1
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
3
|
The Isoxazole Derivative of Usnic Acid Induces an ER Stress Response in Breast Cancer Cells That Leads to Paraptosis-like Cell Death. Int J Mol Sci 2022; 23:ijms23031802. [PMID: 35163724 PMCID: PMC8837022 DOI: 10.3390/ijms23031802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Derivatives of usnic acid (UA), a secondary metabolite from lichens, were synthesized to improve its anticancer activity and selectivity. Recently we reported the synthesis and activity of an UA isoxazole derivative, named 2b, against cancer cells of different origins. Herein, the molecular mechanisms underlying its activity and efficacy in vivo were tested. The viability of breast cancer or normal cells has been tested using an MTT assay. Cell and organelle morphology was analyzed using light, electron and fluorescence microscopy. Gene expression was evaluated by RNAseq and protein levels were evaluated by Western blotting. In vivo anticancer activity was evaluated in a mice xenograft model. We found that 2b induced massive vacuolization which originated from the endoplasmic reticulum (ER). ER stress markers were upregulated both at the mRNA and protein levels. ER stress was caused by the release of Ca2+ ions from the ER by IP3R channels which was mediated, at least partly, by phospholipase C (PLC)-synthetized 1,4,5-inositol triphosphate (IP3). ER stress led to cell death with features of apoptosis and paraptosis. When applied to nude mice with xenografted breast cancer cells, 2b stopped tumour growth. In mice treated with 2b, vacuolization was observed in tumour cells, but not in other organs. This study shows that the antiproliferative activity of 2b relates to the induction of ER stress in cancer, not in healthy, cells and it leads to breast cancer cell death in vitro and in vivo.
Collapse
|
4
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
5
|
Gammons J, Trebak M, Mancarella S. Cardiac-Specific Deletion of Orai3 Leads to Severe Dilated Cardiomyopathy and Heart Failure in Mice. J Am Heart Assoc 2021; 10:e019486. [PMID: 33849280 PMCID: PMC8174158 DOI: 10.1161/jaha.120.019486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Background Orai3 is a mammalian-specific member of the Orai family (Orai1‒3) and a component of the store-operated Ca2+ entry channels. There is little understanding of the role of Orai channels in cardiomyocytes, and its role in cardiac function remains unexplored. Thus, we developed mice lacking Orai1 and Orai3 to address their role in cardiac homeostasis. Methods and Results We generated constitutive and inducible cardiomyocyte-specific Orai3 knockout (Orai3cKO) mice. Constitutive Orai3-loss led to ventricular dysfunction progressing to dilated cardiomyopathy and heart failure. Orai3cKO mice subjected to pressure overload developed a fulminant dilated cardiomyopathy with rapid heart failure onset, characterized by interstitial fibrosis and apoptosis. Ultrastructural analysis of Orai3-deficient cardiomyocytes showed abnormal M- and Z-line morphology. The greater density of condensed mitochondria in Orai3-deficient cardiomyocytes was associated with the upregulation of DRP1 (dynamin-related protein 1). Cardiomyocytes isolated from Orai3cKO mice exhibited profoundly altered myocardial Ca2+ cycling and changes in the expression of critical proteins involved in the Ca2+ clearance mechanisms. Upregulation of TRPC6 (transient receptor potential canonical type 6) channels was associated with upregulation of the RCAN1 (regulator of calcineurin 1), indicating the activation of the calcineurin signaling pathway in Orai3cKO mice. A more dramatic cardiac phenotype emerged when Orai3 was removed in adult mice using a tamoxifen-inducible Orai3cKO mouse. The removal of Orai1 from adult cardiomyocytes did not change the phenotype of tamoxifen-inducible Orai3cKO mice. Conclusions Our results identify a critical role for Orai3 in the heart. We provide evidence that Orai3-mediated Ca2+ signaling is required for maintaining sarcomere integrity and proper mitochondrial function in adult mammalian cardiomyocytes.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Blotting, Western
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- DNA/genetics
- DNA Mutational Analysis
- Disease Models, Animal
- Gene Deletion
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Mice
- Mice, Knockout
- Microscopy, Electron, Transmission
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jesse Gammons
- Department of PhysiologyUniversity of Tennessee Health Science CenterMemphisTN
| | - Mohamed Trebak
- Department of Cellular and Molecular PhysiologyThe Pennsylvania State University College of MedicineHersheyPA
| | | |
Collapse
|
6
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
8
|
Xing F, Qu S, Liu J, Yang J, Hu F, Drevenšek-Olenik I, Pan L, Xu J. Intercellular Bridge Mediates Ca 2+ Signals between Micropatterned Cells via IP 3 and Ca 2+ Diffusion. Biophys J 2020; 118:1196-1204. [PMID: 32023438 DOI: 10.1016/j.bpj.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intercellular bridges are plasma continuities formed at the end of the cytokinesis process that facilitate intercellular mass transport between the two daughter cells. However, it remains largely unknown how the intercellular bridge mediates Ca2+ communication between postmitotic cells. In this work, we utilize BV-2 microglial cells planted on dumbbell-shaped micropatterned assemblies to resolve spatiotemporal characteristics of Ca2+ signal transfer over the intercellular bridges. With the use of such micropatterns, considerably longer and more regular intercellular bridges can be obtained than in conventional cell cultures. The initial Ca2+ signal is evoked by mechanical stimulation of one of the daughter cells. A considerable time delay is observed between the arrivals of passive Ca2+ diffusion and endogenous Ca2+ response in the intercellular-bridge-connected cell, indicating two different pathways of the Ca2+ communication. Extracellular Ca2+ and the paracrine pathway have practically no effect on the endogenous Ca2+ response, demonstrated by application of Ca2+-free medium, exogenous ATP, and P2Y13 receptor antagonist. In contrast, the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin and inositol trisphosphate (IP3) receptor blocker 2-aminoethyl diphenylborate significantly inhibit the endogenous Ca2+ increase, which signifies involvement of IP3-sensitive calcium store release. Notably, passive Ca2+ diffusion into the connected cell can clearly be detected when IP3-sensitive calcium store release is abolished by 2-aminoethyl diphenylborate. Those observations prove that both passive Ca2+ diffusion and IP3-mediated endogenous Ca2+ response contribute to the Ca2+ increase in intercellular-bridge-connected cells. Moreover, a simulation model agreed well with the experimental observations.
Collapse
Affiliation(s)
- Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Songyue Qu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Junfang Liu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute, Ljubljana, Slovenia
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China.
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Noh J, Chung JM. Modulation of Dopaminergic Neuronal Excitability by Zinc through the Regulation of Calcium-related Channels. Exp Neurobiol 2019; 28:578-592. [PMID: 31698550 PMCID: PMC6844832 DOI: 10.5607/en.2019.28.5.578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022] Open
Abstract
Depending on the intracellular buffering of calcium by chelation, zinc has the following two apparent effects on neuronal excitability: enhancement or reduction. Zinc increased tonic activity in the depolarized state when neurons were intracellularly dialyzed with EGTA but attenuated the neuronal activity when BAPTA was used as an intracellular calcium buffer. This suggests that neuronal excitability can be modulated by zinc, depending on the internal calcium buffering capacity. In this study, we elucidated the mechanisms of zinc-mediated alterations in neuronal excitability and determined the effect of calcium-related channels on zinc-mediated alterations in excitability. The zinc-induced augmentation of firing activity was mediated via the inhibition of small-conductance calcium-activated potassium (SK) channels with not only the contribution of voltage-gated L-type calcium channels (VGCCs) and ryanodine receptors (RyRs), but also through the activation of VGCCs via melastatin-like transient receptor potential channels. We suggest that zinc modulates the dopaminergic neuronal activity by regulating not only SK channels as calcium sensors, but also VGCCs or RyRs as calcium sources. Our results suggest that the cytosolic calcium-buffering capacity can tightly regulate zinc-induced neuronal firing patterns and that local calcium-signaling domains can determine the physiological and pathological state of synaptic activity in the dopaminergic system.
Collapse
Affiliation(s)
- Jihyun Noh
- Department of Science Education, Dankook University, Yongin 16890, Korea
| | - Jun-Mo Chung
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
10
|
Makarenko VV, Peng YJ, Khan SA, Nanduri J, Fox AP, Prabhakar NR. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol 2019; 122:1874-1883. [PMID: 31483699 DOI: 10.1152/jn.00435.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neonates, catecholamine (CA) secretion from adrenal medullary chromaffin cells (AMC) is an important mechanism for maintaining homeostasis during hypoxia. Nearly 90% of premature infants experience chronic intermittent hypoxia (IH) because of high incidence of apnea of prematurity, which is characterized by periodic stoppage of breathing. The present study examined the effects of repetitive hypoxia, designed to mimic apnea of prematurity, on CA release from AMC of neonatal rats. Neonatal rats were exposed to either control conditions or chronic intermittent hypoxia (IH) from ages postnatal days 0-5 (P0-P5), and CA release from adrenal medullary slices was measured after challenge with repetitive hypoxia (5 episodes of 30-s hypoxia, Po2 ~35 mmHg). In response to repetitive hypoxia, chronic IH-treated AMC exhibited sustained CA release, and this phenotype was not seen in control AMC. The sustained CA release was associated with long-lasting elevation of intracellular Ca2+ concentration ([Ca2+]i), which was due to store-operated Ca2+ entry (SOCE). 2-Aminoethoxydiphenyl borate, an inhibitor of SOCE, prevented the long-lasting [Ca2+]i elevation and CA release. Repetitive hypoxia increased H2O2 abundance, and polyethylene glycol (PEG)-catalase, a scavenger of H2O2 blocked this effect. PEG-catalase also prevented repetitive hypoxia-induced SOCE activation, sustained [Ca2+]i elevation, and CA release. These results demonstrate that repetitive hypoxia induces long-term facilitation of CA release in chronic IH-treated neonatal rat AMC through sustained Ca2+ influx mediated by SOCE.NEW & NOTEWORTHY Apnea of prematurity and the resulting chronic intermittent hypoxia are major clinical problems in neonates born preterm. Catecholamine release from adrenal medullary chromaffin cells maintains homeostasis during hypoxia in neonates. Our results demonstrate that chronic intermittent hypoxia induces a hitherto uncharacterized long-term facilitation of catecholamine secretion from neonatal rat chromaffin cells in response to repetitive hypoxia, simulating hypoxic episodes encountered during apnea of prematurity. The sustained catecholamine secretion might contribute to cardiovascular morbidities in infants with apnea of prematurity.
Collapse
Affiliation(s)
- Vladislav V Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Aaron P Fox
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
12
|
Henriquez M, Fonseca M, Perez-Zoghbi JF. Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J Physiol 2018; 596:2491-2506. [PMID: 29790164 DOI: 10.1113/jp274731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS We investigated the excitation-contraction coupling mechanisms in small pulmonary veins (SPVs) in rat precision-cut lung slices. We found that SPVs contract strongly and reversibly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced vasoconstriction in SPVs was associated with the stimulation of purinergic P2Y2 receptors in vascular smooth muscle cell, activation of phospholipase C-β and the generation of intracellular Ca2+ oscillations mediated by cyclic Ca2+ release events via the inositol 1,4,5-trisphosphate receptor. Active constriction of SPVs may play an important role in the development of pulmonary hypertension and pulmonary oedema. ABSTRACT The small pulmonary veins (SPVs) may play a role in the development of pulmonary hypertension and pulmonary oedema via active changes in SPV diameter, mediated by vascular smooth muscle cell (VSMC) contraction. However, the excitation-contraction coupling mechanisms during vasoconstrictor stimulation remain poorly understood in these veins. We used rat precision-cut lung slices and phase-contrast and confocal microscopy to investigate dynamic changes in SPV cross-sectional luminal area and intracellular Ca2+ signalling in their VSMCs. We found that the SPV (∼150 μm in diameter) contract strongly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced SPV contraction was fast, concentration-dependent, completely reversible upon ATP washout, and inhibited by purinergic receptor antagonists suramin and AR-C118925 but not by MRS2179. Immunofluorescence showed purinergic P2Y2 receptors expressed in SPV VSMCs. ATP-induced SPV contraction was inhibited by phospholipase Cβ inhibitor U73122 and accompanied by intracellular Ca2+ oscillations in the VSMCs. These Ca2+ oscillations and SPV contraction were inhibited by the inositol 1,4,5-trisphosphate receptor inhibitor 2-APB but not by ryanodine. The results of the present study suggest that ATP-induced vasoconstriction in SPVs is associated with the activation of purinergic P2Y2 receptors in VSMCs and the generation of Ca2+ oscillations.
Collapse
Affiliation(s)
- Mauricio Henriquez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Jonas KC, Chen S, Virta M, Mora J, Franks S, Huhtaniemi I, Hanyaloglu AC. Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers. Sci Rep 2018; 8:2239. [PMID: 29396488 PMCID: PMC5797151 DOI: 10.1038/s41598-018-20722-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
Signal crosstalk between distinct G protein-coupled receptors (GPCRs) is one mechanism that underlies pleiotropic signalling. Such crosstalk is also pertinent for GPCRs activated by gonadotrophic hormones; follicle-stimulating hormone (FSH) and luteinising hormone (LH), with specific relevance to female reproduction. Here, we demonstrate that gonadotrophin receptor crosstalk alters LH-induced Gαq/11-calcium profiles. LH-induced calcium signals in both heterologous and primary human granulosa cells were prolonged by FSHR coexpression via influx of extracellular calcium in a receptor specific manner. LHR/FSHR crosstalk involves Gαq/11 activation as a Gαq/11 inhibitor abolished calcium responses. Interestingly, the enhanced LH-mediated calcium signalling induced by FSHR co-expression was dependent on intracellular calcium store release and involved Gβγ. Biophysical analysis of receptor and Gαq interactions indicated that ligand-dependent association between LHR and Gαq was rearranged in the presence of FSHR, enabling FSHR to closely associate with Gαq following LHR activation. This suggests that crosstalk may occur via close associations as heteromers. Super-resolution imaging revealed that LHR and FSHR formed constitutive heteromers at the plasma membrane. Intriguingly, the ratio of LHR:FSHR in heterotetramers was specifically altered following LH treatment. We propose that functionally significant FSHR/LHR crosstalk reprograms LH-mediated calcium signalling at the interface of receptor-G protein via formation of asymmetric complexes.
Collapse
Affiliation(s)
- K C Jonas
- Centre for Medical and Biomedical Education, St George's, University of London, London, UK.,Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK
| | - S Chen
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK.,Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Zürich, Switzerland
| | - M Virta
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK
| | - J Mora
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK
| | - S Franks
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK
| | - I Huhtaniemi
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK.
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Dept. Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
14
|
Bernhardt ML, Padilla-Banks E, Stein P, Zhang Y, Williams CJ. Store-operated Ca 2+ entry is not required for fertilization-induced Ca 2+ signaling in mouse eggs. Cell Calcium 2017; 65:63-72. [PMID: 28222911 DOI: 10.1016/j.ceca.2017.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/01/2023]
Abstract
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
15
|
Bittremieux M, Gerasimenko JV, Schuermans M, Luyten T, Stapleton E, Alzayady KJ, De Smedt H, Yule DI, Mikoshiba K, Vangheluwe P, Gerasimenko OV, Parys JB, Bultynck G. DPB162-AE, an inhibitor of store-operated Ca 2+ entry, can deplete the endoplasmic reticulum Ca 2+ store. Cell Calcium 2017; 62:60-70. [PMID: 28196740 DOI: 10.1016/j.ceca.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 02/05/2023]
Abstract
Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.
Collapse
Affiliation(s)
- Mart Bittremieux
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Julia V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Marleen Schuermans
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Tomas Luyten
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Eloise Stapleton
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Kamil J Alzayady
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Humbert De Smedt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - David I Yule
- University of Rochester, Department of Pharmacology and Physiology, Rochester, NY 14642, USA
| | - Katsuhiko Mikoshiba
- The Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Peter Vangheluwe
- KU Leuven, Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, 3000 Leuven, Belgium
| | - Oleg V Gerasimenko
- Cardiff University, MCR Secretory Control Research Group, Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Han AY, Lee HS, Seol GH. Foeniculum vulgare Mill. increases cytosolic Ca 2+ concentration and inhibits store-operated Ca 2+ entry in vascular endothelial cells. Biomed Pharmacother 2016; 84:800-805. [PMID: 27721178 DOI: 10.1016/j.biopha.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
This study assessed the effects of essential oil of Foeniculum vulgare Mill. (fennel oil) and of trans-anethole, the main component of fennel oil, on extracellular Ca2+-induced store-operated Ca2+ entry (SOCE) into vascular endothelial (EA) cells and their mechanisms of action. Components of fennel oil were analyzed by gas chromatography-mass spectrometry. Cytosolic Ca2+ concentration ([Ca2+]c) in EA cells was determined using Fura-2 fluorescence. In the presence of extracellular Ca2+, fennel oil significantly increased [Ca2+]c in EA cells; this increase was significantly inhibited by the Ca2+ channel blockers La3+ and nifedipine. In contrast, fennel oil induced [Ca2+]c was significantly lower in Ca2+-free solution, suggesting that fennel oil increases [Ca2+]c mainly by enhancing Ca2+ influx into EA cells. [Ca2+]c mobilization by trans-anethole was similar to that of fennel oil. Moreover, SOCE was suppressed by fennel oil and trans-anethole. SOCE was also attenuated by lanthanum (La3+), a non-selective cation channel (NSC) blocker; 2-aminoethoxydiphenyl borane (2-APB), an inositol 1,4,5-triphosphate (IP3) receptor inhibitor and SOCE blocker; and U73122, an inhibitor of phospholipase C (PLC). Further, SOCE was more strongly inhibited by La3+ plus fennel oil or trans-anethole than by La3+ alone. These findings suggest that fennel oil and trans-anethole significantly inhibit SOCE-induced [Ca2+]c increase in vascular endothelial cells and that these reactions may be mediated by NSC, IP3-dependent Ca2+ mobilization, and PLC activation.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Hasan MA, Ahn WG, Song DK. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:449-57. [PMID: 27610031 PMCID: PMC5014991 DOI: 10.4196/kjpp.2016.20.5.449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022]
Abstract
N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.
Collapse
Affiliation(s)
- Md Ashraful Hasan
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Won-Gyun Ahn
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium 2016; 60:1-12. [DOI: 10.1016/j.ceca.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
|
19
|
Abstract
Aberrant Ca(2+) release-activated Ca(2+) (CRAC) channel activity has been implicated in a number of human disorders, including immunodeficiency, autoimmunity, occlusive vascular diseases and cancer, thus placing CRAC channels among the important targets for the treatment of these disorders. We briefly summarize herein the molecular basis and activation mechanism of CRAC channel and focus on discussing several pharmacological inhibitors of CRAC channels with respect to their biological activity, mechanisms of action and selectivity over other types of Ca(2+) channel in different types of cells.
Collapse
|
20
|
Slow sulfide donor GYY4137 differentiates NG108-15 neuronal cells through different intracellular transporters than dbcAMP. Neuroscience 2016; 325:100-10. [PMID: 27038748 DOI: 10.1016/j.neuroscience.2016.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/20/2022]
Abstract
Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. NG108-15 cell line is a reliable model of cholinergic neuronal cells. These cells differentiate to a neuronal phenotype due to the dibutyryl cAMP (dbcAMP) treatment. We have shown that a slow sulfide donor - GYY4137 - can also act as a differentiating factor in NG108-15 cell line. Calcium is an unavoidable ion required in NG108-15 cell differentiation by both, dbcAMP and GYY4137, since cultivation in EGTA completely prevented differentiation of these cells. In this work we focused primarily on the role of reticular calcium in the process of NG108-15 cell differentiation. We have found that dbcAMP and also GYY4137 decreased reticular calcium concentration by different mechanisms. GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.
Collapse
|
21
|
DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonate) directly inhibits caspase activity in HeLa cell lysates. Cell Death Discov 2015; 1:15037. [PMID: 27551467 PMCID: PMC4979491 DOI: 10.1038/cddiscovery.2015.37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/08/2022] Open
Abstract
Apoptosis is an important mechanism of cell demise in multicellular organisms and Cl(-) transport has an important role in the progression of the apoptotic volume decrease (AVD). DIDS (4,4'-Diisothiocyanatostilbene-2,2'-disulfonate) is one of the most commonly used Cl(-) transport inhibitors that eliminates or reduces different apoptotic hallmarks such as AVD, caspase-3 activity and DNA fragmentation. DIDS is also a protein crosslinker that alkylates either amino or thiol groups. Since caspases are thiol proteases, our aim was to study whether DIDS could directly inhibit the activity of these proteases. Here, we show that caspase activity induced by 4 h incubation with staurosporine was inhibited by DIDS in HeLa cells that were maintained in the absence of serum for 24 h. Interestingly, the caspase-inhibitory effect of DIDS is downstream to the inhibition of cytochrome c release, suggesting that DIDS might be also acting at the apoptosome. Moreover, DIDS was able to inhibit capase-3, -9, and -8 activities in cell lysates, implying that DIDS can react with and directly block caspases. Our data suggest that antiapoptotic activity of DIDS involves not only inhibition of the voltage-dependent anion channel (VDAC) at the mitochondria and Cl(-) channels at the plasma membrane, but also a third mechanism based on the direct inhibition of caspases.
Collapse
|
22
|
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2014; 57:217-27. [PMID: 25497594 DOI: 10.1016/j.jbior.2014.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
23
|
Saleem H, Tovey SC, Molinski TF, Taylor CW. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol 2014; 171:3298-312. [PMID: 24628114 PMCID: PMC4080982 DOI: 10.1111/bph.12685] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca(2+) channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood. EXPERIMENTAL APPROACH IP3-evoked Ca(2+) release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca(2+) indicator. The effects of commonly used antagonists on IP3-evoked Ca(2+) release and (3) H-IP3 binding were characterized. KEY RESULTS Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca(2+) release via any IP3R subtype. CONCLUSIONS AND IMPLICATIONS Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs.
Collapse
Affiliation(s)
- Huma Saleem
- Department of Pharmacology, University of CambridgeCambridge, UK
| | - Stephen C Tovey
- Department of Pharmacology, University of CambridgeCambridge, UK
| | | | - Colin W Taylor
- Department of Pharmacology, University of CambridgeCambridge, UK
| |
Collapse
|
24
|
Zhou J, Perelman JM, Kolosov VP, Zhou X. Neutrophil elastase induces MUC5AC secretion via protease-activated receptor 2. Mol Cell Biochem 2013; 377:75-85. [PMID: 23392769 DOI: 10.1007/s11010-013-1572-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/18/2013] [Indexed: 01/26/2023]
Abstract
Mucus hypersecretion is a major manifestation in patients with chronic inflammatory airway diseases, and mucin5AC (MUC5AC) protein is a major component of airway mucus. Previous studies have demonstrated that neutrophil elastase (NE) stimulates the secretion of MUC5AC from airway epithelial cells, however, the mechanism is poorly understood. NE is a known ligand for protein active receptors (PARs), which have been confirmed to participate in releasing MUC5AC in the airways. However, the role of PARs in NE-induced MUC5AC secretion remains unclear. We demonstrated that airway goblet-like Calu-3 cells express PAR1, PAR2, and PAR3 with a predominant level of PAR2. NE can increase PAR2 expression and MUC5AC release. In our study, we showed that NE binding to PAR2 can increase the cytosolic calcium concentration and subsequently activate PKC, leading to MUC5AC secretion. In order to investigate the mechanism of increased cytosolic calcium in Calu-3 cells, thapsigargin was used to exhaust the endoplasmic reticulum (ER) calcium pools, and 2-aminoethoxydiphenyl borate was used to inhibit the function of the store-operated calcium entry (SOCE) channels in the plasma membrane. We found that the NE-induced increase in intracellular calcium concentration is derived from release of the ER calcium pool and its subsequent calcium internal flux from the extracellular space via SOCE channels, which is dependent on sufficient levels of extracellular calcium.
Collapse
Affiliation(s)
- Jia Zhou
- Division of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.
| | | | | | | |
Collapse
|
25
|
Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade. PLoS One 2012; 7:e29813. [PMID: 22235344 PMCID: PMC3250494 DOI: 10.1371/journal.pone.0029813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/05/2011] [Indexed: 12/03/2022] Open
Abstract
Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.
Collapse
|
26
|
Abstract
The field of agonist-activated Ca(2+) entry in non-excitable cells underwent a revolution some 5 years ago with the discovery of the Orai proteins as the essential pore-forming components of the low-conductance, highly Ca(2+)-selective CRAC channels whose activation is dependent on depletion of intracellular stores. Mammals possess three distinct Orai proteins (Orai1, 2 and 3) of which Orai3 is unique to this class, apparently evolving from Orai1. However, the sequence of Orai3 shows marked differences from that of Orai1, particularly in those regions of the protein outside of the essential pore-forming domains. Correspondingly, studies from several different groups have indicated that the inclusion of Orai3 is associated with the appearance of conductances that display unique features in their gating, selectivity, regulation and mode of activation. In this Topical Review, these features are discussed with the purpose of proposing that the evolutionary appearance of Orai3 in mammals, and the consequent development of conductances displaying novel properties - whether formed by Orai3 alone or in conjunction with the other Orai proteins - is associated with the specific role of this member of the Orai family in a unique range of distinct cellular activities.
Collapse
Affiliation(s)
- Trevor J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Abstract
The SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) is probably the most extensively studied membrane protein transporter. There is a vast array of diverse inhibitors for the Ca2+ pump, and many have proved significant in helping to elucidate both the mechanism of transport and gaining conformational structures. Some SERCA inhibitors such as thapsigargin have been used extensively as pharmacological tools to probe the roles of Ca2+ stores in Ca2+ signalling processes. Furthermore, some inhibitors have been implicated in the cause of diseases associated with endocrine disruption by environmental pollutants, whereas others are being developed as potential anticancer agents. The present review therefore aims to highlight some of the wide range of chemically diverse inhibitors that are known, their mechanisms of action and their binding location on the Ca2+ ATPase. Additionally, some ideas for the future development of more useful isoform-specific inhibitors and anticancer drugs are presented.
Collapse
|
28
|
Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:105-11. [PMID: 20473382 DOI: 10.4196/kjpp.2010.14.2.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 01/10/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) modulate Ca(2+) release from intracellular Ca(2+) store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block InsP(3)Rs, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) entry through store-operated Ca(2+) (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the Ca(2+) entry, but significantly inhibited carbamylcholine (CCh)-induced Ca(2+) release. In contrast, 2-APB did not block CCh-induced Ca(2+) release, but remarkably blocked SOC-mediated Ca(2+) entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP(3)-induced Ca(2+) release, but 2-APB at lower concentration, which effectively blocked Ca(2+) entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of InsP(3)-induced Ca(2+) release and direct stimulation of Ca(2+) release. Based on the results, we concluded that caffeine is useful as an inhibitor of InsP(3)R, and 2-APB at lower concentration is considered a blocker of Ca(2+) entry through SOC channels in the pancreatic acinar cell.
Collapse
Affiliation(s)
- Kyung Jin Choi
- Department of Physiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | |
Collapse
|
29
|
Goto JI, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium 2009; 47:1-10. [PMID: 19945161 DOI: 10.1016/j.ceca.2009.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/24/2022]
Abstract
Store-operated calcium entry (SOCE) or calcium release-activated calcium current (I(CRAC)) is a critical pathway to replenish intracellular calcium stores, and plays indispensable roles in cellular functions such as antigen-induced T lymphocyte activation. Despite the importance of I(CRAC) in cellular functions, lack of potent and specific inhibitor has limited the approaches to the function of I(CRAC) in native cells. 2-Aminoethyl diphenylborinate (2-APB) is a widely used SOCE/I(CRAC) inhibitor, while its effect is rather unspecific. In the attempt to develop more potent and selective compounds here we identified two structurally isomeric 2-APB analogues that are 100-fold more potent than 2-APB itself. One of the 2-APB analogues activates and inhibits endogenous SOCE depending on the concentration while the other only inhibits it. The 2-APB analogue inhibits store depletion-mediated STIM1 clustering as well as heterologously expressed CRAC current. Together with the observation that, unlike 2-APB, the analogue compounds failed to activate CRACM3/Orai3 current in the absence of STIM, our results suggest that inhibition and activation of SOCE/I(CRAC) by the 2-APB analogues is mediated by STIM.
Collapse
Affiliation(s)
- Jun-Ichi Goto
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The Ca2+release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel expressed in T cells, mast cells, and various other tissues. CRAC channels regulate critical cellular processes such as gene expression, motility, and the secretion of inflammatory mediators. The identification of Orai1, a key subunit of the CRAC channel pore, and STIM1, the endoplasmic reticulum (ER) Ca2+ sensor, have provided the tools to illuminate the mechanisms of regulation and the pore properties of CRAC channels. Recent evidence indicates that the activation of CRAC channels by store depletion involves a coordinated series of steps, which include the redistributions of STIM1 and Orai1, direct physical interactions between these proteins, and conformational changes in Orai1, culminating in channel activation. Additional studies have revealed that the high Ca2+ selectivity of CRAC channels arises from the presence of an intrapore Ca2+ binding site, the properties of which are finely honed to occlude the permeation of the much more prevalent Na+. Structure-function studies have led to the identification of the potential pore-binding sites for Ca2+, providing a firm framework for understanding the mechanisms of selectivity and gating of the CRAC channel. This review summarizes recent progress in understanding the mechanisms of CRAC channel activation, pore properties, and modulation.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Zanetti N, Mayorga LS. Acrosomal Swelling and Membrane Docking Are Required for Hybrid Vesicle Formation During the Human Sperm Acrosome Reaction1. Biol Reprod 2009; 81:396-405. [DOI: 10.1095/biolreprod.109.076166] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
32
|
Lang RJ, Hashitani H, Tonta MA, Bourke JL, Parkington HC, Suzuki H. Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol 2009; 37:509-15. [PMID: 19515061 DOI: 10.1111/j.1440-1681.2009.05226.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Peristalsis in the smooth muscle cell (SMC) wall of the pyeloureteric system is unique in physiology in that the primary pacemaker resides in a population of atypical SMCs situated near the border of the renal papilla. 2. Atypical SMCs display high-frequency Ca(2+) transients upon the spontaneous release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))-dependent stores that trigger cation-selective spontaneous transient depolarizations (STDs). In the presence of nifedipine, these Ca(2+) transients and STDs seldom propagate > 100 mum. Synchronization of STDs in neighbouring atypical SMCs into an electrical signal that can trigger action potential discharge and contraction in the typical SMC layer involves a coupled oscillator mechanism dependent on Ca(2+) entry through L-type voltage-operated Ca(2+) channels. 3. A population of spindle- or stellate-shaped cells, immunopositive for the tyrosine receptor kinase kit, is sparsely distributed throughout the pyeloureteric system. In addition, Ca(2+) transients and action potentials of long duration occurring at low frequencies have been recorded in a population of fusiform cells, which we have termed interstitial cells of Cajal (ICC)-like cells. 4. The electrical and Ca(2+) signals in ICC-like cells are abolished upon blockade of Ca(2+) release from either IP(3)- or ryanodine-dependent Ca(2+) stores. However, the spontaneous Ca(2+) signals in atypical SMCs or ICC-like cells are little affected in W/W(-v) transgenic mice, which have extensive lesions of their intestinal ICC networks. 5. In summary, we have developed a model of pyeloureteric pacemaking in which atypical SMCs are indeed the primary pacemakers, but the function of ICC-like cells has yet to be determined.
Collapse
Affiliation(s)
- Richard J Lang
- Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Wang S, Zhang Y, Wier WG, Yu X, Zhao M, Hu H, Sun L, He X, Wang Y, Wang B, Zang W. Role of store-operated Ca(2+) entry in adenosine-induced vasodilatation of rat small mesenteric artery. Am J Physiol Heart Circ Physiol 2009; 297:H347-54. [PMID: 19429831 DOI: 10.1152/ajpheart.00060.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) has recently been proposed to contribute to Ca(2+) influx in vascular smooth muscle cells (VSMCs). Adenosine is known for its protective role against hypoxia and ischemia by increasing nutrient and oxygen supply through vasodilation. This study was designed to examine the hypothesis that SOCE have a functional role in adenosine-induced vasodilation. Small mesenteric resistance arteries and mesenteric VSMCs were obtained from rats. Isometric tensions of isolated artery rings were measured by a sensitive myograph system. Laser-scanning confocal microscopy was used to determine the intracellular Ca(2+) concentration of fluo 3-loaded VSMCs. Adenosine (0.1-100 microM) relaxed artery rings that were precontracted by phenylephrine in a concentration-dependent manner. In cultured mesenteric VSMCs, passive store depletion by thapsigargin and active store depletion by phenylephrine both induced Ca(2+) influx due to SOCE. Adenosine inhibited SOCE-mediated increases in cytosolic Ca(2+) levels evoked by the emptying of the stores. In isolated artery rings, adenosine inhibited SOCE-induced contractions due to store depletion. A(2A) receptor antagonism with SCH-58261 and adenylate cyclase inhibition with SQ-22536 largely attenuated adenosine responses. The cAMP analog 8-bromo-cAMP mimicked the effects of adenosine on SOCE. Our results indicate a novel mechanism of vasodilatation by adenosine that involves regulation of SOCE through the cAMP signaling pathway due to activation of adenosine A(2A) receptors.
Collapse
Affiliation(s)
- Shengpeng Wang
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RNS. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol 2009; 156:626-37. [PMID: 19226254 DOI: 10.1111/j.1476-5381.2008.00066.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Ginsenosides are used widely for medicinal purposes, but the mechanisms of their action are still unclear, although there is some evidence that these effects are mediated by nuclear receptors. Here we examined whether two metabolites of ginsenoside, protopanaxadiol (g-PPD) and protopanaxatriol (g-PPT), could modulate endothelial cell functions through the glucocorticoid receptor (GR) and oestrogen receptor (ER). EXPERIMENT APPROACHES: The effects of g-PPD and g-PPT on intracellular calcium ion concentration ([Ca(2+)](i)) and nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) were measured using Fura-2-acetoxymethyl ester, 4-amino-5-methylamino-2',7'-difluorofluorescein and Griess reagent. Effects on expression of GR and ER isoforms in HUVECs were determined using reverse transcriptase-/real-time PCR and immunocytochemistry. Phosphorylation of endothelial NO synthase (eNOS) was assessed by Western blotting. RESULTS Ginsenoside protopanaxadiol and g-PPT increased [Ca(2+)](i), eNOS phosphorylation and NO production in HUVECs, which were inhibited by the GR antagonist, RU486, the ER antagonist, ICI 182,780 and siRNA targeting GR or ERbeta. The NO production was Ca(2+)-dependent and the [Ca(2+)](i) elevation in HUVECs resulted from both intracellular Ca(2+) release and extracellular Ca(2+) influx. CONCLUSIONS AND IMPLICATIONS Ginsenoside protopanaxadiol and g-PPT were functional ligands for both GR and ERbeta, through which these ginsenoside metabolites exerted rapid, non-genomic effects on endothelial cells.
Collapse
Affiliation(s)
- Kar Wah Leung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
35
|
Barritt GJ, Litjens TL, Castro J, Aromataris E, Rychkov GY. Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol 2009; 36:77-83. [PMID: 19196257 DOI: 10.1111/j.1440-1681.2008.05095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Oscillatory increases in the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) play essential roles in the hormonal regulation of liver cells. Increases in [Ca(2+)](cyt) require Ca(2+) release from the endoplasmic reticulum (ER) and Ca(2+) entry across the plasma membrane. 2. Store-operated Ca(2+) channels (SOCs), activated by a decrease in Ca(2+) in the ER lumen, are responsible for maintaining adequate ER Ca(2+). Experiments using patch-clamp recording and the fluorescent Ca(2+) reporter fura-2 indicate there is only one type of SOC in rat liver cells. These SOCs have a high selectivity for Ca(2+) and properties essentially indistinguishable from those of Ca(2+) release-activated Ca(2+) (CRAC) channels. 3. Although Orai1, a CRAC channel pore protein, and stromal interaction molecule 1 (STIM1), a CRAC channel Ca(2+) sensor, are components of liver cell SOCs, the mechanism of activation of SOCs, and in particular the role of subregions of the ER, are not well understood. 4. Recent experiments have used the transient receptor potential vanilloid 1 (TRPV1) non-selective cation channel, ectopically expressed in liver cells, and a choleretic bile acid to deplete Ca(2+) from different ER subregions. The results of these studies have provided evidence that only a small component of the ER is required for STIM1 redistribution and the activation of SOCs. 5. It is concluded that different Ca(2+) microdomains in the ER and cytoplasmic space are important in both the activation of SOCs and in the signalling actions of Ca(2+) in liver cells. Future experiments will investigate the nature of these microdomains further.
Collapse
Affiliation(s)
- Greg J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
36
|
Scrimgeour N, Litjens T, Ma L, Barritt GJ, Rychkov GY. Properties of Orai1 mediated store-operated current depend on the expression levels of STIM1 and Orai1 proteins. J Physiol 2009; 587:2903-18. [PMID: 19403622 DOI: 10.1113/jphysiol.2009.170662] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two cellular proteins, stromal interaction molecule 1 (STIM1) and Orai1, are recently discovered essential components of the Ca2+ release activated Ca2+ (CRAC) channel. Orai1 polypeptides form the pore of the CRAC channel, while STIM1 plays the role of the endoplasmic reticulum Ca2+ sensor required for activation of CRAC current (I(CRAC)) by store depletion. It is not known, however, if the role of STIM1 is limited exclusively to Ca2+ sensing, or whether interaction between Orai1 and STIM1, either direct or indirect, also defines the properties of I(CRAC). In this study we investigated how the relative expression levels of ectopic Orai1 and STIM1 affect the properties of I(CRAC). The results show that cells expressing low Orai1 : STIM1 ratios produce I(CRAC) with strong fast Ca2+-dependent inactivation, while cells expressing high Orai1 : STIM1 ratios produce I(CRAC) with strong activation at negative potentials. Moreover, the expression ratio of Orai1 and STIM1 affects Ca2+, Ba2+ and Sr2+ conductance, but has no effect on the current in the absence of divalent cations. The results suggest that several key properties of Ca2+ channels formed by Orai1 depend on its interaction with STIM1, and that the stoichiometry of this interaction may vary depending on the relative expression levels of these proteins.
Collapse
Affiliation(s)
- N Scrimgeour
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
37
|
Ouyang Q, Sato H, Murata Y, Nakamura A, Ozaki M, Nakamura T. Contribution of the inositol 1,4,5-trisphosphate transduction cascade to the detection of "bitter" compounds in blowflies. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:309-16. [PMID: 19275942 DOI: 10.1016/j.cbpa.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Bitter taste detection is very important for many species including flies, because it prevents the ingestion of toxic food. Although it has been known that flies have specific bitter-sensitive taste cells in their contact chemosensilla, the mechanism by which those cells transduce the chemical signal into electrical activity has remained elusive. In this study, we first confirmed that type D4 and D5 tarsal chemosensilla of the blowfly Phormia regina responded well to bitter substances. Then, recording impulses from type D4 chemosensilla, we examined the possibility that a G-protein-coupled inositol 1,4,5-trisphosphate (IP(3))-dependent transduction cascade is of importance in the bitter-sensitive taste cells. We found that the response to bitter substances was depressed by specific inhibitors of G-protein, phospholipase C, or IP(3) receptor in the tarsal taste receptor cells. These results suggest that G-proteins mediate the IP(3) pathway in the transduction cascade in bitter-sensitive receptor cells.
Collapse
Affiliation(s)
- Qin Ouyang
- Department of Information Network Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | | | | | | | | | | |
Collapse
|
38
|
von der Weid PY, Rahman M, Imtiaz MS, van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol 2008; 295:H1989-2000. [PMID: 18790842 DOI: 10.1152/ajpheart.00007.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Guinea pig mesenteric lymphatic vessels exhibit rhythmic constrictions induced by action potential (AP)-like spikes and initiated by entrainment of spontaneous transient depolarizations (STDs). To characterize STDs and the signaling mechanisms responsible for their occurrence, we used intracellular microelectrodes, Ca2+ imaging, and pharmacological agents. In our investigation of the role of intracellular Ca2+ released from Ca2+ stores, we observed that intracellular Ca2+ transients accompanied some STDs, although there were many exceptions where Ca2+ transients occurred without accompanying STDs. STD frequency and amplitude were markedly affected by activators/inhibitors of inositol 1,4,5-trisphosphate receptors (IP3Rs) but not by treatments known to alter Ca2+ release via ryanodine receptors. A role for Ca2+-activated Cl(-) (Cl(Ca)) channels was indicated, as STDs were dependent on the Cl(-) but not Na+ concentration of the superfusing solution and were inhibited by the Cl(Ca) channel blockers niflumic acid (NFA), anthracene 9-carboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid but not by the volume-regulated Cl(-) blocker DIDS. Increases in STD frequency and amplitude induced by agonist stimulation were also inhibited by NFA. Nifedipine, the hyperpolarization-activated inward current blocker ZD-7288, and the nonselective cation/store-operated channel blockers SKF-96365, Gd3+, and Ni2+ had no or marginal effects on STD activity. However, nifedipine, 2-aminoethoxydiphenyl borate, NFA, SKF-96365, Gd3+, and Ni2+ altered the occurrence of spontaneous APs. Our findings support a role for Ca2+ release through IP3Rs and a resultant opening of Cl(Ca) channels in STD generation and confirm the importance of these events in the initiation of lymphatic spontaneous APs and subsequent contractions. The abolition of spontaneous APs by blockers of other excitatory ion channels suggests a contribution of these conductances to lymphatic pacemaking.
Collapse
Affiliation(s)
- Pierre-Yves von der Weid
- Inflammation Research Network, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1.
| | | | | | | |
Collapse
|
39
|
Li N, Zheng L, Lin P, Danielpour D, Pan Z, Ma J. Overexpression of Bax induces down-regulation of store-operated calcium entry in prostate cancer cells. J Cell Physiol 2008; 216:172-9. [PMID: 18247359 DOI: 10.1002/jcp.21385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Store-operated Ca2+ channels control homeostasis between extracellular Ca2+ reservoir and intracellular Ca2+ storage and play important roles in apoptosis in a wide variety of cells, including prostate epithelia. Recent studies have shown that the acquired apoptosis-resistant nature of androgen-independent prostate cancer is associated with reduced function of store-operated Ca2+ entry (SOCE). This study investigates the functional interaction between Bax and SOCE in the apoptosis signaling cascade in prostate cancer. Our previous findings show that NRP-154, an androgen-independent prostate cancer cell line, could sustain overexpression of exogenous Bax without undergoing apoptosis. Here we show that sustained overexpression of Bax in NRP-154 cells leads to down-regulation of SOCE and reduced Ca2+ storage inside the endoplasmic reticulum. While reduced SOCE may represent an adaptive mechanism for cell survival, increased levels of Bax in the latent state enhances the sensitivity of NRP-154 cells to TGF-beta and thapsigargin-induced apoptosis. This enhanced apoptosis can be reduced by 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of SOCE, or reversed under conditions where SOCE is only partially activated. Our results demonstrate a functional interaction between Bax and SOCE in apoptosis of prostate cancer, and support the concept that improving this interaction has therapeutic implications for prostate cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Biophysics, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
40
|
Johnston L, Carson C, Lyons AD, Davidson RA, McCloskey KD. Cholinergic-induced Ca2+ signaling in interstitial cells of Cajal from the guinea pig bladder. Am J Physiol Renal Physiol 2008; 294:F645-55. [PMID: 18171995 PMCID: PMC2640952 DOI: 10.1152/ajprenal.00526.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Acetylcholine released from parasympathetic excitatory nerves activates contraction in detrusor smooth muscle. Immunohistochemical labeling of guinea pig detrusor with anti-c-Kit and anti-VAChT demonstrated a close structural relationship between interstitial cells of Cajal (ICC) and cholinergic nerves. The ability of guinea pig bladder detrusor ICC to respond to the acetylcholine analog, carbachol, was investigated in enzymatically dissociated cells, loaded with the Ca2+ indicator fluo 4AM. ICC fired Ca2+ transients in response to stimulation by carbachol (1/10 μM). Their pharmacology was consistent with carbachol-induced contractions in strips of detrusor which were inhibited by 4-DAMP (1 μM), an M3 receptor antagonist, but not by the M2 receptor antagonist methoctramine (1 μM). The source of Ca2+ underlying the carbachol transients in isolated ICC was investigated using agents to interfere with influx or release from intracellular stores. Nifedipine (1 μM) or Ni2+ (30–100 μM) to block Ca2+ channels or the removal of external Ca2+ reduced the amplitude of the carbachol transients. Application of ryanodine (30 μM) or tetracaine (100 μM) abolished the transients. The phospholipase C inhibitor, U-73122 (2.5 μM), significantly reduced the responses. 2-Aminoethoxydiethylborate (30 μM) caused a significant reduction and Xestospongin C (1 μM) was more effective, almost abolishing the responses. Intact in situ preparations of guinea pig bladder loaded with a Ca2+ indicator showed distinctively different patterns of spontaneous Ca2+ events in smooth muscle cells and ICC. Both cell types responded to carbachol by an increase in frequency of these events. In conclusion, guinea pig bladder detrusor ICC, both as isolated cells and within whole tissue preparations, respond to cholinergic stimulation by firing Ca2+ transients.
Collapse
Affiliation(s)
- Louise Johnston
- Physiology, Division of Basic Medical Sciences, Medical Biology Centre, Belfast, Northern Ireland, UK BT9 7BL
| | | | | | | | | |
Collapse
|
41
|
Borges S, Lindstrom S, Walters C, Warrier A, Wilson M. Discrete influx events refill depleted Ca2+ stores in a chick retinal neuron. J Physiol 2007; 586:605-26. [PMID: 18033816 DOI: 10.1113/jphysiol.2007.143339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The depletion of ER Ca2+ stores, following the release of Ca2+ during intracellular signalling, triggers the Ca2+ entry across the plasma membrane known as store-operated calcium entry (SOCE). We show here that brief, local [Ca2+]i increases (motes) in the thin dendrites of cultured retinal amacrine cells derived from chick embryos represent the Ca2+ entry events of SOCE and are initiated by sphingosine-1-phosphate (S1P), a sphingolipid with multiple cellular signalling roles. Externally applied S1P elicits motes but not through a G protein-coupled membrane receptor. The endogenous precursor to S1P, sphingosine, also elicits motes but its action is suppressed by dimethylsphingosine (DMS), an inhibitor of sphingosine phosphorylation. DMS also suppresses motes induced by store depletion and retards the refilling of depleted stores. These effects are reversed by exogenously applied S1P. In these neurons formation of S1P is a step in the SOCE pathway that promotes Ca2+ entry in the form of motes.
Collapse
|
42
|
Martín-Romero FJ, Ortíz-de-Galisteo JR, Lara-Laranjeira J, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS. Store-operated calcium entry in human oocytes and sensitivity to oxidative stress. Biol Reprod 2007; 78:307-15. [PMID: 18003943 DOI: 10.1095/biolreprod.107.064527] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calcium signaling is a cellular event that plays a key role at many steps of fertilization and early development. However, little is known regarding the contribution of extracellular Ca(2+) influx into the cell to this signaling in gametes and early embryos. To better know the significance of calcium entry on oocyte physiology, we have evaluated the mechanism of store-operated calcium entry (SOCE) in human metaphase II (MII) oocytes and its sensitivity to oxidative stress, one of the major factors implicated in the outcome of in vitro fertilization (IVF) techniques. We show that depletion of intracellular Ca(2+) stores through inhibition of sarco(endo)plasmic Ca(2+)-ATPase with thapsigargin triggers Ca(2+) entry in resting human oocytes. Ba(2+) and Mn(2+) influx was also stimulated following inhibition, and Ca(2+) entry was sensitive to pharmacological inhibition because the SOCE blocker 2-aminoethoxydiphenylborate (2-APB) reduced calcium and barium entry. These results support the conclusion that there is a plasma membrane mechanism responsible for the capacitative divalent cation entry in human oocytes. Moreover, the Ca(2+) entry mechanism described in MII oocytes was found to be highly sensitive to oxidative stress. Hydrogen peroxide, at micromolar concentrations that could mimic culture conditions in IVF, elicited an increase of [Ca(2+)](i) that was dependent on the presence of extracellular Ca(2+). This rise was preventable by 2-APB, indicating that it was mainly due to the enhanced influx through store-operated calcium channels. In sum, our results demonstrate the occurrence of SOCE in human MII oocytes and the modification of this pathway due to oxidative stress, with possible consequences in IVF.
Collapse
Affiliation(s)
- Francisco Javier Martín-Romero
- Departamento de Bioquímicay Biología Molecular, Reproduction and Development Group (REDES), Universidad de Extremadura, Badajoz-06071, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Varela D, Simon F, Olivero P, Armisén R, Leiva-Salcedo E, Jørgensen F, Sala F, Stutzin A. Activation of H 2O 2-Induced VSOR Cl - Currents in HTC Cells Require Phospholipase Cγ1 Phosphorylation and Ca 2+ Mobilisation. Cell Physiol Biochem 2007; 20:773-80. [DOI: 10.1159/000110437] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2007] [Indexed: 11/19/2022] Open
|
44
|
Role of Ca2+ entry and Ca2+ stores in atypical smooth muscle cell autorhythmicity in the mouse renal pelvis. Br J Pharmacol 2007; 152:1248-59. [PMID: 17965738 DOI: 10.1038/sj.bjp.0707535] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Electrically active atypical smooth muscle cells (ASMCs) within the renal pelvis have long been considered to act as pacemaker cells driving pelviureteric peristalsis. We have investigated the role of Ca2+ entry and uptake into and release from internal stores in the generation of Ca2+ transients and spontaneous transient depolarizations (STDs) in ASMCs. EXPERIMENTAL APPROACH The electrical activity and separately visualized changes in intracellular Ca2+ concentration in typical smooth muscle cells (TSMCs), ASMCs and interstitial cells of Cajal-like cells (ICC-LCs) were recorded using intracellular microelectrodes and a fluorescent Ca2+ indicator, fluo-4. RESULTS In 1 microM nifedipine, high frequency (10-30 min(-1)) Ca2+ transients and STDs were recorded in ASMCs, while ICC-LCs displayed low frequency (1-3 min(-1)) Ca2+ transients. All spontaneous electrical activity and Ca2+ transients were blocked upon removal of Ca2+ from the bathing solution, blockade of Ca2+ store uptake with cyclopiazonic acid (CPA) and with 2-aminoethoxy-diphenylborate (2-APB). STD amplitudes were reduced upon removal of the extracellular Na+ or blockade of IP3 dependent Ca2+ store release with neomycin or U73122. Blockade of ryanodine-sensitive Ca2+ release blocked ICC-LC Ca2+ transients but only reduced Ca2+ transient discharge in ASMCs. STDs in ASMCS were also little affected by DIDS, La3+, Gd3+ or by the replacement of extracellular Cl(-) with isethionate. CONCLUSIONS ASMCs generated Ca2+ transients and cation-selective STDs via mechanisms involving Ca2+ release from IP3-dependent Ca2+ stores, STD stimulation of TSMCs was supported by Ca2+ entry through L type Ca2+ channels and Ca2+ release from ryanodine-sensitive stores.
Collapse
|
45
|
Nicoud IB, Knox CD, Jones CM, Anderson CD, Pierce JM, Belous AE, Earl TM, Chari RS. 2-APB protects against liver ischemia-reperfusion injury by reducing cellular and mitochondrial calcium uptake. Am J Physiol Gastrointest Liver Physiol 2007; 293:G623-30. [PMID: 17627971 DOI: 10.1152/ajpgi.00521.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a commonly encountered clinical problem in liver surgery and transplantation. The pathogenesis of I/R injury is multifactorial, but mitochondrial Ca(2+) overload plays a central role. We have previously defined a novel pathway for mitochondrial Ca(2+) handling and now further characterize this pathway and investigate a novel Ca(2+)-channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB), for preventing hepatic I/R injury. The effect of 2-APB on cellular and mitochondrial Ca(2+) uptake was evaluated in vitro by using (45)Ca(2+). Subsequently, 2-APB (2 mg/kg) or vehicle was injected into the portal vein of anesthetized rats either before or following 1 h of inflow occlusion to 70% of the liver. After 3 h of reperfusion, liver injury was assessed enzymatically and histologically. Hep G2 cells transfected with green fluorescent protein-tagged cytochrome c were used to evaluate mitochondrial permeability. 2-APB dose-dependently blocked Ca(2+) uptake in isolated liver mitochondria and reduced cellular Ca(2+) accumulation in Hep G2 cells. In vivo I/R increased liver enzymes 10-fold, and 2-APB prevented this when administered pre- or postischemia. 2-APB significantly reduced cellular damage determined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of liver tissue. In vitro I/R caused a dissociation between cytochrome c and mitochondria in Hep G2 cells that was prevented by administration of 2-APB. These data further establish the role of cellular Ca(2+) uptake and subsequent mitochondrial Ca(2+) overload in I/R injury and identify 2-APB as a novel pharmacological inhibitor of liver I/R injury even when administered following a prolonged ischemic insult.
Collapse
Affiliation(s)
- I B Nicoud
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Suite 801 Oxford House, 1313 21st Avenue South, Vanderbilt University Medical Center, Nashville, TN 37232-4753, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kwan DHT, Kam AYF, Wong YH. Activation of the human FPRL-1 receptor promotes Ca2+ mobilization in U87 astrocytoma cells. Neurochem Res 2007; 33:125-33. [PMID: 17703360 DOI: 10.1007/s11064-007-9425-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/22/2007] [Indexed: 11/30/2022]
Abstract
The human formyl peptide receptor like 1 (FPRL-1) is a variant of the Gi-coupled formyl-peptide receptor. Functional FPRL-1 is endogenously expressed in the U87 astrocytoma cell line and there is accumulating evidence to suggest that FPRL-1 may be involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease. In this study, we examined the ability of FPRL-1 to mobilize intracellular Ca2+ in U87 astrocytoma cells, as well as in Chinese hamster ovary (CHO) cells stably expressing FPRL-1. We showed that Trp-Lys-Tyr-Met-Val-Met-NH2 (WKYMVM), a specific agonist for FPRL-1, stimulated Ca2+ influx in both U87 and FPRL-1/CHO cells. These effects can be inhibited by the FPRL-1 selective antagonist, WRW4. Involvement of Gi proteins was demonstrated with the use of pertussis toxin, while inhibitors of store-operated channels (SOC) including 1-[2-(4-methoxyphenyl)]-2-[3-(4-methpxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride (SKF96365) and 2-aminoethoxydiphenyl borate (2-APB) were found to abolish the WKYMVM-induced Ca2+ increase. However, intracellular Ca2+ mobilization in both cell lines were unaffected by the phospholipase Cbeta inhibitor U73122 or selective ryanodine receptor inhibitors. Our data demonstrated that activation of Gi-coupled FPRL-1 can lead to Ca2+ influx possibly via SOCs in U87 and FPRL-1/CHO cells.
Collapse
Affiliation(s)
- Dawna H T Kwan
- Department of Biochemistry, The Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|
47
|
Watterson KR, Berg KM, Kapitonov D, Payne SG, Miner AS, Bittman R, Milstien S, Ratz PH, Spiegel S. Sphingosine‐1‐phosphate and the immunosuppressant, FTY720‐phosphate, regulate detrusor muscle tone. FASEB J 2007; 21:2818-28. [PMID: 17449719 DOI: 10.1096/fj.06-7326com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overactive bladder syndrome (OBS) results from disturbances of bladder function. Bladder smooth muscle (detrusor) exhibits spontaneous rhythmic activity (tone) independent of neurogenic control, which is enhanced in patients with OBS. We have now uncovered a prominent role for the bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), in regulating rabbit detrusor smooth muscle tone and contraction. S1P-induced contraction of detrusor muscle was dependent on stretch and intracellular calcium. Although detrusor expresses the S1P receptors S1P1 and S1P2, only S1P2 appeared to be involved in S1P-induced contraction, since SEW2871 (S1P1 agonist) and dihydro-S1P (potent agonist for all S1P receptors except S1P2) were poor contractile agents. In agreement, the S1P2 antagonist JTE013 inhibited S1P-induced contraction. The fast, transient muscle contraction (phasic) mediated by S1P was dependent on phospholipase C (PLC) whereas the slower, sustained contraction (tonic) was not. Surprisingly, the immunosuppressant FTY720-phosphate, an agonist for all S1P receptors except S1P2, had distinct contractile properties and also induced slow, sustained contraction. Thus, FTY720-phosphate and/or S1P may regulate calcium channels in an S1P receptor-independent manner. Collectively, our results demonstrate that S1P may regulate detrusor smooth muscle tone and suggest that dysregulation of complex S1P signaling might contribute to OBS.
Collapse
Affiliation(s)
- Kenneth R Watterson
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM. Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol 2007; 293:F227-35. [PMID: 17389680 DOI: 10.1152/ajprenal.00057.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apical low-conductance SK and high-conductance Ca(2+)-activated BK channels are present in distal nephron, including the cortical collecting duct (CCD). Flow-stimulated net K secretion (J(K)) in the CCD is 1) blocked by iberiotoxin, an inhibitor of BK but not SK channels, and 2) associated with an increase in [Ca(2+)](i), leading us to conclude that BK channels mediate flow-stimulated J(K). To examine the Ca(2+) dependence and sources of Ca(2+) contributing to flow-stimulated J(K), J(K) and net Na absorption (J(Na)) were measured at slow (approximately 1) and fast (approximately 5 nl.min(-1).mm(-1)) flow rates in rabbit CCDs microperfused in the absence of luminal Ca(2+) or after pretreatment with BAPTA-AM to chelate intracellular Ca(2+), 2-aminoethoxydiphenyl borate (2-APB), to inhibit the inositol 1,4,5-trisphosphate (IP(3)) receptor or thapsigargin to deplete internal stores. These treatments, which do not affect flow-stimulated J(Na) (Morimoto et al. Am J Physiol Renal Physiol 291: F663-F669, 2006), inhibited flow-stimulated J(K). Increases in [Ca(2+)](i) stimulate exocytosis. To test whether flow induces exocytic insertion of preformed BK channels into the apical membrane, CCDs were pretreated with 10 microM colchicine (COL) to disrupt microtubule function or 5 microg/ml brefeldin-A (BFA) to inhibit delivery of channels from the intracellular pool to the plasma membrane. Both agents inhibited flow-stimulated J(K) but not J(Na) (Morimoto et al. Am J Physiol Renal Physiol 291: F663-F669, 2006), although COL but not BFA also blocked the flow-induced [Ca(2+)](i) transient. We thus speculate that BK channel-mediated, flow-stimulated J(K) requires an increase in [Ca(2+)](i) due, in part, to luminal Ca(2+) entry and ER Ca(2+) release, microtubule integrity, and exocytic insertion of preformed channels into the apical membrane.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1664, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
49
|
Juretić N, Urzúa U, Munroe DJ, Jaimovich E, Riveros N. Differential gene expression in skeletal muscle cells after membrane depolarization. J Cell Physiol 2007; 210:819-30. [PMID: 17146758 DOI: 10.1002/jcp.20902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Collapse
Affiliation(s)
- Nevenka Juretić
- Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
50
|
Abstract
Elevations in cytosolic Ca2+ concentration are the usual initial response of endothelial cells to hormonal and chemical transmitters and to changes in physical parameters, and many endothelial functions are dependent upon changes in Ca2+ signals produced. Endothelial cell Ca2+ signalling shares similar features with other electrically non-excitable cell types, but has features unique to endothelial cells. This chapter discusses the major components of endothelial cell Ca2+ signalling.
Collapse
Affiliation(s)
- Q K Tran
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | | |
Collapse
|