1
|
Makoukji J, Saadeh F, Mansour KA, El-Sitt S, Al Ali J, Kinarivala N, Trippier PC, Boustany RM. Flupirtine derivatives as potential treatment for the neuronal ceroid lipofuscinoses. Ann Clin Transl Neurol 2018; 5:1089-1103. [PMID: 30250865 PMCID: PMC6144451 DOI: 10.1002/acn3.625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/17/2022] Open
Abstract
Objective Neuronal Ceroid Lipofuscinoses (NCL) are fatal inherited neurodegenerative diseases with established neuronal cell death and increased ceramide levels in brain, hence, a need for disease‐modifying drug candidates, with potential to enhance growth, reduce apoptosis and lower ceramide in neuronal precursor PC12 cells and human NCL cell lines using enhanced flupirtine aromatic carbamate derivatives in vitro. Methods Aromatic carbamate derivatives were tested by establishing growth curves under pro‐apoptotic conditions and activity evaluated by trypan blue and JC‐1 staining, as well as a drop in pro‐apoptotic ceramide in neuronal precursor PC12 cells following siRNA knockdown of the CLN3 gene, and CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Ceramide levels were determined in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts before and after treatment. Expression of BCL‐2, ceramide synthesis enzymes (CERS2/CERS6/SMPD1/DEGS2) and Caspases 3/8/9 levels were compared in treated versus untreated CLN3‐deficient PC12 cells by qRT‐PCR. Results Retigabine, the benzyl‐derivatized carbamate and an allyl carbamate derivative were neuroprotective in CLN3‐defective PC12 cells and rescued CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts from diminished growth and accelerated apoptosis. All drugs decreased ceramide in CLN1‐/CLN2‐/CLN3‐/CLN6‐/CLN8 patient‐derived lymphoblasts. Increased BCL‐2 and decreased ceramide synthesis enzyme expression were established in CLN3‐derived PC12 cells treated with the benzyl and allyl carbamate derivatives. They down‐regulated Caspase 3/Caspase 8 expression. Caspase 9 expression was reduced by the benzyl‐derivatized carbamate. Interpretation These findings establish that compounds analogous to flupirtine demonstrate anti‐apoptotic activity with potential for treatment of NCL disease and use of ceramide as a marker for these diseases.
Collapse
Affiliation(s)
- Joelle Makoukji
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Fadi Saadeh
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Karl Albert Mansour
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Sally El-Sitt
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Jamal Al Ali
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Paul C Trippier
- Department of Pharmaceutical Sciences School of Pharmacy Texas Tech University Health Sciences Center Amarillo Texas
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics American University of Beirut Medical Center Beirut Lebanon.,Neurogenetics Program AUBMC Special Kids Clinic Division of Pediatric Neurology Department of Pediatrics and Adolescent Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
2
|
Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apoptosis is a cellular suicide program that plays a critical role in development and human diseases, including cancer. Cancer cells evade apoptosis, thereby enabling excessive proliferation, survival under hypoxic conditions, and acquired resistance to therapeutic agents. Among various mechanisms that contribute to the evasion of apoptosis in cancer, metabolism is emerging as one of the key factors. Cellular metabolites can regulate functions of pro- and antiapoptotic proteins. In turn, p53, a regulator of apoptosis, also controls metabolism by limiting glycolysis and facilitating mitochondrial respiration. Consequently, with dysregulated metabolism and p53 inactivation, cancer cells are well-equipped to disable the apoptotic machinery. In this article, we review how cellular apoptosis is regulated and how metabolism can influence the signaling pathways leading to apoptosis, especially focusing on how glucose and lipid metabolism are altered in cancer cells and how these alterations can impact the apoptotic pathways.
Collapse
Affiliation(s)
- K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - K Canfield
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - W Feng
- Norris Cotton Cancer Center, Lebanon, NH, United States
| | - M Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
3
|
Ki J, Arumugam P, Song JM. TIRF high-content assay development for the evaluation of drug efficacy of chemotherapeutic agents against EGFR-/HER2-positive breast cancer cell lines. Anal Bioanal Chem 2016; 408:3233-8. [PMID: 26886741 DOI: 10.1007/s00216-016-9387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/02/2016] [Indexed: 01/06/2023]
Abstract
Elevated expression of epidermal growth factor receptor (EGFR) is reported to be associated with poor prognosis in breast cancer. EGFR subtype identification plays a crucial role in deciding the drug combination to treat the cancer patients. Conventional application of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) produces more discordance results in EGFR subtype identification of cancer specimens. The present study is designed to develop an analytical method for simultaneous identification of cell surface biomarkers and quantitative estimation of drug efficacy in cancer specimens. For this study, we have utilized a total internal reflection fluorescence microscope (TIRFM), Qdot molecular probes and chemotherapeutic agent camptothecin (CPT)-treated breast cancer cell lines namely MCF-7, SK-BR-3 and JIMT-1. Highly sensitive detection signals with low background noise generated from the evanescent field excitation of TIRFM make it a highly suitable tool to detect the cell surface biomarkers in living cells. Moreover, single wavelength excitation of Qdot probes offers multicolour imaging with strong emission brightness. In the present study, TIRF high-content imaging system simultaneously showed the expression pattern of EGFRs and EC50 value for CPT-induced apoptosis and necrosis in MCF-7, SK-BR-3 and JIMT-1 cancer cell lines.
Collapse
Affiliation(s)
- Jieun Ki
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, Republic of Korea
| | - Parthasarathy Arumugam
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-ku, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
4
|
Abdel Shakor AB, Atia M, Alshehri AS, Sobota A, Kwiatkowska K. Ceramide generation during curcumin-induced apoptosis is controlled by crosstalk among Bcl-2, Bcl-xL, caspases and glutathione. Cell Signal 2015; 27:2220-30. [PMID: 26232616 DOI: 10.1016/j.cellsig.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
Curcumin exhibits anti-cancer properties manifested by activation of pro-apoptotic signaling. We have demonstrated earlier that apoptosis of HL-60 human leukemia cells induced by curcumin is controlled by ceramide generated by neutral sphingomyelinase (nSMase) which contributes to sphingomyelin synthase (SMS) inhibition favoring accumulation of ceramide in cells. Here we report that the activity of nSMase, ceramide accumulation and death of HL-60 cells are inhibited by overexpression of Bcl-xL or Bcl-2 proteins, while down-regulation of nSMase interferes with degradation of Bcl-2 but not Bcl-xL. Activation of nSMase in curcumin-treated cells requires the activity of apoptosis initiator caspase-8 and executioner caspase-3, whereas nSMase depletion prevents activation of caspase-3, but not caspase-8. These data place nSMase activation downstream of caspase-8 and Bcl-xL and indicate a mutual regulation between nSMase and caspase-3 activity on one hand, and Bcl-2 level on the other hand in curcumin-treated cells. The activation of nSMase and ceramide accumulation also depended on the depletion of glutathione. The depletion of glutathione required the activity of caspase-8 and caspase-3 as well as the down-regulation of Bcl-2 and Bcl-xL. Together, the data indicate a crosstalk among Bcl-2, Bc-xL, caspases and glutathione during curcumin-induced apoptosis and point to the superior role of caspase-8 activity, Bcl-xL down-regulation and glutathione depletion in the pro-apoptotic cascade leading to nSMase activation and generation of ceramide.
Collapse
Affiliation(s)
- Abo Bakr Abdel Shakor
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt; Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia.
| | - Mona Atia
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ali Saleh Alshehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Andrzej Sobota
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Mignard V, Lalier L, Paris F, Vallette FM. Bioactive lipids and the control of Bax pro-apoptotic activity. Cell Death Dis 2014; 5:e1266. [PMID: 24874738 PMCID: PMC4047880 DOI: 10.1038/cddis.2014.226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Lipids are key regulators of cell physiology through the control of many aspects of cellular life and survival. In particular, lipids have been implicated at different levels and through many different mechanisms in the cell death program called apoptosis. Here, we discuss the action of lipids in the regulation of the activation and the integration of Bax into the mitochondrial outer membrane, a key pro-apoptotic member of the BCL-2 family. We describe how, during apoptosis, lipids can act simultaneously or in parallel as receptors or ligands for Bax to stimulate or inhibit its pro-death activity.
Collapse
Affiliation(s)
- V Mignard
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
| | - L Lalier
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| | - F Paris
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| | - F M Vallette
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| |
Collapse
|
6
|
BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 2014; 28:1657-65. [PMID: 24451410 PMCID: PMC4131248 DOI: 10.1038/leu.2014.44] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/21/2013] [Accepted: 01/02/2014] [Indexed: 01/01/2023]
Abstract
Synergistic molecular vulnerabilities enhancing hypomethylating agents in myeloid malignancies have remained elusive. RNA-interference drug modifier screens identified antiapoptotic BCL-2 family members as potent 5-Azacytidine-sensitizing targets. In further dissecting BCL-XL, BCL-2 and MCL-1 contribution to 5-Azacytidine activity, siRNA silencing of BCL-XL and MCL-1, but not BCL-2, exhibited variable synergy with 5-Azacytidine in vitro. The BCL-XL, BCL-2 and BCL-w inhibitor ABT-737 sensitized most cell lines more potently compared with the selective BCL-2 inhibitor ABT-199, which synergized with 5-Azacytidine mostly at higher doses. Ex vivo, ABT-737 enhanced 5-Azacytidine activity across primary AML, MDS and MPN specimens. Protein levels of BCL-XL, BCL-2 and MCL-1 in 577 AML patient samples showed overlapping expression across AML FAB subtypes and heterogeneous expression within subtypes, further supporting a concept of dual/multiple BCL-2 family member targeting consistent with RNAi and pharmacologic results. Consequently, silencing of MCL-1 and BCL-XL increased the activity of ABT-199. Functional interrogation of BCL-2 family proteins by BH3 profiling performed on patient samples significantly discriminated clinical response versus resistance to 5-Azacytidine-based therapies. On the basis of these results, we propose a clinical trial of navitoclax (clinical-grade ABT-737) combined with 5-Azacytidine in myeloid malignancies, as well as to prospectively validate BH3 profiling in predicting 5-Azacytidine response.
Collapse
|
7
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
8
|
Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS One 2013; 8:e54525. [PMID: 23342165 PMCID: PMC3546986 DOI: 10.1371/journal.pone.0054525] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/12/2012] [Indexed: 01/29/2023] Open
Abstract
The identification of novel combinations of effective cancer drugs is required for the successful treatment of cancer patients for a number of reasons. First, many “cancer specific” therapeutics display detrimental patient side-effects and second, there are almost no examples of single agent therapeutics that lead to cures. One strategy to decrease both the effective dose of individual drugs and the potential for therapeutic resistance is to combine drugs that regulate independent pathways that converge on cell death. BCL2-like family members are key proteins that regulate apoptosis. We conducted a screen to identify drugs that could be combined with an inhibitor of anti-apoptotic BCL2-like proteins, ABT-263, to kill human leukemia cells lines. We found that the combination of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride, an inhibitor of glucosylceramide synthase, potently synergized with ABT-263 in the killing of multiple human leukemia cell lines. Treatment of cells with PDMP and ABT-263 led to dramatic elevation of two pro-apoptotic sphingolipids, namely ceramide and sphingosine. Furthermore, treatment of cells with the sphingosine kinase inhibitor, SKi-II, also dramatically synergized with ABT-263 to kill leukemia cells and similarly increased ceramides and sphingosine. Data suggest that synergism with ABT-263 requires accumulation of ceramides and sphingosine, as AMP-deoxynojirimycin, (an inhibitor of the glycosphingolipid pathway) did not elevate ceramides or sphingosine and importantly did not sensitize cells to ABT-263 treatment. Taken together, our data suggest that combining inhibitors of anti-apoptotic BCL2-like proteins with drugs that alter the balance of bioactive sphingolipids will be a powerful combination for the treatment of human cancers.
Collapse
|
9
|
Mullen TD, Jenkins RW, Clarke CJ, Bielawski J, Hannun YA, Obeid LM. Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J Biol Chem 2011; 286:15929-42. [PMID: 21388949 DOI: 10.1074/jbc.m111.230870] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death.
Collapse
Affiliation(s)
- Thomas D Mullen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
10
|
Won JS, Singh AK, Singh I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J Neurochem 2007; 103 Suppl 1:180-91. [DOI: 10.1111/j.1471-4159.2007.04822.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1758:2027-36. [PMID: 17161984 PMCID: PMC1766198 DOI: 10.1016/j.bbamem.2006.10.018] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 12/20/2022]
Abstract
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas D. Mullen
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
12
|
Husari AW, Dbaibo GS, Bitar H, Khayat A, Panjarian S, Nasser M, Bitar FF, El-Sabban M, Zaatari G, Mroueh SM. Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. Respir Res 2006; 7:100. [PMID: 16869980 PMCID: PMC1559609 DOI: 10.1186/1465-9921-7-100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 07/26/2006] [Indexed: 01/02/2023] Open
Abstract
Background The aim of the study is to examine the effect of limited and prolonged hyperoxia on neonatal rat lung. This is done by examining the morphologic changes of apoptosis, the expression of ceramide, an important mediator of apoptosis, the expression of inflammatory mediators represented by IL-1β and the expression of 2 proto-oncogenes that appear to modulate apoptosis (Bax and Bcl-2). Methods Newborn rats were placed in chambers containing room air or oxygen above 90% for 7 days. The rats were sacrificed at 3, 7 or 14 days and their lungs removed. Sections were fixed, subjected to TUNEL, Hoechst, and E-Cadherin Staining. Sections were also incubated with anti-Bcl-2 and anti-Bax antisera. Bcl-2 and Bax were quantitated by immunohistochemistry. Lipids were extracted, and ceramide measured through a modified diacylglycerol kinase assay. RT-PCR was utilized to assess IL-1β expression. Results TUNEL staining showed significant apoptosis in the hyperoxia-exposed lungs at 3 days only. Co-staining of the apoptotic cells with Hoechst, and E-Cadherin indicated that apoptotic cells were mainly epithelial cells. The expression of Bax and ceramide was significantly higher in the hyperoxia-exposed lungs at 3 and 14 days of age, but not at 7 days. Bcl-2 was significantly elevated in the hyperoxia-exposed lungs at 3 and 14 days. IL-1β expression was significantly increased at 14 days. Conclusion Exposure of neonatal rat lung to hyperoxia results in early apoptosis documented by TUNEL assay. The early rise in Bax and ceramide appears to overcome the anti-apoptotic activity of Bcl-2. Further exposure did not result in late apoptotic changes. This suggests that apoptotic response to hyperoxia is time sensitive. Prolonged hyperoxia results in acute lung injury and the shifting balance of ceramide, Bax and Bcl-2 may be related to the evolution of the inflammatory process.
Collapse
Affiliation(s)
- Ahmad W Husari
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Ghassan S Dbaibo
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
- Department of Biochemistry, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Hala Bitar
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Aline Khayat
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Shoghag Panjarian
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Michel Nasser
- Department of Physiology, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Fadi F Bitar
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Marwan El-Sabban
- Department of Human Morphology, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Ghazi Zaatari
- Pathology Department, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| | - Salman M Mroueh
- Department of Pediatrics, American University of Beirut-Medical Center, P.O. Box: 113-6044, Beirut 1107 2802, Lebanon
| |
Collapse
|
13
|
Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med 2006; 40:1875-88. [PMID: 16716889 DOI: 10.1016/j.freeradbiomed.2006.01.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/25/2006] [Accepted: 01/28/2006] [Indexed: 01/09/2023]
Abstract
Sphingolipids including ceramide and its derivatives such as ceramide-1-phosphate, glycosyl-ceramide, and sphinogosine (-1-phosphate) are now recognized as novel intracellular signal mediators for regulation of inflammation, apoptosis, proliferation, and differentiation. One of the important and regulated steps in these events is the generation of these sphingolipids via hydrolysis of sphingomyelin through the action of sphingomyelinases (SMase). Several lines of evidence suggest that reactive oxygen species (ROS; O2-, H2O2, and OH-,) and reactive nitrogen species (RNS; NO, and ONOO-) and cellular redox potential, which is mainly regulated by cellular glutathione (GSH), are tightly linked to the regulation of SMase activation. On the other hand, sphingolipids are also known to play an important role in maintaining cellular redox homeostasis through regulation of NADPH oxidase, mitochondrial integrity, and antioxidant enzymes. Therefore, this paper reviews the relationship between cellular redox and sphingolipid metabolism and its biological significance.
Collapse
Affiliation(s)
- Je-Seong Won
- Division of Developmental Neurological Disorder in Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Room 505, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
14
|
Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, Mazerolles C, Rischmann P, Teissié J, Malavaud B, Cuvillier O. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 2006; 65:11667-75. [PMID: 16357178 DOI: 10.1158/0008-5472.can-05-2702] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic chemotherapy was considered of modest efficacy in prostate cancer until the recent introduction of taxanes. We took advantage of the known differential effect of camptothecin and docetaxel on human PC-3 and LNCaP prostate cancer cells to determine their effect on sphingosine kinase-1 (SphK1) activity and subsequent ceramide/sphingosine 1-phosphate (S1P) balance in relation with cell survival. In vitro, docetaxel and camptothecin induced strong inhibition of SphK1 and elevation of the ceramide/S1P ratio only in cell lines sensitive to these drugs. SphK1 overexpression in both cell lines impaired the efficacy of chemotherapy by decreasing the ceramide/S1P ratio. Alternatively, silencing SphK1 by RNA interference or pharmacologic inhibition induced apoptosis coupled with ceramide elevation and loss of S1P. The differential effect of both chemotherapeutics was confirmed in an orthotopic PC-3/green fluorescent protein model established in nude mice. Docetaxel induced a stronger SphK1 inhibition and ceramide/S1P ratio elevation than camptothecin. This was accompanied by a smaller tumor volume and the reduced occurrence and number of metastases. SphK1-overexpressing PC-3 cells implanted in animals developed remarkably larger tumors and resistance to docetaxel treatment. These results provide the first in vivo demonstration of SphK1 as a sensor of chemotherapy.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/enzymology
- Adenocarcinoma/secondary
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Camptothecin/pharmacology
- Ceramides/metabolism
- Disease Models, Animal
- Docetaxel
- Flow Cytometry
- Green Fluorescent Proteins
- Humans
- Lysophospholipids/metabolism
- Male
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/enzymology
- Neoplasm Recurrence, Local/pathology
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/enzymology
- Neoplasms, Hormone-Dependent/secondary
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/pathology
- RNA Interference
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Taxoids/pharmacology
- Tumor Cells, Cultured
Collapse
|
15
|
Taha TA, Kitatani K, El-Alwani M, Bielawski J, Hannun YA, Obeid LM. Loss of sphingosine kinase‐1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 2005; 20:482-4. [PMID: 16507765 DOI: 10.1096/fj.05-4412fje] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activation of sphingosine kinase-1 (SK1) by overexpression or agonist stimulation promotes cell proliferation, survival, and anti-apoptosis. Studies on the function of endogenous SK1 are lacking. Endogenous SK1 has been shown to be down-regulated under stress, and knockdown of the enzyme reduces the percentage of viable MCF-7 breast cancer cells (Taha, T. A. et al. 2004. J. Biol. Chem. 279, 20546-20554). In this study, we examined the mechanisms by which SK1 loss affects the growth of cells. Knockdown of the enzyme by small interfering RNA caused cell cycle arrest and induced apoptosis. Cell death involved effector caspase activation, cytochrome c release and Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown upstream of the mitochondrial pathway of apoptosis. SK1 knockdown also induced significant increases in ceramide levels in whole cells and in mitochondria enriched fractions of cells. Inhibition of de novo sphingolipid biosynthesis with myriocin significantly attenuated Bax oligomerization and downstream caspase activation after SK1 loss. These studies for the first time implicate endogenous SK1 as an important survival enzyme in MCF-7 cells and link the biological consequences of knocking down the enzyme to its biochemical role as a regulator of sphingolipid metabolism.
Collapse
Affiliation(s)
- Tarek A Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kanj SS, Dandashi N, El-Hed A, Harik H, Maalouf M, Kozhaya L, Mousallem T, Tollefson AE, Wold WS, Chalfant CE, Dbaibo GS. Ceramide regulates SR protein phosphorylation during adenoviral infection. Virology 2005; 345:280-9. [PMID: 16271740 DOI: 10.1016/j.virol.2005.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/08/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
In this study, we show that adenoviral infection induced accumulation of the sphingolipid ceramide in a dose- and time-dependent manner. This accumulation preceded cell lysis, occurred in the absence of biochemical evidence of apoptosis, and was derived from de novo synthesis of ceramide. An adenovirus mutant that lacks the adenovirus death protein (ADP) produced ceramide accumulation in the absence of cell lysis. This suggested that ceramide accumulation was either driven by adenovirus or was a cellular stress response but was unlikely a result of cell death. The use of inhibitors of ceramide synthesis resulted in a significant delay in cell lysis, suggesting that ceramide was necessary for the lytic phase of the infection. Serine/arginine-rich (SR) proteins were dephosphorylated during the late phase of the viral cycle, and inhibitors of ceramide synthesis reversed this. These findings suggest that adenovirus utilizes the ceramide pathway to regulate SR proteins during infection.
Collapse
Affiliation(s)
- Souha S Kanj
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kolettas E, Skoufos I, Kontargiris E, Markopoulou S, Tzavaras T, Gonos ES. Bcl-2 but not clusterin/apolipoprotein J protected human diploid fibroblasts and immortalized keratinocytes from ceramide-induced apoptosis: role of p53 in the ceramide response. Arch Biochem Biophys 2005; 445:184-95. [PMID: 16297852 DOI: 10.1016/j.abb.2005.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 01/12/2023]
Abstract
The role of clusterin/apolipoprotein J (Clu/ApoJ) and Bcl-2 on C(2)-ceramide-induced apoptosis of embryonic human diploid fibroblasts, MRC-5 and immortalized adult skin keratinocytes, HaCaT was investigated. C(2)-ceramide-induced apoptosis of HaCaT in a time- and dose-dependent manner, while in MRC-5 only at higher concentrations. There was a dose-dependent accumulation of Clu/ApoJ and downregulation of Bcl-2 which correlated with C(2)-ceramide-induced apoptosis of MRC-5. While overexpression of Bcl-2 suppressed C(2)-ceramide-mediated apoptosis in both cell types, Clu/ApoJ failed to do so, accessed by morphological changes, DNA fragmentation and PARP cleavage. There was no change in the expression of endogenous p53 or p21(Waf1/Cip1) upon C(2)-ceramide treatment of MRC-5. However, mutant p53(143ala) increased the sensitivity of MRC-5 to C(2)-ceramide-induced apoptosis by markedly downregulating Bcl-2, pointing to a role for p53. These results suggested that whereas downregulation of Bcl-2 may be a crucial factor involved in C(2)-ceramide-induced apoptosis, accumulation of Clu/ApoJ may be a signal of stress response. Moreover, the ceramide-activated apoptotic pathway may be regulated by p53.
Collapse
Affiliation(s)
- Evangelos Kolettas
- Cell and Molecular Physiology Unit, Laboratory of Experimental Physiology, University of Ioannina Medical School, 45 110 Ioannina, Greece.
| | | | | | | | | | | |
Collapse
|
18
|
Goldkorn T, Ravid T, Khan EM. Life and death decisions: ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid Redox Signal 2005; 7:119-28. [PMID: 15650401 DOI: 10.1089/ars.2005.7.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reactive oxidants are associated with the pathogenesis of pulmonary diseases and affect various cell functions, from proliferation to apoptosis. We have shown that oxidants exert growth control on airway epithelial cells by modulating upstream receptor function. Additionally, hydrogen peroxide-mediated oxidative stress modulates ceramide levels to induce apoptosis in lung epithelium. Depletion of glutathione in lung epithelial cells results in ceramide accumulation, suggesting that ceramide elevation, coupled to oxidative stress, initiates apoptosis. While it is desirable to prevent cell death and tissue injury induced by oxidants in diseases such as asthma or acute respiratory distress syndrome, the opposite is sought in cancer. But oxidants may also activate growth factor receptors, enhancing cell proliferation and facilitating tumor promotion. Under oxidative stress, phosphorylation of the epidermal growth factor receptor (EGFR) is abrogated at tyrosine 1,045, the docking site for the ubiquitin ligase c-Cbl, rendering EGFR unable to recruit c-Cbl and be ubiquitylated and degraded. We thus proposed that this deficiency, which confers prolonged receptor signaling at the plasma membrane, links oxidative stress, EGFR, and tumorigenesis. Decoding the molecular interactions between oxidative stress and ceramide pathways and characterizing ubiquitylation control of receptor desensitization should provide new strategies for intervention in diverse pulmonary diseases and in diagnosing and eradicating cancer.
Collapse
Affiliation(s)
- Tzipora Goldkorn
- Signal Transduction, UC Davis School of Medicine, Davis, CA 95616, USA.
| | | | | |
Collapse
|
19
|
Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, Hannun YA. Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 2004; 279:25101-11. [PMID: 15051724 DOI: 10.1074/jbc.m313662200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that neutral sphingomyelinase 2 (nSMase2) functions as a bona fide neutral sphingomyelinase and that overexpression of nSMase2 in MCF7 breast cancer cells caused a decrease in cell growth (Marchesini, N., Luberto, C., and Hannun, Y. A. (2003) J. Biol. Chem. 278, 13775-13783). In this study, the role of endogenous nSMase2 in regulating growth arrest was investigated. The results show that endogenous nSMase2 mRNA was up-regulated approximately 5-fold when MCF7 cells became growth-arrested at confluence, and total neutral SMase activity was increased by 119 +/- 41% with respect to control. Cell cycle analysis showed that up-regulation of endogenous nSMase2 correlated with G(0)/G(1) cell cycle arrest and an increase in total ceramide levels (2.4-fold). Analysis of ceramide species showed that confluence caused selective increases in very long chain ceramide C(24:1) (370 +/- 54%) and C(24:0) (266 +/- 81%) during arrest. The role of endogenous nSMase2 in growth regulation and ceramide metabolism was investigated using short interfering RNA (siRNA)-mediated loss-of-function analysis. Down-regulation of nSMase2 with specific siRNA increased the cell population of cells in S phase of the cell cycle by 59 +/- 14% and selectively reverted the effects of growth arrest on the increase in levels of very long chain ceramides. Mechanistically, confluence arrest also induced hypophosphorylation of the retinoblastoma protein (6-fold) and induction of p21(WAF1) (3-fold). Down-regulation of nSMase2 with siRNA largely prevented the dephosphorylation of the retinoblastoma protein and the induction of p21(WAF1), providing a link between the action of nSMase2 and key regulators of cell cycle progression. Moreover, studies on nSMase2 localization in MCF7 cells showed that nSMase2 distributed throughout the cells in subconfluent, proliferating cultures. In contrast, nSMase2 became nearly exclusively located at the plasma membrane in confluent, contact-inhibited cells. Hence, we demonstrate for the first time that nSMase2 functions as a growth suppressor in MCF7 cells, linking confluence to the G(0)/G(1) cell cycle check point.
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kim SH, Kim SC, Kho YJ, Kwak SW, Lee HG, You SK, Woo JH, Choi YJ. C2-ceramide as a cell death inducer in HC11 mouse mammary epithelial cells. Cancer Lett 2004; 203:191-7. [PMID: 14732227 DOI: 10.1016/j.canlet.2003.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ceramide is a lipid mediator in cell proliferation, differentiation, and apoptosis in many cell lines. However, the molecular mechanisms for ceramide have not been clarified in HC11 mouse mammary epithelial cells. Under phase contrast microscope, C2-ceramide-treated cells clearly showed morphological changes, which were characteristic features of apoptosis. Treatment with C2-ceramide at 10 microM specifically resulted in the death of 50% of the cells after 48 h as assessed by MTT assay. To further investigate which genes contribute to cell death in C2-ceramide-treated cells, we used the reverse transcription-polymerase chain reaction to assess mRNA levels for five genes in the Bcl-2 family and five genes in the caspases family. The steady-state mRNA levels of Bax, Bad and Bak were not significantly changed for 48 h of C2-ceramide treatment. The increases of mRNA levels of Bcl-2 and Bcl-w were observed for the first 3 h of C2-ceramide treatment and the last 24 h between 24 and 48 h. We also found that in HC11 cells, C2-ceramide increased mRNA levels of the caspases family from 6 to 24 h. These results suggest that in the HC11 cells, C2-ceramide promote cell death by mediating the induction of caspases and that HC11 mouse mammary epithelial cells paradoxically up-regulate the expression of Bcl-2 and Bcl-w to prevent C2-ceramide-mediated cell death.
Collapse
Affiliation(s)
- Sung Hak Kim
- Department of Animal Science and Technology, School of Agricultural Biotechnology, Seoul National University, Suweon 441-744, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ravid T, Tsaba A, Gee P, Rasooly R, Medina EA, Goldkorn T. Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1082-92. [PMID: 12576296 PMCID: PMC4370276 DOI: 10.1152/ajplung.00172.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ceramide, the basic structural unit of sphingolipids, controls the balance between cell growth and death by inducing apoptosis. We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)) or by short-chain ceramide analogs, induces apoptosis of lung epithelial cells. Here we elucidate the link between caspase-3 activation, at the execution phase, and ceramide accumulation, at the commitment phase of apoptosis in A549 human lung adenocarcinoma cells. The induction of ceramide accumulation by various triggers of ceramide generation, such as H(2)O(2), C(6)-ceramide, or UDP-glucose-ceramide glucosyltransferase inhibitor dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, triggered the activation of caspase-3. This ceramide elevation also induced the cleavage of the death substrate poly(ADP-ribose) polymerase and was followed by apoptotic cell death. Ceramide-mediated apoptosis was blocked by a general caspase inhibitor, Boc-d-fluoromethylketone, and by overexpression of the antiapoptotic protein Bcl-2. Notably, overexpression of Bcl-2 reduced the basal cellular levels of ceramide and prevented the induction of ceramide generation by C(6)-ceramide, which implies ceramide generation as a possible target for the antiapoptotic effects of Bcl-2.
Collapse
Affiliation(s)
- Tommer Ravid
- Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Kim IK, Jung YK, Noh DY, Song YS, Choi CH, Oh BH, Masuda ES, Jung YK. Functional screening of genes suppressing TRAIL-induced apoptosis: distinct inhibitory activities of Bcl-XL and Bcl-2. Br J Cancer 2003; 88:910-7. [PMID: 12644829 PMCID: PMC2377084 DOI: 10.1038/sj.bjc.6600795] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is known to selectively induce apoptosis in various tumour cells. However, downstream-signalling of TRAIL-receptor is not well defined. A functional genetic screening was performed to isolate genes interfering with TRAIL-induced apoptosis using cDNA retroviral library. Bcl-X(L) and FLIP were identified after DNA sequencing analysis of cDNA rescued from TRAIL-resistant clones. We found that increased expression of Bcl-X(L), but not Bcl-2, suppressed TRAIL-induced apoptosis in tumour cells. Western blot and immunohistochemical analyses showed that expression of Bcl-X(L), but not Bcl-2, was highly increased in human breast cancer tissues. Exposure of MDA-MB-231 breast tumour cells to TRAIL induced apoptosis accompanied by dissipation of mitochondrial membrane potential and enzymatic activation of caspase-3, -8, and -9. However, SK-BR-3 breast tumour cells exhibiting increased expression level of Bcl-X(L) were resistant to TRAIL, though upon exposure to TRAIL, caspase-8 and Bid were activated. Forced expression of Bcl-X(L), but not Bcl-2, desensitised TRAIL-sensitive MDA-MB-231 cells to TRAIL. Similar inhibitory effects were also observed in other tumour cells such as HeLa and Jurkat cells stably expressing Bcl-X(L), but not Bcl-2. These results are indicative of the crucial and distinct function of Bcl-X(L) and Bcl-2 in the modulation of TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- I-K Kim
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| | - Y-K Jung
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
- Department of Life Science, Kwangju Institute of Science and Technology, 1 Oryong Puk-gu, Kwangju 500-712, Korea. E-mail:
| | - D-Y Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Y-S Song
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - C-H Choi
- Department of Pharmacology, College of Medicine, Chosun University, Kwangju, Korea
| | - B-H Oh
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - E S Masuda
- RIGEL Pharmaceutical Inc., South San Francisco, CA 94080, USA
| | - Y-K Jung
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, Korea
| |
Collapse
|
23
|
Abstract
Recent studies demonstrate a role for intracellular oxidation in the regulation of neutral sphingomyelinase (N-SMase). Glutathione (GSH) has been shown to regulate N-SMase in vitro and in cells. However, it has not been established whether the effects of GSH in cells are due to direct action on N-SMase. In this study, treatment of human mammary carcinoma MCF-7 cells with diamide, a thiol-depleting agent, caused a decrease in intracellular GSH and degradation of sphingomyelin (SM) to ceramide. The SM pool hydrolyzed in response to diamide belonged to the bacterial SMase-resistant pool of SM. Importantly, pretreatment of MCF-7 cells with GSH, N-acetylcysteine, an antioxidant, or GW69A, a specific N-SMase inhibitor, prevented diamide-induced degradation of SM to ceramide, suggesting that intracellular levels of GSH regulate the extent to which SM is degraded to ceramide and that this probably involves a GW69A-sensitive N-SMase. Unexpectedly, expression of Bcl-xL prevented tumor necrosis factor-alpha-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. Furthermore, Bcl-xL inhibited diamide-induced SM hydrolysis and ceramide accumulation but not the decrease in intracellular GSH. These results suggest that the site of action of Bcl-xL is downstream of GSH depletion and upstream of ceramide accumulation, and that GSH probably does not exert direct physiologic effects on N-SMase.
Collapse
Affiliation(s)
- Yasuo Okamoto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 173 Ashley Ave., 29425, USA
| | | | | |
Collapse
|
24
|
Kim SS, Chae HS, Bach JH, Lee MW, Kim KY, Lee WB, Jung YM, Bonventre JV, Suh YH. P53 mediates ceramide-induced apoptosis in SKN-SH cells. Oncogene 2002; 21:2020-8. [PMID: 11960374 DOI: 10.1038/sj.onc.1205037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 09/25/2001] [Accepted: 10/09/2001] [Indexed: 01/22/2023]
Abstract
Ceramide induces apoptotic cell death in a dose- and time-dependent manner in neuroblastoma SKN-SH cells. Pretreatment with caspase inhibitors blocks cell death, suggesting that a set of caspase activities including caspase 1, as well as caspase 3, are involved in ceramide-induced apoptosis in SKN-SH cells. Treatment with a caspase inhibitor 3 h after ceramide addition did not inhibit cell death, although caspase activity was substantially reduced. Ceramide-induced apoptosis is accompanied by accumulation of p53 followed by an increase of Bax and decrease of Bcl-2 levels. Inhibition of p53 expression with p53 antisense oligonucleotides inhibits apoptosis and prevents the increase in Bax and decrease in Bcl-2. Furthermore, pretreatment with p53 antisense oligonucleotides markedly inhibits the induction of caspase activity. These results suggest that p53 regulates the ratio Bcl-2/Bax and the expression/activation of caspases during ceramide-induced apoptosis in SKN-SH cells. Caspase inhibition did not alter the expression of p53, Bcl-2 and Bax. Thus ceramide-induced reduction in the Bcl-2/Bax ratio, increase in caspase activity, and apoptosis is dependent upon increases in cellular p53 levels which play a critical role in the regulation of apoptotic cell death.
Collapse
Affiliation(s)
- Sung Su Kim
- Department of Anatomy, College of Medicine, BioGrand Inc., MRC, Chung-Ang University, Seoul, Korea 156-756
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem 2001; 276:44848-55. [PMID: 11502750 DOI: 10.1074/jbc.m106291200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The search for potential targets for ceramide action led to the identification of ceramide-activated protein phosphatases (CAPP). To date, two serine/threonine protein phosphatases, protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), have been demonstrated to function as ceramide-activated protein phosphatases. In this study, we show that treatment with either anti-FAS IgM (CH-11) (150 ng/ml) or exogenous d-(e)-C(6-)ceramide (20 microm) induces the dephosphorylation of the PP1 substrates, serine/arginine-rich (SR) proteins, in Jurkat acute leukemia T-cells. The serine/threonine protein phosphatase inhibitor, calyculin A, but not the PP2A-specific inhibitor, okadaic acid, inhibited both FAS- and ceramide-induced dephosphorylation of SR proteins. Anti-FAS IgM treatment of Jurkat cells led to a significant increase in levels of endogenous ceramide beginning at 2 h with a maximal increase of 10-fold after 7 h. A 2-h pretreatment of Jurkat cells with fumonisin B(1) (100 microm), a specific inhibitor of CoA-dependent ceramide synthase, blocked 80% of the ceramide generated and completely inhibited the dephosphorylation of SR proteins in response to anti-FAS IgM. Moreover, pretreatment of Jurkat cells with myriocin, a specific inhibitor of serine-palmitoyl transferase (the first step in de novo synthesis of ceramide), also blocked FAS-induced SR protein dephosphorylation, thus demonstrating a role for de novo ceramide. These results were further supported using A549 lung adenocarcinoma cells treated with d-(e)-C(6-)ceramide. Dephosphorylation of SR proteins was inhibited by fumonisin B(1) and by overexpression of glucosylceramide synthase; again implicating endogenous ceramide generated de novo in regulating the dephosphorylation of SR proteins in response to FAS activation. These results establish a specific intracellular pathway involving both de novo ceramide generation and activation of PP1 to mediate the effects of FAS activation on SR proteins.
Collapse
Affiliation(s)
- C E Chalfant
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
26
|
Xu Z, Friess H, Solioz M, Aebi S, Korc M, Kleeff J, Büchler MW. Bcl-x(L) antisense oligonucleotides induce apoptosis and increase sensitivity of pancreatic cancer cells to gemcitabine. Int J Cancer 2001; 94:268-74. [PMID: 11668508 DOI: 10.1002/ijc.1447] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the leading causes of cancer-related death in Western countries. Bcl-x(L) is an anti-apoptotic factor of the Bcl-2 family, which is overexpressed in pancreatic cancer and its presence correlates with shorter patient survival. In this study, sequence-specific antisense oligonucleotides targeting the coding region of Bcl-x(L) were designed to examine whether apoptosis could be induced and chemosensitivity could be increased in pancreatic cancer cells. Five pancreatic cancer cell lines, Panc-1, MIA-PaCa-2, Capan-1, ASPC-1 and T3M4, were treated with Bcl-x(L) sense or antisense oligonucleotides and gemcitabine and the cell viability was examined by the SRB method. Apoptosis was determined using DAPI staining. In all examined pancreatic cancer cells, Bcl-x(L) expression was reduced after transfection of the antisense oligonucleotides. Cell death analysis using DAPI staining revealed that antisense, but not sense oligonucleotides caused apoptotic cell death. Furthermore, Bcl-x(L) antisense oligonucleotides enhanced the cytotoxic effects of gemcitabine in pancreatic cancer cells. Our results indicate that Bcl-x(L) antisense oligonucleotides effectively inhibited pancreatic cancer cell growth and caused apoptosis by reducing Bcl-x(L) protein levels. Bcl-x(L) antisense oligonucleotides also increased the chemosensitivity of pancreatic cancer cells, suggesting that Bcl-x(L) antisense therapy might be a potential future approach in this disease.
Collapse
Affiliation(s)
- Z Xu
- Department of Visceral and Transplantation Surgery, University of Berne, Inselspital, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA. Ceramide mediates tumor-induced dendritic cell apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3773-84. [PMID: 11564794 DOI: 10.4049/jimmunol.167.7.3773] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of apoptosis in dendritic cells (DC) is one of the escape mechanisms of tumor cells from the immune surveillance system. This study aimed to clarify the underlying mechanisms of tumor-induced DC apoptosis. The supernatants (SN) of murine tumor cell lines B16 (melanoma), MCA207, and MCA102 (fibrosarcoma) increased C16 and C24 ceramide as determined by electrospray mass spectrometry and induced apoptosis in bone marrow-derived DC. N-oleoylethanolamine or D-L-threo 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits acid ceramidase or glucosylceramide synthase and then increases endogenous ceramide, enhanced DC apoptosis and ceramide levels in the presence of tumor SN. Pretreatment with L-cycloserine, an inhibitor of de novo ceramide synthesis, or phorbol ester, 12-O-tetradecanoylphorbol-13-acetate reduced endogenous ceramide levels and protected DC from tumor-induced apoptosis. However, other DC survival factors, including LPS and TNF-alpha, failed to do so. The protective activity of 12-O-tetradecanoylphorbol-13-acetate is abrogated by pretreatment with phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Therefore, down-regulation of PI3K is the major facet of tumor-induced DC apoptosis. Tumor SN, N-oleoylethanolamine, or PDMP suppressed Akt, NF-kappaB, and bcl-x(L) in DC, suggesting that the accumulation of ceramide impedes PI3K-mediated survival signals. Taken together, ceramide mediates tumor-induced DC apoptosis by down-regulation of the PI3K pathway.
Collapse
Affiliation(s)
- T Kanto
- Department of Surgery, Division of Biologic Therapeutics and Surgical Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Andrieu-Abadie N, Gouazé V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med 2001; 31:717-28. [PMID: 11557309 DOI: 10.1016/s0891-5849(01)00655-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ceramide is one of the major sphingosine-based lipid second messengers that is generated in response to various extracellular agents. However, while widespread attention has focused on ceramide as a second messenger involved in the induction of apoptosis, important issues with regard to the mechanisms of ceramide formation and mode of action remain to be addressed. Several lines of evidence suggest that ceramide and oxidative stress are intimately related in cell death induction. This review focuses on the putative relationships between oxidative stress and sphingolipid metabolism in the apoptotic process and discusses the potential mechanisms that connect and regulate the two phenomena.
Collapse
Affiliation(s)
- N Andrieu-Abadie
- INSERM Unit 466, Laboratoire de Biochimie Médicale, Centre Hospitalier Universitaire de Rangueil, Toulouse, France.
| | | | | | | |
Collapse
|
29
|
Abstract
Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. In this study, we show that antisense bax inhibits cytochrome c release, poly(ADP-ribose)polymerase cleavage and cell death induced by ceramide in HL-60 cells. In addition, ceramide induces translocation of Bax to mitochondria. The addition of the broad spectrum caspase inhibitor zVAD-fmk prevented ceramide-induced apoptotic cell death but did not inhibit translocation of Bax and mitochondrial cytochrome c release. Furthermore, ceramide inhibits the expression of the antiapoptotic protein Bcl-xL with an increase in the ratio of Bax to Bcl-xL. These data provide direct evidence that Bax plays an important role in regulating ceramide-induced apoptosis.
Collapse
Affiliation(s)
- H J Kim
- Division of Biochemistry, College of Pharmacy, Chung-Ang Uuniversity, Seoul 156-756, South Korea
| | | | | | | | | |
Collapse
|
30
|
Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 2001; 503:7-12. [PMID: 11513845 DOI: 10.1016/s0014-5793(01)02625-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ceramide accumulation in the cell can occur from either hydrolysis of sphingomyelin or by de novo synthesis. In this study, we found that blocking de novo ceramide synthesis significantly inhibits ceramide accumulation and subsequent cell death in response to tumor necrosis factor alpha. When cells were pre-treated with glutathione, a proposed cellular regulator of neutral sphingomyelinase, inhibition of ceramide accumulation at early time points was achieved with attenuation of cell death. Inhibition of both pathways achieved near-complete inhibition of ceramide accumulation and cell death indicating that both pathways of ceramide generation are stimulated. This illustrates the complexity of ceramide generation in cytokine action.
Collapse
Affiliation(s)
- G S Dbaibo
- Department of Pediatrics, American University of Beirut, Lebanon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 2001; 40:4893-903. [PMID: 11305904 DOI: 10.1021/bi002836k] [Citation(s) in RCA: 374] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many enzymes of sphingolipid metabolism are regulated in response to extra- and intracellular stimuli and in turn serve as regulators of levels of bioactive lipids (such as sphingosine, ceramide, sphingosine 1-phosphate, and diacylglycerol), and as such, they serve a prototypical modular function in cell regulation. However, lipid metabolism is also closely interconnected in that a product of one enzyme serves as a substrate for another. Moreover, many cell stimuli regulate more than one of these enzymes, thus adding to the complexity of regulation of lipid metabolism. In this paper, we review the status of enzymes of sphingolipid metabolism in cell regulation and propose a role for these enzymes in integration of cell responses, a role that builds on the modular organization while also taking advantage of the complexity and interconnectedness of lipid metabolism, thus providing for a combinatorial mechanism of generating diversity in cell responses. This may be a general prototype for the involvement of metabolic pathways in cell regulation.
Collapse
Affiliation(s)
- Y A Hannun
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston 29425, USA.
| | | | | |
Collapse
|
32
|
Goldkorn T. Ceramide generation and apoptosis in autoimmunity. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1529-1049(01)00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Liu G, Kleine L, Hébert RL. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci 1999; 36:511-73. [PMID: 10656539 DOI: 10.1080/10408369991239240] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, the sphingolipid metabolites ceramide, sphingosine, ceramide 1-P, and sphingosine 1-P have been implicated as second messengers involved in many different cellular functions. Publications on this topic are appearing at a rapidly increasing rate and new developments in this field are also appearing rapidly. It is thus important to summarize the results obtained from many different laboratories and from different fields of research to obtain a clearer picture of the importance of sphingolipid metabolites. This article reviews the studies from the last few years and includes the effects of a variety of extracellular agents on sphingolipid signal transduction pathways in different tissues and cells and on the mechanisms of regulation. Sphingomyelin exists in a number of functionally distinct pools and is composed of distinct molecular species. Sphingomyelin metabolites may be formed by many different pathways. For example, the generation of ceramide from sphingomyelin can be catalyzed by at least five different sphingomyelinases. A large variety of stimuli can induce the generation of ceramide, leading to activation or inhibition of various cellular events such as proliferation, differentiation, apoptosis, and inflammation. The effect of ceramide on these physiological processes is due to its many different downstream targets. It can activate ceramide-activated protein kinases and ceramide-activated protein phosphatases. It also activates or inhibits PKCs, PLD, PLA2, PC-PLC, nitric oxide synthase, and the ERK and SAPK/JNK signaling cascades. Ceramide activates or inhibits transcription factors, modulates calcium homeostasis and interacts with the retinoblastoma protein to regulate cell cycle progression. Most of the work in this field has involved the study of ceramide effects, but the roles of the other three sphingomyelin metabolites is now attracting much attention. The complex interactions between signaling components and ceramide and the controls regulating these interactions are now being identified and are presented in this review.
Collapse
Affiliation(s)
- G Liu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
34
|
Tan J, Town T, Placzek A, Kundtz A, Yu H, Mullan M. Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer's beta-amyloid1-40 peptide in PC12 cells. Neurosci Lett 1999; 272:5-8. [PMID: 10507529 DOI: 10.1016/s0304-3940(99)00525-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that neuronal apoptosis induced by the Alzheimer's disease (AD) beta-amyloid peptide (Abeta) is related to alteration of the Bax/Bcl-2 ratio. It has been demonstrated that Bcl-X(L) (Bcl-X(L) = protein, bcl-X(L) = gene), a Bcl-2-related protein, prevents apoptosis in mammalian cells. Additionally, TGF-beta1 is able to protect cultured neuronal cells from Abeta-induced apoptosis via upregulation of bcl-X(L) and bcl-2 gene expression. We show that Abeta treatment (500 nM, freshly solubilized) results in apoptosis and necrosis in differentiated PC12 cells maintained with a low dose of NGF-beta (1 ng/ml). To investigate whether transfection of PC12 cells with bcl-X(L) could block Abeta-induced apoptosis, we transfected these cells with a bcl-X(L) construct (pcDNA-bcl-X(L)). Data show that bcl-X(L) significantly inhibits both early-stage apoptosis and late-stage apoptosis/necrosis produced by Abeta treatment (1000 nM) in pcDNA3-bcl-X(L)-transfected PC12 cells as compared with pcDNA3 vector-transfected PC12 cells. These results suggest that Bcl-X(L) exhibits both anti-necrotic as well as anti-apoptotic roles in Abeta-challenged PC12 cells.
Collapse
Affiliation(s)
- J Tan
- The Roskamp Institute, Tampa, FL 33613-4799, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Levade T, Jaffrézou JP. Signalling sphingomyelinases: which, where, how and why? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:1-17. [PMID: 10216276 DOI: 10.1016/s1388-1981(99)00038-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A major lipid signalling pathway in mammalian cells implicates the activation of sphingomyelinase (SMase), which upon cell stimulation hydrolyses the ubiquitous sphingophospholipid sphingomyelin to ceramide. This review summarizes our current knowledge on the nature and regulation of signalling SMase(s). Because of the controversy on the identity of this(these) phospholipase(s), the roles of various SMases in cell signalling are discussed. Special attention is also given to the subcellular site of action of signalling SMases and to the cellular factors that positively or negatively control their activity. These regulating agents include lipids (arachidonic acid, diacylglycerol and ceramide), kinases, proteases, glutathione and other proteins.
Collapse
Affiliation(s)
- T Levade
- INSERM Unit 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, Bât. L3, C.H.U. Rangueil, 1 Avenue Jean Poulhès, E 9910, Toulouse Cedex 4, France.
| | | |
Collapse
|
36
|
Tepper AD, de Vries E, van Blitterswijk WJ, Borst J. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest 1999; 103:971-8. [PMID: 10194469 PMCID: PMC408258 DOI: 10.1172/jci5457] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To evaluate the role of ceramide (Cer) in apoptosis signaling, we examined Cer formation induced by CD95, etoposide, or gamma-radiation (IR) in relation to caspase activation and mitochondrial changes in Jurkat T cells. The Cer response to all three stimuli was mapped in between caspases sensitive to benzoyloxycarbonyl-VAD-fluoromethylketone (zVAD-fmk) and acetyl-DEVD-aldehyde (DEVD-CHO). Cer production was independent of nuclear fragmentation but associated with the occurrence of other aspects of the apoptotic morphology. Caspase-8 inhibition abrogated Cer formation and apoptosis induced by CD95 but did not affect the response to etoposide or IR, placing CD95-induced Cer formation downstream from caspase-8 and excluding a role for caspase-8 in the DNA damage pathways. CD95 signaling to the mitochondria required caspase-8, whereas cytochrome c release in response to DNA damage was caspase-independent. These results indicate that the caspases required for the Cer response to etoposide and IR reside at or downstream from the mitochondria. Bcl-2 overexpression abrogated the Cer response to etoposide and IR and reduced CD95-induced Cer accumulation. We conclude that the Cer response to DNA damage fully depends on mitochondrion-dependent caspases, whereas the response to CD95 partially relies on these caspases. Our data imply that Cer is not instrumental in the activation of inducer caspases or signaling to the mitochondria. Rather, Cer formation is associated with the execution phase of apoptosis.
Collapse
Affiliation(s)
- A D Tepper
- Division of Cellular Biochemistry, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|