1
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
5
|
Chintala SK, Pan J, Satapathy S, Condruti R, Hao Z, Liu PW, O’Conner CF, Barr JT, Wilson MR, Jeong S, Fini ME. Recombinant Human Clusterin Seals Damage to the Ocular Surface Barrier in a Mouse Model of Ophthalmic Preservative-Induced Epitheliopathy. Int J Mol Sci 2023; 24:981. [PMID: 36674497 PMCID: PMC9861099 DOI: 10.3390/ijms24020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
There is a significant unmet need for therapeutics to treat ocular surface barrier damage, also called epitheliopathy, due to dry eye and related diseases. We recently reported that the natural tear glycoprotein CLU (clusterin), a molecular chaperone and matrix metalloproteinase inhibitor, seals and heals epitheliopathy in mice subjected to desiccating stress in a model of aqueous-deficient/evaporative dry eye. Here we investigated CLU sealing using a second model with features of ophthalmic preservative-induced dry eye. The ocular surface was stressed by topical application of the ophthalmic preservative benzalkonium chloride (BAC). Then eyes were treated with CLU and sealing was evaluated immediately by quantification of clinical dye uptake. A commercial recombinant form of human CLU (rhCLU), as well as an rhCLU form produced in our laboratory, designed to be compatible with U.S. Food and Drug Administration guidelines on current Good Manufacturing Practices (cGMP), were as effective as natural plasma-derived human CLU (pCLU) in sealing the damaged ocular surface barrier. In contrast, two other proteins found in tears: TIMP1 and LCN1 (tear lipocalin), exhibited no sealing activity. The efficacy and selectivity of rhCLU for sealing of the damaged ocular surface epithelial barrier suggests that it could be of therapeutic value in treating BAC-induced epitheliopathy and related diseases.
Collapse
Affiliation(s)
- Shravan K. Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinhong Pan
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sandeep Satapathy
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rebecca Condruti
- Training Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zixuan Hao
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pei-wen Liu
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christian F. O’Conner
- Doctor of Medicine Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joseph T. Barr
- The Ohio State University College of Optometry, Columbus, OH 43210, USA
| | - Mark R. Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shinwu Jeong
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
6
|
Wilkens TL, Sørensen H, Jensen MK, Furtado JD, Dragsted LO, Mukamal KJ. Associations between Alcohol Consumption and HDL Subspecies Defined by ApoC3, ApoE and ApoJ: the Cardiovascular Health Study. Curr Probl Cardiol 2023; 48:101395. [PMID: 36096454 PMCID: PMC9691554 DOI: 10.1016/j.cpcardiol.2022.101395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/03/2023]
Abstract
Alcohol consumption increases circulating high-density lipoprotein cholesterol (HDL-C), but HDL protein cargo may better reflect HDL function. This study examined the associations between alcohol intake and HDL subspecies containing or lacking apoC3, apoE, and apoJ in a well-phenotyped cohort. We performed a cross-sectional analysis of 2092 Cardiovascular Health Study participants aged 70 or older with HDL subspecies measured in stored specimens from 1998 to 1999. Associations between alcohol intake and apoA1 defined HDL subspecies lacking or containing apoC3, apoE, and apoJ, and circulating levels of total apoA1, apoC3, apoE, and apoJ were examined. HDL subspecies lacking and containing apoC3, apoE, and apoJ were all positively associated with alcohol intake, with ∼1% per additional drink per week or ∼7% per additional drink per day (subspecies without the apolipoproteins, P ≤ 2 × 10-9, subspecies with the apolipoproteins, P ≤ 3 × 10-5). Total apoA1 was also directly associated with alcohol consumption, with a 1% increase per additional drink per week (P = 1 × 10-14). Total apoC3 blood levels were 0.5% higher per additional drink per week (P = 0.01), but the association was driven by a few heavily drinking men. Alcohol intake was positively associated with HDL subspecies lacking and containing apoC3, apoE, or apoJ, and with total plasma apoA1. ApoC3 was directly, albeit not as robustly associated with alcohol intake. HDL protein cargo is crucial for its anti-atherosclerotic functions, but it remains to be determined whether HDL subspecies play a role in the putative association between limited alcohol intake and lower risk of coronary heart disease.
Collapse
Affiliation(s)
- Trine L. Wilkens
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
| | - Helle Sørensen
- Department of Mathematical Sciences, Data Science Lab, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen East, Denmark
| | - Majken K. Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 36 Riverside Drive Berkley, MA 02779, USA*,Department of Public Health, Section of Epidemiology, University of Copenhagen, Bartholinsgade 6Q, 2. sal, 24 Øster Farimagsgade 5, Bygning: 24-2-08, DK-1356 Copenhagen K, Denmark
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 36 Riverside Drive Berkley, MA 02779, USA*
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, Section for Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
| | - Kenneth J. Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 36 Riverside Drive Berkley, MA 02779, USA*,Beth Israel Deaconess Medical Center, Division of General Medicine Research Section, 1309 Beacon Street, 2nd Floor, Brookline, MA 02446Boston, MA, USA
| |
Collapse
|
7
|
Clusterin Plasma Concentrations Are Decreased in Sepsis and Inversely Correlated with Established Markers of Inflammation. Diagnostics (Basel) 2022; 12:diagnostics12123010. [PMID: 36553017 PMCID: PMC9776480 DOI: 10.3390/diagnostics12123010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Clusterin is a multifunctional protein that is recognized to mediate cellular stress response associated with organ failure, systemic inflammation, and metabolic alterations. The aim of this study was to determine the value of clusterin as a clinical biomarker in critical ill patients with or without sepsis. We analyzed clusterin plasma concentrations in 200 critically ill patients (133 with sepsis, 67 without sepsis) on admission to the medical intensive care unit (ICU). The results were compared with 66 healthy controls. Clusterin plasma concentration was significantly elevated in critically ill patients compared to healthy subjects. Clusterin levels were significantly higher in non-septic ICU patients than in patients with sepsis. Clusterin correlated inversely with routinely used biomarkers of inflammatory response. Furthermore, clusterin levels were higher in ICU patients with pre-existing obesity and type 2 diabetes. Clusterin was not associated with disease severity, organ failure, or mortality in the ICU. This study highlights significantly elevated clusterin levels in critically ill patients, predominantly in non-sepsis conditions, and associates circulating clusterin to inflammatory and metabolic dysfunctions.
Collapse
|
8
|
Ghosh S, Rihan M, Ahmed S, Pande AH, Sharma SS. Immunomodulatory potential of apolipoproteins and their mimetic peptides in asthma: Current perspective. Respir Med 2022; 204:107007. [DOI: 10.1016/j.rmed.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
9
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
10
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
11
|
Uddin MS, Kabir MT, Begum MM, Islam MS, Behl T, Ashraf GM. Exploring the Role of CLU in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2021; 39:2108-2119. [PMID: 32820456 DOI: 10.1007/s12640-020-00271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic and devastating neurodegenerative disorder that is affecting elderly people at an increasing rate. Clusterin (CLU), an extracellular chaperone, is an ubiquitously expressed protein that can be identified in various body fluids and tissues. Expression of CLU can lead to various processes including suppression of complement system, lipid transport, chaperone function, and also controlling neuronal cell death and cell survival mechanisms. Studies have confirmed that the level of CLU expression is increased in AD. Furthermore, CLU also decreased the toxicity and aggregation of amyloid beta (Aβ). However when the Aβ level was far greater than CLU, then the amyloid generation was increased. CLU was also found to incorporate in the amyloid aggregates, which were more harmful as compared with the Aβ42 aggregates alone. Growing evidence indicates that CLU plays roles in AD pathogenesis via various processes, including aggregation and clearance of Aβ, neuroinflammation, lipid metabolism, Wnt signaling, copper homeostasis, and regulation of neuronal cell cycle and apoptosis. In this article, we represent the critical interaction of CLU and AD based on recent advances. Furthermore, we have also focused on the Aβ-dependent and Aβ-independent mechanisms by which CLU plays a role in AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Benitez Amaro A, Solanelles Curco A, Garcia E, Julve J, Rives J, Benitez S, Llorente Cortes V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021; 10:jcm10163571. [PMID: 34441867 PMCID: PMC8396846 DOI: 10.3390/jcm10163571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress.
Collapse
Affiliation(s)
- Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | | | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jose Rives
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence: (S.B.); or (V.L.C.)
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (S.B.); or (V.L.C.)
| |
Collapse
|
13
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
14
|
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021; 134:111174. [DOI: 10.1016/j.biopha.2020.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
|
15
|
Guo H, Zhao X, Su H, Ma C, Liu K, Kong S, Liu K, Li H, Chang J, Wang T, Guo H, Wei H, Fu Z, Lv X, Li Y. miR-21 is upregulated, promoting fibrosis and blocking G2/M in irradiated rat cardiac fibroblasts. PeerJ 2020; 8:e10502. [PMID: 33354435 PMCID: PMC7733651 DOI: 10.7717/peerj.10502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Radiation exposure of the thorax is associated with a greatly increased risk of cardiac morbidity and mortality even after several decades of advancement in the field. Although many studies have demonstrated the damaging influence of ionizing radiation on cardiac fibroblast (CF) structure and function, myocardial fibrosis, the molecular mechanism behind this damage is not well understood. miR-21, a small microRNA, promotes the activation of CFs, leading to cardiac fibrosis. miR-21 is overexpressed after irradiation; however, the relationship between increased miR-21 and myocardial fibrosis after irradiation is unclear. This study was conducted to investigate gene expression after radiation-induced CF damage and the role of miR-21 in this process in rats. Methods We sequenced irradiated rat CFs and performed weighted correlation network analysis (WGCNA) combined with differentially expressed gene (DEG) analysis to observe the effect on the expression profile of CF genes after radiation. Results DEG analysis showed that the degree of gene changes increased with the radiation dose. WGCNA revealed three module eigengenes (MEs) associated with 8.5-Gy-radiation—the Yellow, Brown, Blue modules. The three module eigengenes were related to apoptosis, G2/M phase, and cell death and S phase, respectively. By blocking with the cardiac fibrosis miRNA miR-21, we found that miR-21 was associated with G2/M blockade in the cell cycle and was mainly involved in regulating extracellular matrix-related genes, including Grem1, Clu, Gdf15, Ccl7, and Cxcl1. Stem-loop quantitative real-time PCR was performed to verify the expression of these genes. Five genes showed higher expression after 8.5 Gy-radiation in CFs. The target genes of miR-21 predicted online were Gdf15 and Rsad2, which showed much higher expression after treatment with antagomir-miR-21 in 8.5-Gy-irradiated CFs. Thus, miR-21 may play the role of fibrosis and G2/M blockade in regulating Grem1, Clu, Gdf15, Ccl7, Cxcl1, and Rsad2 post-irradiation.
Collapse
Affiliation(s)
- Huan Guo
- School of Basic Medical Sciences, Lan Zhou University, Lan Zhou, Gan Su, China.,Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China.,Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Xinke Zhao
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China.,Chinese Academy of Medical Sciences, Fuwai Hospital, Bei Jing, China
| | - Haixiang Su
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kai Liu
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Shanshan Kong
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Kedan Liu
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Haining Li
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Juan Chang
- Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Tao Wang
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Hongyun Guo
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Huiping Wei
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Zhaoyuan Fu
- Department of Interventional Section, Affiliated Hospital of Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| | - Xinfang Lv
- Gansu Provincial Academic Institute for Medical Sciences, Gansu Provincial Cancer Hospital, Lan Zhou, Gan Su, China
| | - Yingdong Li
- School of Basic Medical Sciences, Lan Zhou University, Lan Zhou, Gan Su, China.,Gansu University of Chinese Medicine, Lan Zhou, Gan Su, China
| |
Collapse
|
16
|
Balcar VJ, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Single Nucleotide Polymorphism rs11136000 of CLU Gene (Clusterin, ApoJ) and the Risk of Late-Onset Alzheimer's Disease in a Central European Population. Neurochem Res 2020; 46:411-422. [PMID: 33206315 DOI: 10.1007/s11064-020-03176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Clusterin (CLU; also known as apolipoprotein J, ApoJ) is a protein of inconstant structure known to be involved in diverse processes inside and outside of brain cells. CLU can act as a protein chaperon or protein solubilizer, lipid transporter as well as redox sensor and be anti- or proapoptotic, depending on context. Primary structure of CLU is encoded by CLU gene which contains single nucleotide polymorphisms (SNP's) associated with the risk of late-onset Alzheimer's disease (LOAD). Studying a sample of Czech population and using the case-control association approach we identified C allele of the SNP rs11136000 as conferring a reduced risk of LOAD, more so in females than in males. Additionally, data from two smaller subsets of the population sample suggested a possible association of rs11136000 with diabetes mellitus. In a parallel study, we found no association between rs11136000 and mild cognitive impairment (MCI). Our findings on rs11136000 and LOAD contradict those of some previous studies done elsewhere. We discuss the multiple roles of CLU in a broad range of molecular mechanisms that may contribute to the variability of genetic studies of CLU in various ethnic groups. The above discordance notwithstanding, our conclusions support the association of rs1113600 with the risk of LOAD.
Collapse
Affiliation(s)
- Vladimir J Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia. .,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.
| | - Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Janoutová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
17
|
Associations between CLU polymorphisms and memory performance: The role of serum lipids in Alzheimer's disease. J Psychiatr Res 2020; 129:281-288. [PMID: 32882505 DOI: 10.1016/j.jpsychires.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
CLU encoding clusterin, has been reported to associate with Alzherimer's disease (AD) by genome-wide association studies (GWAS) based on Caucasian populations. Our previous case-control study has independently confirmed the disease association of CLU in Chinese population. Since little is known about the underlying mechanism of CLU in AD, we have conducted this study to investigate whether the genetic impact of CLU polymorphisms on cognitive functioning is via serum lipid's dysfunction. Three GWAS previously published CLU polymorphisms including rs2279590, rs11136000 and rs9331888, were genotyped in 689 subjects. Serum levels of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and tested as mediators. Delayed Word Recall Test (DWRT) was used to evaluate subjects' memory performance. Multiple mediation analysis, a nonparametric procedure to create confidence interval, was performed according to Preacher and Hayes's Bootstrapping method. Our findings suggested significant correlation between CLU polymorphism and DWRT scores for rs11136000 (p = 0.045) after adjustment for age, gender, body mass index, and APOEε4 status, with borderline significant correlation for rs2279590 (p = 0.058). Both T allele of rs11136000 and A allele of rs2279590 were negatively correlated with serum TG levels (p = 0.003; p = 0.001, separately). Moreover, A allele of rs2279590 was positively correlated with serum HDL-C levels (p = 0.015). Consistent with our hypotheses, the genetic impact of CLU polymorphisms on memory performance were partially mediated through TG (rs11136000 95% CI [-0.099,-0.003] and rs2279590 95% CI [-0.104, -0.004]), but not through HDL-C and LDL-C. Our findings indicate CLU polymorphisms may modify AD susceptibility through lipid metabolic pathway.
Collapse
|
18
|
Corraliza-Gomez M, Sanchez D, Ganfornina MD. Lipid-Binding Proteins in Brain Health and Disease. Front Neurol 2019; 10:1152. [PMID: 31787919 PMCID: PMC6854030 DOI: 10.3389/fneur.2019.01152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
A proper lipid management is paramount for a healthy brain. Lipid homeostasis alterations are known to be causative or risk factors for many neurodegenerative diseases, or key elements in the recovery from nervous system injuries of different etiology. In addition to lipid biogenesis and catabolism, non-enzymatic lipid-binding proteins play an important role in brain function and maintenance through aging. Among these types of lipoproteins, apolipoprotein E has received much attention due to the relationship of particular alleles of its gene with the risk and progression of Alzheimer's disease. However, other lipid-binding proteins whose role in lipid homeostasis and control are less known need to be brought to the attention of both researchers and clinicians. The aim of this review is to cover the knowledge of lipid-managing proteins in the brain, with particular attention to new candidates to be relevant for brain function and health.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
19
|
Andraski AB, Singh SA, Lee LH, Higashi H, Smith N, Zhang B, Aikawa M, Sacks FM. Effects of Replacing Dietary Monounsaturated Fat With Carbohydrate on HDL (High-Density Lipoprotein) Protein Metabolism and Proteome Composition in Humans. Arterioscler Thromb Vasc Biol 2019; 39:2411-2430. [PMID: 31554421 DOI: 10.1161/atvbaha.119.312889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Clinical evidence has linked low HDL (high-density lipoprotein) cholesterol levels with high cardiovascular disease risk; however, its significance as a therapeutic target remains unestablished. We hypothesize that HDLs functional heterogeneity is comprised of metabolically distinct proteins, each on distinct HDL sizes and that are affected by diet. Approach and Results: Twelve participants were placed on 2 healthful diets high in monounsaturated fat or carbohydrate. After 4 weeks on each diet, participants completed a metabolic tracer study. HDL was isolated by Apo (apolipoprotein) A1 immunopurification and separated into 5 sizes. Tracer enrichment and metabolic rates for 8 HDL proteins-ApoA1, ApoA2, ApoC3, ApoE, ApoJ, ApoL1, ApoM, and LCAT (lecithin-cholesterol acyltransferase)-were determined by parallel reaction monitoring and compartmental modeling, respectively. Each protein had a unique, size-specific distribution that was not altered by diet. However, carbohydrate, when replacing fat, increased the fractional catabolic rate of ApoA1 and ApoA2 on alpha3 HDL; ApoE on alpha3 and alpha1 HDL; and ApoM on alpha2 HDL. Additionally, carbohydrate increased the production of ApoC3 on alpha3 HDL and ApoJ and ApoL1 on the largest alpha0 HDL. LCAT was the only protein studied that diet did not affect. Finally, global proteomics showed that diet did not alter the distribution of the HDL proteome across HDL sizes. CONCLUSIONS This study demonstrates that HDL in humans is composed of a complex system of proteins, each with its own unique size distribution, metabolism, and diet regulation. The carbohydrate-induced hypercatabolic state of HDL proteins may represent mechanisms by which carbohydrate alters the cardioprotective properties of HDL.
Collapse
Affiliation(s)
- Allison B Andraski
- From the Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (A.B.A., N.S., B.Z., F.M.S.)
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences (S.A.S., L.H.L., H.H., M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences (S.A.S., L.H.L., H.H., M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences (S.A.S., L.H.L., H.H., M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nathaniel Smith
- From the Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (A.B.A., N.S., B.Z., F.M.S.)
| | - Bo Zhang
- From the Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (A.B.A., N.S., B.Z., F.M.S.).,Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka, Japan (B.Z.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences (S.A.S., L.H.L., H.H., M.A.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Channing Division of Network Medicine (M.A., F.M.S.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Frank M Sacks
- From the Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (A.B.A., N.S., B.Z., F.M.S.).,Channing Division of Network Medicine (M.A., F.M.S.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Modified lipoproteins in periodontitis: a link to cardiovascular disease? Biosci Rep 2019; 39:BSR20181665. [PMID: 30842338 PMCID: PMC6434390 DOI: 10.1042/bsr20181665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
There is a strong association between periodontal disease and atherosclerotic cardiovascular disorders. A key event in the development of atherosclerosis is accumulation of modified lipoproteins within the arterial wall. We hypothesise that patients with periodontitis have an altered lipoprotein profile towards an atherogenic form. Therefore, the present study aims at identifying modifications of plasma lipoproteins in periodontitis. Lipoproteins from ten female patients with periodontitis and gender- and age-matched healthy controls were isolated by density-gradient ultracentrifugation. Proteins were separated by 2D gel-electrophoresis and identified by map-matching or by nano-LC followed by MS. Apolipoprotein (Apo) A-I (ApoA-I) methionine oxidation, Oxyblot, total antioxidant capacity and a multiplex of 71 inflammation-related plasma proteins were assessed. Reduced levels of apoJ, phospholipid transfer protein, apoF, complement C3, paraoxonase 3 and increased levels of α-1-antichymotrypsin, apoA-II, apoC-III were found in high-density lipoprotein (HDL) from the patients. In low-density lipoprotein (LDL)/very LDL (VLDL), the levels of apoL-1 and platelet-activating factor acetylhydrolase (PAF-AH) as well as apo-B fragments were increased. Methionine oxidation of apoA-I was increased in HDL and showed a relationship with periodontal parameters. α-1 antitrypsin and α-2-HS glycoprotein were oxidised in LDL/VLDL and antioxidant capacity was increased in the patient group. A total of 17 inflammation-related proteins were important for group separation with the highest discriminating proteins identified as IL-21, Fractalkine, IL-17F, IL-7, IL-1RA and IL-2. Patients with periodontitis have an altered plasma lipoprotein profile, defined by altered protein levels as well as post-translational and other structural modifications towards an atherogenic form, which supports a role of modified plasma lipoproteins as central in the link between periodontal and cardiovascular disease (CVD).
Collapse
|
21
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Pontremoli M, Brioschi M, Baetta R, Ghilardi S, Banfi C. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8:16671. [PMID: 30420710 PMCID: PMC6232108 DOI: 10.1038/s41598-018-35119-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
This study shows that DKK-1, a member of the Dickkopf family and a regulator of the Wnt pathways, represents a novel target of statins which, through the inhibition of HMG-CoA reductase and of non-steroidal isoprenoid intermediates, exert extra-beneficial effect in preventing atherosclerosis beyond their effect on the lipid profile. We found that atorvastatin downregulates DKK-1 protein (−88.3 ± 4.1%) and mRNA expression (−90 ± 4.2%) through the inhibition of Cdc42, Rho and Rac geranylgeranylated proteins. Further, a combined approach based on the integration of label-free quantitative mass spectrometry based-proteomics and gene silencing allowed us to demonstrate that DKK-1 itself mediates, at least in part, statin effects on human endothelial cells. Indeed, DKK-1 is responsible for the regulation of the 21% of the statin-modulated proteins, which include, among others, clusterin/apoJ, plasminogen activator inhibitor type 1 (PAI-1), myristoylated alanine-rich C-kinase substrate (MARCKS), and pentraxin 3 (PTX3). The Gene Ontology enrichment annotation revealed that DKK-1 is also a potential mediator of the extracellular matrix organization, platelet activation and response to wounding processes induced by statin. Finally, we found that plasma level of DKK-1 from cholesterol-fed rabbits treated with atorvastatin (2.5 mg/kg/day for 8 weeks) was lower (−42 ± 23%) than that of control animals. Thus, DKK-1 is not only a target of statin but it directly regulates the expression of molecules involved in a plethora of biological functions, thus expanding its role, which has been so far restricted mainly to cancer.
Collapse
|
23
|
Dourado PMM. Rosuvastatin Decreases the Formation of Neointima by Increasing Apo J, Reducing Restenosis after Balloon Injury in Rats. Arq Bras Cardiol 2018; 111:569-570. [PMID: 30365679 PMCID: PMC6199503 DOI: 10.5935/abc.20180204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Paulo Magno Martins Dourado
- Faculdade de Medicina da Universidade de São Paulo - Instituto
do Coração (InCor) - Laboratório de Hipertensão
Experimental, São Paulo, SP - Brazil
| |
Collapse
|
24
|
Yang N, Dong B, Yang J, Li Y, Kou L, Liu Y, Qin Q. Effects of Rosuvastatin on Apolipoprotein J in Balloon-Injured Carotid Artery in Rats. Arq Bras Cardiol 2018; 111:562-568. [PMID: 30281685 PMCID: PMC6199510 DOI: 10.5935/abc.20180163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/09/2018] [Indexed: 12/04/2022] Open
Abstract
Background Restenosis after percutaneous coronary intervention in coronary heart disease
remains an unsolved problem. Clusterin (CLU) (or Apolipoprotein [Apo] J)
levels have been reported to be elevated during the progression of
postangioplasty restenosis and atherosclerosis. However, its role in
neointimal hyperplasia is still controversial. Objective To elucidate the role Apo J in neointimal hyperplasia in a rat carotid artery
model in vivo with or without rosuvastatin
administration. Methods Male Wistar rats were randomly divided into three groups: the control group
(n = 20), the model group (n = 20) and the statin intervention group (n =
32). The rats in the intervention group were given 10mg /kg dose of
rosuvastatin. A 2F Fogarty catheter was introduced to induce vascular
injury. Neointima formation was analyzed 1, 2, 3 and 4 weeks after balloon
injury. The level of Apo J was measured by real-time PCR,
immunohistochemistry and western blotting. Results Intimal/medial area ratio (intimal/medial, I/M) was increased after
balloon-injury and reached the maximum value at 4weeks in the model group;
I/M was slightly increased at 2 weeks and stopped increasing after
rosuvastatin administration. The mRNA and protein levels of Apo J in carotid
arteries were significantly upregulated after rosuvastatin administration as
compared with the model group, and reached maximum values at 2 weeks, which
was earlier than in the model group (3 weeks). Conclusion Apo J served as an acute phase reactant after balloon injury in rat carotid
arteries. Rosuvastatin may reduce the neointima formation through
up-regulation of Apo J. Our results suggest that Apo J exerts a protective
role in the restenosis after balloon-injury in rats.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Bo Dong
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Jinyu Yang
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Yang Li
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Lu Kou
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Yue Liu
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Qin Qin
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| |
Collapse
|
25
|
Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P. Targeting Alzheimer's disease with gene and cell therapies. J Intern Med 2018; 284:2-36. [PMID: 29582495 DOI: 10.1111/joim.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) causes dementia in both young and old people affecting more than 40 million people worldwide. The two neuropathological hallmarks of the disease, amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of protein tau are considered the major contributors to the disease. However, a more complete picture reveals significant neurodegeneration and decreased cell survival, neuroinflammation, changes in protein and energy homeostasis and alterations in lipid and cholesterol metabolism. In addition, gene and cell therapies for severe neurodegenerative disorders have recently improved technically in terms of safety and efficiency and have translated to the clinic showing encouraging results. Here, we review broadly current data within the field for potential targets that could modify AD through gene and cell therapy strategies. We envision that not only Aβ will be targeted in a disease-modifying treatment strategy but rather that a combination of treatments, possibly at different intervention times may prove beneficial in curing this devastating disease. These include decreased tau pathology, neuronal growth factors to support neurons and modulation of neuroinflammation for an appropriate immune response. Furthermore, cell based therapies may represent potential strategies in the future.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - A Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M A M Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Neuro, Diseases of the Nervous System Patient Flow, Karolinska University Hospital, Huddinge, Sweden
| | - S Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - H Eyjolfsdottir
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - T C Saido
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - J Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
26
|
Bianchi L, Carnemolla C, Viviani V, Landi C, Pavone V, Luddi A, Piomboni P, Bini L. Soluble protein fraction of human seminal plasma. J Proteomics 2018; 174:85-100. [DOI: 10.1016/j.jprot.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
|
27
|
Saewu A, Kadunganattil S, Raghupathy R, Kongmanas K, Diaz-Astudillo P, Hermo L, Tanphaichitr N. Clusterin in the mouse epididymis: possible roles in sperm maturation and capacitation. Reproduction 2017; 154:867-880. [DOI: 10.1530/rep-17-0518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/17/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
Clusterin (CLU) is known as an extracellular chaperone for proteins under stress, thus preventing them from aggregation and precipitation. We showed herein that CLU, expressed by principal cells of the mouse caput epididymis, was present in high amounts in the lumen. In the cauda epididymis, CLU bound tightly to the sperm head surface and its amount on total sperm was similar to that in the bathing luminal fluid. In both immotile and motile caudal epididymal sperm, CLU was localized over the entire sperm head except at the convex ridge, although in the motile sperm population, the CLU immunofluorescence pattern was distinctively mottled with a lower intensity. However, when motile sperm became capacitated, CLU was relocalized to the head hook region, with immunofluorescence intensity being higher than that on the non-capacitated counterparts. Under a slightly acidic pH of the epididymal lumen, CLU may chaperone some luminal proteins and deliver them onto the sperm surface. Immunoprecipitation of epididymal fluid proteins indicated that CLU interacted with SED1, an important egg-binding protein present in a high amount in the epididymal lumen. In a number of non-capacitated sperm, fractions of SED1 and CLU co-localized, but after capacitation, SED1 and CLU dissociated from one another. While CLU moved to the sperm head hook, SED1 translocated to the head convex ridge, the egg-binding site. Overall, CLU localization patterns can serve as biomarkers of immotile sperm, and non-capacitated and capacitated sperm in mice. The chaperone role of CLU may also be important for sperm maturation and capacitation.
Collapse
|
28
|
Fernández-de-Retana S, Cano-Sarabia M, Marazuela P, Sánchez-Quesada JL, Garcia-Leon A, Montañola A, Montaner J, Maspoch D, Hernández-Guillamon M. Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci Rep 2017; 7:14637. [PMID: 29116115 PMCID: PMC5677083 DOI: 10.1038/s41598-017-15215-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral β-amyloidosis is a major feature of Alzheimer’s disease (AD), characterized by the accumulation of β-amyloid protein (Aβ) in the brain. Several studies have implicated lipid/lipoprotein metabolism in the regulation of β-amyloidosis. In this regard, HDL (High Density Lipoprotein)-based therapies could ameliorate pathological features associated with AD. As apolipoprotein J (ApoJ) is a natural chaperone that interacts with Aβ, avoiding its aggregation and toxicity, in this study we propose to prepare reconstituted rHDL-rApoJ nanoparticles by assembling phospholipids with recombinant human ApoJ (rApoJ). Hence, rHDL particles were prepared using the cholate dialysis method and characterized by N-PAGE, dynamic light scattering, circular dichroism and electron transmission microscopy. The preparation of rHDL particles showed two-sized populations with discoidal shape. Functionally, rHDL-rApoJ maintained the ability to prevent the Aβ fibrillization and mediated a higher cholesterol efflux from cultured macrophages. Fluorescently-labelled rHDL-rApoJ nanoparticles were intravenously administrated in mice and their distribution over time was determined using an IVIS Xenogen® imager. It was confirmed that rHDL-rApoJ accumulated in the cranial region, especially in old transgenic mice presenting a high cerebral Aβ load. In conclusion, we have standardized a reproducible protocol to produce rHDL-rApoJ nanoparticles, which may be potentially considered as a therapeutic option for β-amyloid-related pathologies.
Collapse
Affiliation(s)
- Sofía Fernández-de-Retana
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Annabel Garcia-Leon
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex Montañola
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08100, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by dopaminergic neural cell death in the substantia nigra of the brain and α-synuclein (α-syn) accumulation in Lewy bodies. α-Syn can be detected in blood and is a potential biomarker for PD. It has been shown recently that α-syn can pass through the blood-brain barrier (BBB), but the mechanism is not yet understood. We hypothesized that α-syn could interact with lipoproteins, and in association with these particles, could pass through the BBB. Here, we show that apoE, apoJ, and apoA1, but not apoB, were co-immunocaptured along with α-syn from human blood plasma, suggesting that α-syn is associated with high-density lipoproteins (HDL). This association was also supported by experiments involving western blotting of plasma fractions separated by gel filtration, which revealed that α-syn was found in fractions identified as HDL. Interestingly, we could also detect α-syn and ApoJ in the intermediate fraction between HDL and LDL, referred to as lipoprotein (a) (Lp(a)), which has an important role in cholesterol metabolism. Overall, the results provide best support for the hypothesis that α-syn interacts with HDL, and this has potential implications for transport of α-syn from the brain to peripheral blood, across the BBB.
Collapse
|
30
|
Emamzadeh FN. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. J Mol Neurosci 2017; 62:344-355. [PMID: 28695482 PMCID: PMC5541107 DOI: 10.1007/s12031-017-0942-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/12/2017] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive brain disorder that interferes with activities of normal life. The main pathological feature of this disease is the loss of more than 80% of dopamine-producing neurons in the substantia nigra (SN). Dopaminergic neuronal cell death occurs when intraneuronal, insoluble, aggregated proteins start to form Lewy bodies (LBs), the most important component of which is a protein called α-synuclein (α-syn). α-Syn structurally contains hexameric repeats of 11 amino acids, which are characteristic of apolipoproteins and thus α-syn can also be considered an apolipoprotein. Moreover, apolipoproteins seem to be involved in the incidence and development of PD. Some apolipoproteins such as ApoD have a neuroprotective role in the brain. In PD, apoD levels increase in glial cells surrounding dopaminergic cells. However, elevated levels of some other apolipoproteins such as ApaA1 and ApoE are reported as a vulnerability factor of PD. At present, when a clinical diagnosis of PD is made, based on symptoms such as shaking, stiff muscles and slow movement, serious damage has already been done to nerve cells of the SN. The diagnosis of PD in its earlier stages, before this irreversible damage, would be of enormous benefit for future treatment strategies designed to slow or halt the progression of PD. This review presents the roles of apolipoproteins and α-syn in PD and how some of them could potentially be used as biomarkers for PD.
Collapse
Affiliation(s)
- Fatemeh Nouri Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, LA1 4AY, UK.
| |
Collapse
|
31
|
Swertfeger DK, Li H, Rebholz S, Zhu X, Shah AS, Davidson WS, Lu LJ. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Mol Cell Proteomics 2017; 16:680-693. [PMID: 28223350 DOI: 10.1074/mcp.m116.066290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux and antioxidation.
Collapse
Affiliation(s)
- Debi K Swertfeger
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Hailong Li
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Sandra Rebholz
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039.,¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Xiaoting Zhu
- §Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - Amy S Shah
- ‖Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| | - W Sean Davidson
- ¶Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, Ohio 45237-0507
| | - Long J Lu
- From the ‡School of Information Management, Wuhan University, Wuhan 430072, China; .,§Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039
| |
Collapse
|
32
|
Boehm-Cagan A, Bar R, Harats D, Shaish A, Levkovitz H, Bielicki JK, Johansson JO, Michaelson DM. Differential Effects of apoE4 and Activation of ABCA1 on Brain and Plasma Lipoproteins. PLoS One 2016; 11:e0166195. [PMID: 27824936 PMCID: PMC5100931 DOI: 10.1371/journal.pone.0166195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.
Collapse
Affiliation(s)
- Anat Boehm-Cagan
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Bar
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dror Harats
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Hana Levkovitz
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - John K. Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, United States of America
| | - Jan O. Johansson
- Artery Therapeutics, Inc. San Ramon, California, United States of America
| | - Daniel M. Michaelson
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- * E-mail:
| |
Collapse
|
33
|
Cai R, Han J, Sun J, Huang R, Tian S, Shen Y, Dong X, Xia W, Wang S. Plasma Clusterin and the CLU Gene rs11136000 Variant Are Associated with Mild Cognitive Impairment in Type 2 Diabetic Patients. Front Aging Neurosci 2016; 8:179. [PMID: 27516739 PMCID: PMC4963458 DOI: 10.3389/fnagi.2016.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
Objective: Type 2 diabetes mellitus (T2DM) is related to an elevated risk of mild cognitive impairment (MCI). Plasma clusterin is reported associated with the early pathology of Alzheimer's disease (AD) and longitudinal brain atrophy in subjects with MCI. The rs11136000 single nucleotide polymorphism within the clusterin (CLU) gene is also associated with the risk of AD. We aimed to investigate the associations among plasma clusterin, rs11136000 genotype and T2DM-associated MCI. Methods: A total of 231 T2DM patients, including 126 MCI and 105 cognitively healthy controls were enrolled in this study. Demographic parameters were collected and neuropsychological tests were conducted. Plasma clusterin and CLU rs11136000 genotype were examined. Results: Plasma clusterin was significantly higher in MCI patients than in control group (p = 0.007). In subjects with MCI, plasma clusterin level was negatively correlated with Montreal cognitive assessment and auditory verbal learning test_delayed recall scores (p = 0.027 and p = 0.020, respectively). After adjustment for age, educational attainment, and gender, carriers of rs11136000 TT genotype demonstrated reduced risk for MCI compared with the CC genotype carriers (OR = 0.158, χ2 = 4.113, p = 0.043). Multivariable regression model showed that educational attainment, duration of diabetes, high-density lipoprotein cholesterol (HDL-c), and plasma clusterin levels are associated with MCI in T2DM patients. Conclusions: Plasma clusterin was associated with MCI and may reflect a protective response in T2DM patients. TT genotype exhibited a reduced risk of MCI compared to CC genotype. Further investigations should be conducted to determine the role of clusterin in cognitive decline. Trial registration Advanced Glycation End Products Induced Cognitive Impairment in Diabetes: BDNF Signal Meditated Hippocampal Neurogenesis ChiCTR-OCC-15006060; http://www.chictr.org.cn/showproj.aspx?proj=10536
Collapse
Affiliation(s)
- Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China; Medical School of Southeast UniversityNanjing, China
| | - Jing Han
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Jie Sun
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Yanjue Shen
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Xue Dong
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| |
Collapse
|
34
|
Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: An old dog with new tricks at the ocular surface. Exp Eye Res 2016; 147:57-71. [PMID: 27131907 DOI: 10.1016/j.exer.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522 Australia.
| |
Collapse
|
35
|
Yang N, Qin Q. Apolipoprotein J: A New Predictor and Therapeutic Target in Cardiovascular Disease? Chin Med J (Engl) 2016; 128:2530-4. [PMID: 26365974 PMCID: PMC4725565 DOI: 10.4103/0366-6999.164983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: To review the functional mechanism of apolipoprotein J (apoJ) in the process of atherosclerosis and the feasibility of apoJ as a therapeutic endpoint. Data Sources: Relevant articles published in English from 1983 to present were selected from PubMed. The terms of “atherosclerosis, apolipoprotein J, clusterin (CLU), oxidative stress, and inflammation” were used for searching. Study Selection: Articles studying the role of apoJ with atherosclerosis and restenosis after injury were reviewed. Articles focusing on the intrinsic determinants of atherosclerosis were selected. The exclusion criteria of articles were that the studies on immunologic vasculitis. Results: ApoJ, involved in numerous physiological process important for lipid transportation and vascular smooth muscle cell differentiation, including apoptotic cell death, cell-cycle regulation, cell adhesion, tissue remodeling, immune system regulation, and oxidative stress, plays a role in the development of clinical atherosclerosis. In the process of relieving atherosclerosis, apoJ can promote cholesterol and phospholipid export from macrophage-foam cells, and exhibit cytoprotective and anti-inflammatory actions by interacting with lots of known inflammatory proteins which may predict the onset of clinical cardiovascular events and may actually play a causal role in mediating atherosclerotic disease such as C-reactive protein, paraoxonase, and leptin. As known as CLU, apoJ has been identified to play central roles in the process of vascular smooth cells migration, adhesion, and proliferation, which can contribute significantly to restenosis after vascular injury. Conclusions: Intense effort and substantial progress have been made to identify the apoJ that relieves atherosclerosis and vascular restenosis after percutaneous coronary intervention. More work is needed to elucidate the exact mechanisms of and the interrelationship between the actions of apoJ and to successfully achieve regression of atherosclerosis by regarding it as a therapeutic endpoint.
Collapse
Affiliation(s)
| | - Qin Qin
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| |
Collapse
|
36
|
Algotar AM, Behnejad R, Singh P, Thompson PA, Hsu CH, Stratton SP. EFFECT OF SELENIUM SUPPLEMENTATION ON PROTEOMIC SERUM BIOMARKERS IN ELDERLY MEN. J Frailty Aging 2016; 4:107-10. [PMID: 26366377 DOI: 10.14283/jfa.2015.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To determine the effect of selenium supplementation on the human proteomic profile. DESIGN Serum samples were collected in this pilot study from a randomized placebo controlled Phase 2 clinical trial (Watchful Waiting (WW)). SETTING Subjects were followed every three months for up to five years at the University of Arizona Prostate Cancer Prevention Program. PARTICIPANTS One hundred and forty men (age < 85 years) had biopsy-proven prostate cancer, a Gleason sum score less than eight, no metastatic cancer, and no prior treatment for prostate cancer. INTERVENTION As part of the WW trial, men were randomized to placebo, selenium 200 μg/day or selenium 800 μg/day. For the purpose of the current study, 40 subjects enrolled in the WW study (20 from the placebo group and 20 from Se 800 μg/day group) were selected. MEASUREMENTS Baseline serum samples were collected at each follow-up visit and stored at -80 degrees Celsius. A multiplexed proteomic panel investigated changes in 120 proteins markers simultaneously. RESULTS Thirteen proteins (Apolipoprotein J, IL-10, IL-1 alpha, MMP-3, IL-12p70, IL-2 receptor alpha, cathepsin B, eotaxin, EGFR, FGF-basic, myeloperoxidase, RANTES, TGF-beta) were determined to be either statistically (p-value < 0.05) or marginally significantly (0.05 < p-value <0.1) changed in the selenium supplemented group as compared to placebo. CONCLUSION Although independent validation of these results is needed, this study is the first of its kind to utilize high throughput fluorescence based protein multiplex panel in analyzing changes in the proteomic profile due to selenium supplementation. Results from this study provide insight into the ability of selenium to modulate numerous protein markers and thus impact various biological processes in humans.
Collapse
Affiliation(s)
- A M Algotar
- Department of Preventive Medicine, Loma Linda University Medical Center, Loma Linda, CA ; University of Arizona Cancer Center, Tucson, AZ
| | - R Behnejad
- University of Arizona Cancer Center, Tucson, AZ
| | - P Singh
- Department of Hematology-Oncology, University of Arizona, Tucson, AZ
| | - P A Thompson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - C H Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | | |
Collapse
|
37
|
Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. The role of LDL-bound apoJ in the development of atherosclerosis. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Baralla A, Sotgiu E, Deiana M, Pasella S, Pinna S, Mannu A, Canu E, Sotgiu G, Ganau A, Zinellu A, Sotgia S, Carru C, Deiana L. Plasma Clusterin and Lipid Profile: A Link with Aging and Cardiovascular Diseases in a Population with a Consistent Number of Centenarians. PLoS One 2015; 10:e0128029. [PMID: 26076476 PMCID: PMC4468059 DOI: 10.1371/journal.pone.0128029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/21/2015] [Indexed: 12/26/2022] Open
Abstract
The role of Clusterin in attenuation of inflammation and reverse cholesterol transfer makes this molecule a potential candidate as a marker for cancer, cardiovascular disease, diabetes mellitus, and metabolic syndrome. In elderly subjects cardiovascular diseases represent the primary cause of death and different clinical studies have shown a positive correlation of these diseases with changes in the lipid pattern. This work aimed at evaluating the relationship between circulating clusterin and the biochemical parameters that characterize the lipid profile of a Sardinian population divided into five age groups including centenarians; the high frequency in Sardinia of these long-lived individuals gave us the opportunity to extend the range of the age groups to be analyzed to older ages and to better evaluate the changes in the lipid balance during ageing and its relationship with clusterin concentration in plasma. Our results showed that Clusterin concentration values of the youngest group were more similar with the centenarian's group compared to the other age groups, and a positive correlation arises with LDL. Furthermore given the high prevalence of cardiovascular diseases in the population examined and the association of Clusterin with these pathologies we evaluated Clusterin concentration variation in two groups with or without cardiovascular diseases. In presence of cardiovascular disease, Clusterin is significantly related to the most atherogenic components of lipid profile (total cholesterol and LDL), especially in women, suggesting its potential role in modulating cardiovascular metabolic risk factors.
Collapse
Affiliation(s)
- Angela Baralla
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marta Deiana
- Associazione "L’Isola dei Centenari", Sassari, Italy
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Sassari, Sassari, Italy
| | - Sara Pasella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Pinna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Andrea Mannu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Canu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonello Ganau
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luca Deiana
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Associazione "L’Isola dei Centenari", Sassari, Italy
- * E-mail:
| |
Collapse
|
39
|
Martínez‐Bujidos M, Rull A, González‐Cura B, Pérez‐Cuéllar M, Montoliu‐Gaya L, Villegas S, Ordóñez‐Llanos J, Sánchez‐Quesada JL. Clusterin/apolipoprotein J binds to aggregated LDL in human plasma and plays a protective role against LDL aggregation. FASEB J 2014; 29:1688-700. [DOI: 10.1096/fj.14-264036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Martínez‐Bujidos
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
- Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Anna Rull
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Beatriz González‐Cura
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Montserrat Pérez‐Cuéllar
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Laia Montoliu‐Gaya
- Protein Folding and Stability Group, Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Sandra Villegas
- Protein Folding and Stability Group, Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Jordi Ordóñez‐Llanos
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
- Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - José Luis Sánchez‐Quesada
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| |
Collapse
|
40
|
Kwon MJ, Ju TJ, Heo JY, Kim YW, Kim JY, Won KC, Kim JR, Bae YK, Park IS, Min BH, Lee IK, Park SY. Deficiency of clusterin exacerbates high-fat diet-induced insulin resistance in male mice. Endocrinology 2014; 155:2089-101. [PMID: 24684302 DOI: 10.1210/en.2013-1870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The present study examined the role of clusterin in insulin resistance in high fat-fed wild-type and clusterin knockout (KO) mice. The plasma levels of glucose and C-peptide and islet size were increased in clusterin KO mice after an 8-week high-fat diet. In an ip glucose tolerance test, the area under the curve for glucose was not different, whereas the area under the curve for insulin was higher in clusterin KO mice. In a hyperinsulinemic-euglycemic clamp, the clamp insulin levels were higher in clusterin KO mice after the high-fat diet. After adjusting for the clamp insulin levels, the glucose infusion rate, suppression of hepatic glucose production, and glucose uptake were lower in clusterin KO mice in the high fat-fed group. The plasma levels of clusterin and clusterin mRNA levels in the skeletal muscle and liver were increased by the high-fat diet. The mRNA levels of the antioxidant enzymes were lower, and the mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1 and cytokines and protein carbonylation were higher in the skeletal muscle and liver in clusterin KO mice after the high-fat diet. Palmitate-induced gene expressions of NOX1 and cytokines were higher in the primary cultured hepatocytes of clusterin KO mice compared with the wild-type mice. Clusterin inhibited the gene expression and reactive oxygen species generation by palmitate in the hepatocytes and C2C12. AKT phosphorylation by insulin was reduced in the hepatocytes of clusterin KO mice. These results suggest that clusterin plays a protective role against high-fat diet-induced insulin resistance through the suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Min Jung Kwon
- Departments of Physiology (M.J.K., T.-j.J., J.-Y.H., Y.-W.K., J.-Y.K., S.-Y.P.), Internal Medicine (K.-C.W.), Biochemistry and Molecular Biology (J.-R.K.), and Pathology (Y.K.B.) and Aging-Associated Vascular Disease Research Center (T.-j.J., J.-Y.H., J.-R.K., S.-Y.P.), College of Medicine, Yeungnam University, Daegu 705-703, South Korea; Department of Anatomy (I.-S.P.), College of Medicine, Inha University, Incheon 400-712, South Korea; Department of Pharmacology (B.-H.M.), College of Medicine, Korea University, Seoul 136-705, South Korea; and Department of Internal Medicine (I.-K.L.), School of Medicine, Kyungpook National University, Daegu 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD). Exp Mol Pathol 2014; 96:328-38. [DOI: 10.1016/j.yexmp.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
|
42
|
Yanni AE, Agrogiannis G, Gkekas C, Perrea D. Clusterin/Apolipoprotein J immunolocalization on carotid artery is affected by TNF-alpha, cigarette smoking and anti-platelet treatment. Lipids Health Dis 2014; 13:70. [PMID: 24758255 PMCID: PMC4005404 DOI: 10.1186/1476-511x-13-70] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/14/2014] [Indexed: 01/10/2023] Open
Abstract
Background Clusterin (CLU) /Apolipoprotein J is a protein biosensor of oxidative stress and inflammation, which is upregulated in many pathological processes including atherosclerosis. Previous studies have shown that in aortic tissue, CLU expression increases with atherosclerotic lesion progression and it has been coupled with vascular damage and coronary artery disease. A few studies enter into CLU and carotid atherosclerosis while the apolipoprotein’s expression on human carotid tissue and its association with parameters related to the disease development has not been examined. The present study was designed to reveal the relationships between the degree of CLU immunolocalization on carotid artery and demographic characteristics, blood parameters and pharmacological treatment of patients underwent internal carotid artery endarterectomy. Methods CLU expression was detected by immunohistochemistry in 42 carotid endarterectomy specimens. Patients’ serum levels of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), high sensitive C-reactive protein (hsCRP) and classical parameters related to atherosclerosis such as lipid profile, as well as thrombosis related parameters such as fibrinogen, antithrombin III, protein C and protein S were determined. Demographic characteristics, smoking habits and the use of medications were recorded. Comparisons between groups were performed by students’t-test and analysis of variance. Independent associations with CLU expression on carotid tissue were denoted by linear regression analysis. Results CLU imuunolocalization was denser in smokers than in non-smokers (p = 0.041) while it was rarefied in specimens of patients on cropidogrel treatment (p = 0.045) compared to the rest not taking this medication. Clopidogrel intake was independent predictor of lower CLU expression on carotid artery (p =0.045). CLU was positively correlated with serum TNF-a concentration (r = 0.33, p = 0.040) that was independent predictor of higher expression of the apolipoprotein (p = 0.001). IL-6, hsCRP and classical parameters related to atherosclerosis and thrombosis were not associated with CLU immunolocalization. Conclusion Our study suggests that CLU expression on carotid artery is affected by TNF-alpha, cigarette smoking confirming its association with oxidative and cellular stress and anti-platelet medication reflecting the protective effects of such pharmacological treatment on vascular wall.
Collapse
Affiliation(s)
- Amalia E Yanni
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El Venizelou Ave, Athens, Greece.
| | | | | | | |
Collapse
|
43
|
Wallner S, Grandl M, Konovalova T, Sigrüner A, Kopf T, Peer M, Orsó E, Liebisch G, Schmitz G. Monocyte to macrophage differentiation goes along with modulation of the plasmalogen pattern through transcriptional regulation. PLoS One 2014; 9:e94102. [PMID: 24714687 PMCID: PMC3979739 DOI: 10.1371/journal.pone.0094102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/10/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Dysregulation of monocyte-macrophage differentiation is a hallmark of vascular and metabolic diseases and associated with persistent low grade inflammation. Plasmalogens represent ether lipids that play a role in diabesity and previous data show diminished plasmalogen levels in obese subjects. We therefore analyzed transcriptomic and lipidomic changes during monocyte-macrophage differentiation in vitro using a bioinformatic approach. METHODS Elutriated monocytes from 13 healthy donors were differentiated in vitro to macrophages using rhM-CSF under serum-free conditions. Samples were taken on days 0, 1, 4 and 5 and analyzed for their lipidomic and transcriptomic profiles. RESULTS Gene expression analysis showed strong regulation of lipidome-related transcripts. Enzymes involved in fatty acid desaturation and elongation were increasingly expressed, peroxisomal and ER stress related genes were induced. Total plasmalogen levels remained unchanged, while the PE plasmalogen species pattern became more similar to circulating granulocytes, showing decreases in PUFA and increases in MUFA. A partial least squares discriminant analysis (PLS/DA) revealed that PE plasmalogens discriminate the stage of monocyte-derived macrophage differentiation. Partial correlation analysis could predict novel potential key nodes including DOCK1, PDK4, GNPTAB and FAM126A that might be involved in regulating lipid and especially plasmalogen homeostasis during differentiation. An in silico transcription analysis of lipid related regulation revealed known motifs such as PPAR-gamma and KLF4 as well as novel candidates such as NFY, RNF96 and Zinc-finger proteins. CONCLUSION Monocyte to macrophage differentiation goes along with profound changes in the lipid-related transcriptome. This leads to an induction of fatty-acid desaturation and elongation. In their PE-plasmalogen profile macrophages become more similar to granulocytes than monocytes, indicating terminal phagocytic differentiation. Therefore PE plasmalogens may represent potential biomarkers for cell activation. For the underlying transcriptional network we were able to predict a range of novel central key nodes and underlying transcription factors using a bioinformatic approach.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Margot Grandl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Tatiana Konovalova
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Alexander Sigrüner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Thomas Kopf
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Markus Peer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Evelyn Orsó
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
44
|
Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE. HDL quality and functionality: what can proteins and genes predict? Expert Rev Cardiovasc Ther 2014; 12:521-32. [DOI: 10.1586/14779072.2014.896741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Gazouli M, Anagnostopoulos AK, Papadopoulou A, Vaiopoulou A, Papamichael K, Mantzaris G, Theodoropoulos GE, Anagnou NP, Tsangaris GT. Serum protein profile of Crohn's disease treated with infliximab. J Crohns Colitis 2013; 7:e461-70. [PMID: 23562004 DOI: 10.1016/j.crohns.2013.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/18/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
The infliximab (IFX) has dramatically improved the treatment of Crohn's disease (CD). However, the need for predictive factors, indicative of patients' response to IFX, has yet to be met. In the current study, proteomics technologies were employed in order to monitor for differences in protein expression in a cohort of patients following IFX administration, aiming at identifying a panel of candidate protein biomarkers of CD, symptomatic of response to treatment. We enrolled 18 patients, who either had achieved clinical and serological remission (Rm, n=6), or response (Rs, n=6) and/or were PNRs (n=6), to IFX. Serum samples were subjected to two-dimensional Gel Electrophoresis. Following evaluation of densitometrical data, protein spots exhibiting differential expression among the groups, were further characterized by MALDI-TOF-MS. Identified proteins where evaluated by immunoblot analysis while functional network association was carried out to asses significance. Proteins apolipoprotein A-I (APOA1), apolipoprotein E (APOE), complement C4-B (CO4B), plasminogen (PLMN), serotransferrin (TRFE), beta-2-glycoprotein 1 (APOH), and clusterin (CLUS) were found to be up-regulated in the PNR and Rs groups whereas their levels displayed no changes in the Rm group when compared to baseline samples. Additionally, leucine-rich alpha-2-glycoprotein (A2GL), vitamin D-binding protein (VTDB), alpha-1B-glycoprotein (A1BG) and complement C1r subcomponent (C1R) were significantly increased in the serum of the Rm group. Through the incorporation of proteomics technologies, novel serum marker-molecules demonstrating high sensitivity and specificity are introduced, hence offering an innovative approach regarding the evaluation of CD patients' response to IFX therapy.
Collapse
Affiliation(s)
- Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, School of Medicine, University of Athens, Greece; Laboratory of Cell and Gene Therapy Foundation for Biomedical Research of the Academy of Athens (IIBEAA), Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Whether cholesterol is implicated in the pathogenesis of Alzheimer's disease (AD) is still controversial. Several studies that explored the association between lipids and/or lipid-lowering treatment and AD indicate a harmful effect of dyslipidemia on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E (APOE), apolipoprotein J (APOJ, CLU), ATP-binding cassette subfamily A member 7(ABCA7), and sortilin-related receptor (SORL1). Functional cell biology studies further support a critical involvement of lipid raft cholesterol in the modulation of Aβ precursor protein processing by β-secretase and γ-secretase resulting in altered Aβ production. However, conflicting evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk, randomized clinical trials observing no beneficial effect of statin therapy, and cell biology studies suggesting that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol level is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits colocalization of β-secretase 1 and Aβ precursor protein in nonraft membrane domains, thereby increasing generation of plasmin, an Aβ-degrading enzyme. The aim of this article is to provide a comprehensive review of the findings of epidemiological, genetic, and cell biology studies aiming to elucidate the role of cholesterol in the pathogenesis of AD.
Collapse
|
47
|
Seo HY, Kim MK, Jung YA, Jang BK, Yoo EK, Park KG, Lee IK. Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Endocrinology 2013; 154:1722-30. [PMID: 23515283 DOI: 10.1210/en.2012-2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hepatic steatosis is emerging as the most important cause of chronic liver disease and is associated with the increasing incidence of obesity with insulin resistance. Sterol regulatory binding protein-1c (SREBP-1c) is a master regulator of lipogenic gene expression in the liver. Hyperinsulinemia induces SREBP-1c transcription through liver X receptor (LXR), specificity protein 1, and SREBP-1c itself. Clusterin, an 80-kDa disulfide-linked heterodimeric protein, has been functionally implicated in several physiological processes including lipid transport; however, little is known about its effect on hepatic lipogenesis. The present study examined whether clusterin regulates SREBP-1c expression and lipid accumulation in the liver. Adenovirus-mediated overexpression of clusterin inhibited insulin- or LXR agonist-stimulated SREBP-1c expression in cultured liver cells. In reporter assays, clusterin inhibited SREBP-1c promoter activity. Moreover, adenovirus-mediated overexpression of clusterin in the livers of mice fed a high-fat diet inhibited hepatic steatosis through the inhibition of SREBP-1c expression. Reporter and gel shift assays showed that clusterin inhibits SREBP-1c expression via the repression of LXR and specificity protein 1 activity. This study shows that clusterin inhibits hepatic lipid accumulation through the inhibition of SREBP-1c expression and suggests that clusterin is a negative regulator of SREBP-1c expression and hepatic lipogenesis.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Kyungpook National University School of Medicine, 50 Samduk-2ga, Jung-gu, Daegu 700-721, South Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim SH, Choe JY, Jeon Y, Huh J, Jung HR, Choi YD, Kim HJ, Cha HJ, Park WS, Kim JE. Frequent expression of follicular dendritic cell markers in Hodgkin lymphoma and anaplastic large cell lymphoma. J Clin Pathol 2013; 66:589-96. [PMID: 23454725 DOI: 10.1136/jclinpath-2012-201425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS Although the tumour cells of Hodgkin lymphoma (HL) are derived from mature B-cells, the lineage infidelity of Hodgkin/Reed-Sternberg cells (HRSs) often causes diagnostic problems. Recently introduced HRS markers are also positive for follicular dendritic cells (FDCs). We investigated the expression of several FDC markers in HL and anaplastic large cell lymphoma (ALCL) and evaluated their diagnostic efficacy. METHODS Eighty-five cases of HL and 52 cases of ALCL were included in this study. Immunohistochemistry was performed for glioma-associated homologue (GLI) 3, class III β-tubulin (TUBB3), fascin, clusterin, γ-synuclein, podoplanin, syntenin, CD21, CD35 and EGFR. RESULTS HRSs were diffusely positive for GLI3, fascin and TUBB3; the mean positivity rates per case were 94% for GLI3, 82% for fascin, 69% for TUBB3, 17% for clusterin, 17% for γ-synuclein and 14% for syntenin. Podoplanin, CD21, CD35 and EGFR were almost negative. However, the frequency of marker expression was not associated with the histologic subtype or the presence of Epstein-Barr virus (EBV). ALCL showed a similar pattern to HL, but the overall frequency of positivity was lower than that observed in HL. The mean positivity rates were 56% for GLI3, 62% for fascin, 58% for TUBB3 and 21% for clusterin. The other markers were nearly negative. Anaplastic large cell lymphoma kinase positivity did not affect the expression rates. CONCLUSIONS This study confirmed the frequent expression of FDC markers in HL and ALCL. Especially, GLI3, fascin and TUBB3 are the most sensitive markers. Further studies are required to evaluate the association between FDCs, HRSs and ALCL cells.
Collapse
Affiliation(s)
- Soo Hee Kim
- Department of Pathology, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Reitz C. Dyslipidemia and dementia: current epidemiology, genetic evidence, and mechanisms behind the associations. J Alzheimers Dis 2012; 30 Suppl 2:S127-45. [PMID: 21965313 DOI: 10.3233/jad-2011-110599] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of cholesterol in the etiology of Alzheimer's disease (AD) is still controversial. Some studies exploring the association between lipids and/or lipid lowering treatment and AD indicate a harmful effect of dyslipidemia and a beneficial effect of statin therapy on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E, apolipoprotein J, and the sortilin-related receptor. Functional cell biology studies support a critical involvement of lipid raft cholesterol in the modulation of amyloid-β protein precursor (AβPP) processing by β- and γ-secretase resulting in altered amyloid-β production. Contradictory evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk. Additionally, cell biology studies suggest that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits co-localization of BACE1 and AβPP in non-raft membrane domains, thereby increasing generation of plasmin, an amyloid-β-degrading enzyme. The aim of this review is to summarize the findings of epidemiological and cell biological studies to elucidate the role of cholesterol in AD etiology.
Collapse
Affiliation(s)
- Christiane Reitz
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and The Aging Brain New York, NY, USA.
| |
Collapse
|
50
|
Ferrari R, Moreno JH, Minhajuddin AT, O'Bryant SE, Reisch JS, Barber RC, Momeni P. Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging 2012; 33:1846.e7-18. [DOI: 10.1016/j.neurobiolaging.2012.01.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
|