to near 1. The latency cannot be attributed to a chemically impure radioligand, instability of the receptor, an irreversible effect of NMS, or a failure to reach equilibrium. Binding at near-saturating concentrations of [(3)H]QNB in cholate-NaCl or Lubrol-PX was blocked fully by unlabeled NMS, which therefore appeared to inhibit noncompetitively at sites inaccessible to radiolabeled NMS. Such an effect is inconsistent with the notion of functionally distinct, noninterconverting, and mutually independent sites. Both the noncompetitive effect of NMS on [(3)H]QNB and the shortfall in capacity for [(3)H]NMS can be described quantitatively in terms of cooperative interactions within a receptor that is at least tetravalent; no comparable agreement is possible with a receptor that is only di- or trivalent. The M(2) muscarinic receptor therefore appears to comprise at least four interacting sites, presumably within a tetramer or larger array, and ligands appear to bind in a cooperative manner under at least some conditions.
Collapse
Affiliation(s)
- Paul S-H Park
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 2S2
| | | | | | | |
Collapse
|
41
|
Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA. beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 2001; 276:41310-7. [PMID: 11526121 DOI: 10.1074/jbc.m107480200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.
Collapse
Affiliation(s)
- J Xu
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rodríguez-Frade JM, Mellado M, Martínez-A C. Chemokine receptor dimerization: two are better than one. Trends Immunol 2001; 22:612-7. [PMID: 11698222 DOI: 10.1016/s1471-4906(01)02036-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chemokines participate in an exceptional range of physiological and pathological processes, including the control of lymphocyte trafficking, tumor growth, wound healing, allograft rejection, regulation of T-cell differentiation, asthma, infection with HIV and atherosclerosis. This vast array of activities is triggered by the interaction of nearly 50 different chemokines with a relatively modest number of 20 G-protein-coupled receptors. The asymmetry between the number of receptors and ligands suggests an underlying, shared control mechanism activated at a very early stage of the response. One of the first events triggered by the binding of chemokines is the homo- and hetero-dimerization of their receptors; here, we outline these events and their consequences in chemokine signaling.
Collapse
Affiliation(s)
- J M Rodríguez-Frade
- Dept of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
43
|
Rios CD, Jordan BA, Gomes I, Devi LA. G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 2001; 92:71-87. [PMID: 11916530 DOI: 10.1016/s0163-7258(01)00160-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in the human genome that respond to a plethora of signals, including neurotransmitters, peptide hormones, and odorants, to name a few. They couple to second messenger signaling cascade mechanisms via heterotrimeric G-proteins. Recently, many studies have revealed that GPCRs exist as dimers, which may be present as homo- or heterodimers/oligomers. These recent findings have been met with skepticism, since they are contradictory to the dogma that GPCRs function as monomers. Although the existence of GPCR dimers/oligomers was predicted from early pharmacological and biochemical studies, further studies to critically evaluate this phenomenon were impeded by the lack of appropriate reagents. The availability of cDNAs for GPCRs, of highly selective ligands and of antibodies for these receptors has made it possible to visualize and investigate the functional effects of GPCR oligomers. Pharmacological studies, along with biochemical techniques, such as cross-linking and immunoprecipitation with differentially epitope-tagged receptors, have been employed to demonstrate the oligomerization of a number of GPCRs. Moreover, recent biophysical techniques, such as bioluminescence and fluorescence resonance energy transfer, now make it possible to examine GPCR dimerization/oligomerization in living cells. In this review, we provide a brief overview of some of the techniques employed to describe GPCR dimers, and we discuss their respective limitations. We also examine the implications of dimerization/oligomerization on GPCR function. In addition, we discuss domains of the receptors that are thought to facilitate dimerization/oligomerization. Finally, we consider recent evidence for the subcellular localization of the dimer/oligomer assembly.
Collapse
Affiliation(s)
- C D Rios
- Department of Pharmacology, New York University School of Medicine, MSB 408, 550 First Avenue, New York 10016, USA
| | | | | | | |
Collapse
|
44
|
Gama L, Wilt SG, Breitwieser GE. Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 2001; 276:39053-9. [PMID: 11489900 DOI: 10.1074/jbc.m105662200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Calcium sensing (CaR) and Group I metabotropic glutamate receptors exhibit overlapping expression patterns in brain, and share common signal transduction pathways. To determine whether CaR and Group I metabotropic glutamate receptors (mGluRs) (mGluR1alpha and mGluR5) can form heterodimers, we immunoprecipitated CaR from bovine brain and observed co-precipitation of mGluR1alpha. CaR and mGluR1alpha co-localize in hippocampal and cerebellar neurons, but are expressed separately in other brain regions. In vitro transfection studies in HEK-293 cells established the specificity and disulfide-linked nature of the CaR:mGluR1alpha (CaR:mGluR5) interactions. CaR:mGluR1alpha (CaR:mGluR5) heterodimers exhibit altered trafficking via Homer 1c when compared with CaR:CaR homodimers. CaR becomes sensitive to glutamate-mediated internalization when present in CaR:mGluR1alpha heterodimers. These results demonstrate cross-family covalent heterodimerization of CaR with Group I mGluRs, and increase the potential role(s) for CaR in modulating neuronal function.
Collapse
Affiliation(s)
- L Gama
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
45
|
Carpentier E, Lebesgue D, Kamen AA, Hogue M, Bouvier M, Durocher Y. Increased production of active human beta(2)-adrenergic/G(alphas) fusion receptor in Sf-9 cells using nutrient limiting conditions. Protein Expr Purif 2001; 23:66-74. [PMID: 11570847 DOI: 10.1006/prep.2001.1476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the baculovirus/insect-cell expression vector system, we succeeded in obtaining a high yield of active human beta(2)-adrenergic receptor/G(alphas) fusion protein. This was achieved following high cell density production under nutrient-limiting conditions using a very low multiplicity of infection (MOI). This approach was found to significantly reduce inactive protein accumulation that occurred when production was done using conventional high MOI procedures. The maximum specific and volumetric yields of active receptor using this strategy increased by factors of two- and sixfold, respectively. Our results suggest that the increase in the ratio of active/total protein produced results from production under nutrient limitation. Since low multiplicity of infection offers many advantages for large-scale applications, we suggest that this simple production method should be considered when optimizing expression of G-protein-coupled receptors and other complex proteins.
Collapse
Affiliation(s)
- E Carpentier
- Bioprocess sector, Biotechnology Research Institute, 6100 Royalmount avenue, Montreal, Quebec, H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Guo DF, Sun YL, Hamet P, Inagami T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 2001; 11:165-80. [PMID: 11642401 DOI: 10.1038/sj.cr.7290083] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms of regulation, activation and signal transduction of the angiotensin II (Ang II) type 1 (AT1) receptor have been studied extensively in the decade after its cloning. The AT1 receptor is a major component of the renin-angiotensin system (RAS). It mediates the classical biological actions of Ang II. Among the structures required for regulation and activation of the receptor, its carboxyl-terminal region plays crucial roles in receptor internalization, desensitization and phosphorylation. The mechanisms involved in heterotrimeric G-protein coupling to the receptor, activation of the downstream signaling pathway by G proteins and the Ang II signal transduction pathways leading to specific cellular responses are discussed. In addition, recent work on the identification and characterization of novel proteins associated with carboxyl-terminus of the AT1 receptor is presented. These novel proteins will advance our understanding of how the receptor is internalized and recycled as they provide molecular mechanisms for the activation and regulation of G-protein-coupled receptors.
Collapse
Affiliation(s)
- D F Guo
- Research Centre, Hotel-Dieu of CHUM and Department of Medicine, University of Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
47
|
Mellado M, Rodríguez-Frade JM, Mañes S, Martínez-A C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19:397-421. [PMID: 11244042 DOI: 10.1146/annurev.immunol.19.1.397] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A broad array of biological responses, including cell polarization, movement, immune and inflammatory responses, and prevention of HIV-1 infection, are triggered by the chemokines, a family of structurally related chemoattractant proteins that bind to specific seven-transmembrane receptors linked to G proteins. Here we discuss one of the early signaling pathways activated by chemokines, the JAK/STAT pathway. Through this pathway, and possibly in conjunction with other signaling pathways, the chemokines promote changes in cellular morphology, collectively known as polarization, required for chemotactic responses. The polarized cell expresses the chemokine receptors at the leading cell edge, to which they are conveyed by rafts, a cholesterol-enriched membrane fraction fundamental to the lateral organization of the plasma membrane. Finally, the mechanisms through which the chemokines promote their effect are discussed in the context of the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- M Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
48
|
Park P, Sum CS, Hampson DR, Van Tol HH, Wells JW. Nature of the oligomers formed by muscarinic m2 acetylcholine receptors in Sf9 cells. Eur J Pharmacol 2001; 421:11-22. [PMID: 11408044 DOI: 10.1016/s0014-2999(01)00998-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wild-type, FLAG-tagged, and c-myc-tagged muscarinic m2 receptors extracted in digitonin-cholate from singly and co-infected Sf9 (Spodoptera frugiperda) cells were indistinguishable in their binding of [3H]quinuclidinylbenzilate, either before or after purification. The FLAG epitope was found to coimmunoprecipitate with the c-myc epitope when co-infected cells were solubilised in digitonin-cholate, n-dodecyl-beta-D-maltoside or Lubrol-PX. The degree of coprecipitation in digitonin-cholate was unaffected by preincubation of the extract for up to 60 min at 30 degrees C, with or without muscarinic receptor ligands; no coimmunoprecipitation occurred in mixed extracts from singly infected cells. As measured by [3H]quinuclidinylbenzilate, the efficiency of immunoprecipitation from co-infected cells was 87% of that from singly infected cells. The amount of receptor immunoprecipitated from the latter, as determined by densitometry, was 2.3-fold that expected from the loss of binding from the extract. The data suggest that at least some of the receptors were trimeric or larger and that oligomers neither formed nor dissociated under the conditions of the experiments. Also, some receptors appear to be non-functional or latent in digitonin-solubilised extracts.
Collapse
Affiliation(s)
- P Park
- Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
49
|
Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, Fernández S, Martín de Ana A, Jones DR, Torán JL, Martínez-A C. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J 2001; 20:2497-507. [PMID: 11350939 PMCID: PMC125458 DOI: 10.1093/emboj/20.10.2497] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 03/20/2001] [Accepted: 03/22/2001] [Indexed: 12/25/2022] Open
Abstract
Chemokine receptors of both the CC and CXC families have been demonstrated to undergo a ligand-mediated homodimerization process required for Ca2+ flux and chemotaxis. We show that, in the chemokine response, heterodimerization is also permitted between given receptor pairs, specifically between CCR2 and CCR5. This has functional consequences, as the CCR2 and CCR5 ligands monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated upon activation, normal T cell-expressed and secreted) cooperate to trigger calcium responses at concentrations 10- to 100-fold lower than the threshold for either chemokine alone. Heterodimerization results in recruitment of each receptor-associated signaling complex, but also recruits dissimilar signaling path ways such as G(q/11) association, and delays activation of phosphatidyl inositol 3-kinase. The consequences are a pertussis toxin-resistant Ca2+ flux and trig gering of cell adhesion rather than chemotaxis. These results show the effect of heterodimer formation on increasing the sensitivity and dynamic range of the chemokine response, and may aid in understanding the dynamics of leukocytes at limiting chemokine concentrations in vivo.
Collapse
Affiliation(s)
- M Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|