1
|
Bhattacharjee M, Ghosh A, Das S, Sarker S, Bhattacharya S, Das A, Ghosh S, Chattopadhyay S, Ghosh S, Adhikary A. Systemic Codelivery of Thymoquinone and Doxorubicin by Targeted Mesoporous Silica Nanoparticle Sensitizes Doxorubicin-Resistant Breast Cancer by Interfering between the MDR1/P-gp and miR 298 Crosstalk. ACS Biomater Sci Eng 2024; 10:6314-6331. [PMID: 39285678 DOI: 10.1021/acsbiomaterials.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multi drug resistance (MDR) in breast carcinoma still poses a significant impairment to successful chemotherapy. As the arsenal of anticancer agents increases with improved preclinical methods, the growth of therapeutic drug combinations is now unprecedented. The malignancies addressed by mono drugs often fail to limit cancer progression, resulting in resistant cancer, thereby offering combinatorial therapies a terrific edge over monodrug regimes. However, the selection of drug combinations required enough preliminary evidence for their synergistic effect. The fundamental mechanisms of MDR to chemotherapeutics are associated with the overexpression of membrane efflux pumps, alternations in drug targets, and increased drug metabolism. Unfortunately, it is very difficult for drugs to overcome resistance produced on their own or by another different drug action. In this context, herein, we report a simple delivery system for coencapsulation and intracellular codelivery of dual-drug thymoquinone (TQ) and doxorubicin (DOX) to resensitize DOX-resistant MDA MB231 cell line (231 R). The 231 R cell line developed in our lab showed an enhanced expression of the ATP-binding cassette (ABC) transporters P-gp1/MDR-1 and a declined miR-298 expression. The present delivery system is based on amine-functionalized mesoporous silica nanoparticles (MSNs), in which the side chain amine functional group was used to react with the carbonyl group of TQ, which acts as a pro-drug system (TQ-MSN) to release TQ and DOX simultaneously. DOX was encapsulated later into the above TQ-MSN by a simple diffusion method. The drugs containing MSNs were further coated with a hyaluronic acid-conjugated PEG-PLGA polymer (HA@TQ-DOX-MSN). This simple nanostrategy interferes with the MDR-1/miR-298 cross-talk, thereby allowing a significant reduction in drug efflux from the cell and highlighting a promising nanotechnology-based combinatorial delivery approach in managing breast cancer chemoresistance.
Collapse
Affiliation(s)
- Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Subhajit Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata, West Bengal 700135, India
| | - Arghya Adhikary
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
2
|
Gola AM, Bucci-Muñoz M, Rigalli JP, Ceballos MP, Ruiz ML. Role of the RNA binding protein IGF2BP1 in cancer multidrug resistance. Biochem Pharmacol 2024; 230:116555. [PMID: 39332691 DOI: 10.1016/j.bcp.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1), a member of a conserved family of single-stranded RNA-binding proteins (IGF2BP1-3), is expressed in a broad range of fetal tissues, placenta and more than sixteen cancer types but only in a limited number of normal adult tissues. IGF2BP1is required for the transport from nucleus to cytoplasm of certain mRNAs that play essential roles in embryogenesis, carcinogenesis, and multidrug resistance (MDR), by affecting their stability, translation, or localization. The purpose of this review is to gather and present information on MDR mechanisms in cancer and the significance of IGF2BP1 in this context. Within this review, we will provide an overview of IGF2BP1, including its tissue distribution, expression, molecular targets in the context of tumorigenesis and its inhibitors. Our main focus will be on elucidating the interplay between IGF2BP1 and MDR, particularly with regard to chemoresistance mediated by ABC transporters.
Collapse
Affiliation(s)
- Aldana Magalí Gola
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Bucci-Muñoz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Paula Ceballos
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Laura Ruiz
- Instituto de Fisiología Experimental (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina.
| |
Collapse
|
3
|
Pang KS, Lu WI, Mulder GJ. After 50 Years of Hepatic Clearance Models, Where Should We Go from Here? Improvements and Implications for Physiologically Based Pharmacokinetic Modeling. Drug Metab Dispos 2024; 52:919-931. [PMID: 39013583 DOI: 10.1124/dmd.124.001649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 07/18/2024] Open
Abstract
There is overwhelming preference for application of the unphysiologic, well-stirred model (WSM) over the parallel tube model (PTM) and dispersion model (DM) to predict hepatic drug clearance, CLH , despite that liver blood flow is dispersive and closer to the DM in nature. The reasoning is the ease in computation relating the hepatic intrinsic clearance ( CLint ), hepatic blood flow ( QH ), unbound fraction in blood ( fub ) and the transmembrane clearances ( CLin and CLef ) to CLH for the WSM. However, the WSM, being the least efficient liver model, predicts a lower EH that is associated with the in vitro CLint ( Vmax / Km ), therefore requiring scale-up to predict CLH in vivo. By contrast, the miniPTM, a three-subcompartment tank-in-series model of uniform enzymes, closely mimics the DM and yielded similar patterns for CLint versus EH , substrate concentration [S] , and KL / B , the tissue to outflow blood concentration ratio. We placed these liver models nested within physiologically based pharmacokinetic models to describe the kinetics of the flow-limited, phenolic substrate, harmol, using the WSM (single compartment) and the miniPTM and zonal liver models (ZLMs) of evenly and unevenly distributed glucuronidation and sulfation activities, respectively, to predict CLH For the same, given CLint ( Vmax and Km ), the WSM again furnished the lowest extraction ratio ( EH,WSM = 0.5) compared with the miniPTM and ZLM (>0.68). Values of EH,WSM were elevated to those for EH, PTM and EH, ZLM when the Vmax s for sulfation and glucuronidation were raised 5.7- to 1.15-fold. The miniPTM is easily manageable mathematically and should be the new normal for liver/physiologic modeling. SIGNIFICANCE STATEMENT: Selection of the proper liver clearance model impacts strongly on CLH predictions. The authors recommend use of the tank-in-series miniPTM (3 compartments mini-parallel tube model), which displays similar properties as the dispersion model (DM) in relating CLint and [ S ] to CLH as a stand-in for the DM, which best describes the liver microcirculation. The miniPTM is readily modified to accommodate enzyme and transporter zonation.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| | - Weijia Ivy Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| | - Gerard J Mulder
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada (K.S.P., W.I.L.) and Department of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands (G.J.M.)
| |
Collapse
|
4
|
Sheng M, Ma L, Li Z, Peng X, Cen S, Feng M, Tian Y, Dai X, Shi X. A hybrid evaluation of the intestinal absorption performance of compounds from molecular structure. Chem Biol Drug Des 2024; 104:e14576. [PMID: 38969623 DOI: 10.1111/cbdd.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Intestinal absorption of compounds is significant in drug research and development. To evaluate this efficiently, a method combining mathematical modeling and molecular simulation was proposed, from the perspective of molecular structure. Based on the quantitative structure-property relationship study, the model between molecular structure and their apparent permeability coefficients was successfully constructed and verified, predicting intestinal absorption of drugs and interpreting decisive structural factors, such as AlogP98, Hydrogen bond donor and Ellipsoidal volume. The molecules with strong lipophilicity, less hydrogen bond donors and receptors, and small molecular volume are more easily absorbed. Then, the molecular dynamics simulation and molecular docking were utilized to study the mechanism of differences in intestinal absorption of drugs and investigate the role of molecular structure. Results indicated that molecules with strong lipophilicity and small volume interacted with the membrane at a lower energy and were easier to penetrate the membrane. Likewise, they had weaker interaction with P-glycoprotein and were easier to escape from it and harder to export from the body. More in, less out, is the main reason these molecules absorb well.
Collapse
Affiliation(s)
- Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lina Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Mensah GAK, Schaefer KG, Roberts AG, King GM, Bartlett MG. Probing the Mechanisms Underlying the Transport of the Vinca Alkaloids by P-glycoprotein. J Pharm Sci 2024; 113:1960-1974. [PMID: 38527618 DOI: 10.1016/j.xphs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 µM or 150 µM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 µM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 µM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 µM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented.
Collapse
Affiliation(s)
- Gershon A K Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA; Joint with Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Vahdati S, Lamprecht A. Membrane-Fusing Vehicles for Re-Sensitizing Transporter-Mediated Multiple-Drug Resistance in Cancer. Pharmaceutics 2024; 16:493. [PMID: 38675154 PMCID: PMC11053612 DOI: 10.3390/pharmaceutics16040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Reversing the multiple drug resistance (MDR) arising from the overexpression of the efflux transporters often fails mainly due to the high toxicity or the poor water solubility of the inhibitors of these transporters. Here, we demonstrate the delivery of an inhibitor targeting three ABC transporters (ABCB1, ABCC1 and ABCG2) directly to the cell membrane using membrane-fusing vehicles (MFVs). Three different transfected MDCK II cell lines, along with parental cells, were used to investigate the inhibitory effect of cyclosporine A (CsA) in solution versus direct delivery to the cell membrane. CsA-loaded MFVs successfully reversed MDR for all three investigated efflux transporters at significantly lower concentrations compared with CsA in solution. Results showed a 15-fold decrease in the IC50 value for ABCB1, a 7-fold decrease for ABCC1 and an 11-fold decrease for ABCG2. We observed binding site specificity for ABCB1 and ABCG2 transporters. Lower concentrations of empty MFVs along with CsA contribute to the inhibition of Hoechst 33342 efflux. However, higher concentrations of CsA along with the high amount of MFVs activated transport via the H-binding site. This supports the conclusion that MFVs can be useful beyond their role as delivery systems and also help to elucidate differences between these transporters and their binding sites.
Collapse
Affiliation(s)
- Sahel Vahdati
- Departments of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Pharmaceutical and Cell Biological Chemistry, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany
| | - Alf Lamprecht
- Departments of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany;
| |
Collapse
|
8
|
Pinos D, Millán-Leiva A, Ferré J, Hernández-Martínez P. New Paralogs of the Heliothis virescens ABCC2 Transporter as Potential Receptors for Bt Cry1A Proteins. Biomolecules 2024; 14:397. [PMID: 38672415 PMCID: PMC11047971 DOI: 10.3390/biom14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.
Collapse
Affiliation(s)
- Daniel Pinos
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| | - Anabel Millán-Leiva
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Juan Ferré
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| | - Patricia Hernández-Martínez
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| |
Collapse
|
9
|
Hanif N, Sari S. Discovery of novel IDO1/TDO2 dual inhibitors: a consensus Virtual screening approach with molecular dynamics simulations, and binding free energy analysis. J Biomol Struct Dyn 2024:1-17. [PMID: 38498355 DOI: 10.1080/07391102.2024.2329302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The pursuit of effective cancer immunotherapy drugs remains challenging, with overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) allowing cancer cells to evade immune attacks. While several IDO1 inhibitors have undergone clinical testing, only three dual IDO1/TDO2 inhibitors have reached human trials. Hence, this study focuses on identifying novel IDO1/TDO2 dual inhibitors through consensus structure-based virtual screening (SBVS). ZINC15 natural products library was refined based on molecular descriptors, and the selected compounds were docked to the holo form IDO1 and TDO2 using two different software programs and ranked according to their consensus docking scores. The top-scoring compounds underwent in silico evaluations for pharmacokinetics, toxicity, CYP3A4 affinity, molecular dynamics (MD) simulations, and MM-GBSA binding free energy calculations. Five compounds (ZINC00000079405/10, ZINC00004028612/11, ZINC00013380497/12, ZINC00014613023/13, and ZINC00103579819/14) were identified as potential IDO1/TDO2 dual inhibitors due to their high consensus docking scores, key residue interactions with the enzymes, favorable pharmacokinetics, and avoidance of CYP3A4 binding. MD simulations of the top three hits with IDO1 indicated conformational changes and compactness, while MM-GBSA analysis revealed strong binding free energy for compounds 10 (ΔG: -20.13 kcal/mol) and 11 (ΔG: -16.22 kcal/mol). These virtual hits signify a promising initial step in identifying candidates as supplementary therapeutics to immune checkpoint inhibitors in cancer treatment. Their potential to deliver potent dual inhibition of IDO1/TDO2, along with safety and favorable pharmacokinetics, makes them compelling. Validation through in vitro and in vivo assays should be conducted to confirm their activity, selectivity, and preclinical potential as holo IDO1/TDO2 dual inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naufa Hanif
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta, Indonesia
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
11
|
Shchulkin AV, Abalenikhina YV, Kosmachevskaya OV, Topunov AF, Yakusheva EN. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants (Basel) 2024; 13:215. [PMID: 38397813 PMCID: PMC10885963 DOI: 10.3390/antiox13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
P-glycoprotein (Pgp, ABCB1, MDR1) is an efflux transporter protein that removes molecules from the cells (outflow) into the extracellular space. Pgp plays an important role in pharmacokinetics, ensuring the absorption, distribution, and excretion of drugs and its substrates, as well as in the transport of endogenous molecules (steroid and thyroid hormones). It also contributes to tumor cell resistance to chemotherapy. In this review, we summarize the mechanisms of Pgp regulation during oxidative stress. The currently available data suggest that Pgp has a complex variety of regulatory mechanisms under oxidative stress, involving many transcription factors, the main ones being Nrf2 and Nf-kB. These factors often overlap, and some can be activated under certain conditions, such as the deposition of oxidation products, depending on the severity of oxidative stress. In most cases, the expression of Pgp increases due to increased transcription and translation, but under severe oxidative stress, it can also decrease due to the oxidation of amino acids in its molecule. At the same time, Pgp acts as a protector against oxidative stress, eliminating the causative factors and removing its by-products, as well as participating in signaling pathways.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Yulia V. Abalenikhina
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Elena N. Yakusheva
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| |
Collapse
|
12
|
Gewering T, Waghray D, Parey K, Jung H, Tran NNB, Zapata J, Zhao P, Chen H, Januliene D, Hummer G, Urbatsch I, Moeller A, Zhang Q. Tracing the substrate translocation mechanism in P-glycoprotein. eLife 2024; 12:RP90174. [PMID: 38259172 PMCID: PMC10945689 DOI: 10.7554/elife.90174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system.
Collapse
Affiliation(s)
- Theresa Gewering
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
| | - Deepali Waghray
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Kristian Parey
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Hendrik Jung
- Department of Theoretical Biophysics, Max Planck Institute of BiophysicsFrankfurtGermany
| | - Nghi NB Tran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Joel Zapata
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Pengyi Zhao
- Department of Chemistry & Environmental Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of TechnologyNewarkUnited States
| | - Dovile Januliene
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of BiophysicsFrankfurtGermany
- Institute for Biophysics, Goethe University FrankfurtFrankfurtGermany
| | - Ina Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbockUnited States
| | - Arne Moeller
- Osnabrück University, Department of Biology/Chemistry, Structural Biology SectionOsnabrückGermany
- Department of Structural Biology, Max Planck Institute of BiophysicsFrankfurtGermany
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs)OsnabrückGermany
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
13
|
Ho GY, Vandenberg CJ, Lim R, Christie EL, Garsed DW, Lieschke E, Nesic K, Kondrashova O, Ratnayake G, Radke M, Penington JS, Carmagnac A, Heong V, Kyran EL, Zhang F, Traficante N, Huang R, Dobrovic A, Swisher EM, McNally O, Kee D, Wakefield MJ, Papenfuss AT, Bowtell DDL, Barker HE, Scott CL. The microtubule inhibitor eribulin demonstrates efficacy in platinum-resistant and refractory high-grade serous ovarian cancer patient-derived xenograft models. Ther Adv Med Oncol 2023; 15:17588359231208674. [PMID: 38028140 PMCID: PMC10666702 DOI: 10.1177/17588359231208674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Gwo Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton Road, Clayton, VIC 3168, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ratana Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Jocelyn S. Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Amandine Carmagnac
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Valerie Heong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Fan Zhang
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Alexander Dobrovic
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | | | - Orla McNally
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Damien Kee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
| | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony T. Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Menozzi CAC, França RRF, Luccas PH, Baptista MDS, Fernandes TVA, Hoelz LVB, Sales Junior PA, Murta SMF, Romanha A, Galvão BVD, Macedo MDO, Goldstein ADC, Araujo-Lima CF, Felzenszwalb I, Nonato MC, Castelo-Branco FS, Boechat N. Anti- Trypanosoma cruzi Activity, Mutagenicity, Hepatocytotoxicity and Nitroreductase Enzyme Evaluation of 3-Nitrotriazole, 2-Nitroimidazole and Triazole Derivatives. Molecules 2023; 28:7461. [PMID: 38005183 PMCID: PMC10672842 DOI: 10.3390/molecules28227461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.
Collapse
Affiliation(s)
- Cheyene Almeida Celestino Menozzi
- Programa de Pós-Graduação em Farmacologia e Química Medicinal—PPGFQM-Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil (R.R.F.F.)
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Rodolfo Rodrigo Florido França
- Programa de Pós-Graduação em Farmacologia e Química Medicinal—PPGFQM-Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil (R.R.F.F.)
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Pedro Henrique Luccas
- Laboratório de Cristalografia de Proteínas—LCP-RP, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo FCFRP-USP, Monte Alegre, Ribeirão Preto 14040-903, Brazil
| | - Mayara dos Santos Baptista
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Tácio Vinício Amorim Fernandes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Lucas Villas Bôas Hoelz
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | | | | | - Alvaro Romanha
- Centro de Pesquisas René Rachou/CPqRR—Fiocruz, Belo Horizonte 30190-009, Brazil
| | - Bárbara Verena Dias Galvão
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Marcela de Oliveira Macedo
- Programa de Pós-Graduação em Biologia Molecular e Celular—PPGBMC—Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil
| | - Alana da Cunha Goldstein
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Carlos Fernando Araujo-Lima
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular—PPGBMC—Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil
| | - Israel Felzenszwalb
- Laboratório de Mutagênese Ambiental, Programa de Pós-Graduação em Biociências—PPGB—Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas—LCP-RP, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo FCFRP-USP, Monte Alegre, Ribeirão Preto 14040-903, Brazil
| | - Frederico Silva Castelo-Branco
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Farmanguinhos—Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
15
|
Mensah GAK, Schaefer KG, Bartlett MG, Roberts AG, King GM. Drug-Induced Conformational Dynamics of P-Glycoprotein Underlies the Transport of Camptothecin Analogs. Int J Mol Sci 2023; 24:16058. [PMID: 38003248 PMCID: PMC10671697 DOI: 10.3390/ijms242216058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein's activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs). While Pgp displays a wide range of conformations, we simplified it into three model states: 'open-inward', 'open-outward', and 'intermediate'. Utilizing acrylamide quenching of Pgp fluorescence as a tool to examine the protein's tertiary structure, we observed that topotecan (TPT), SN-38, and irinotecan (IRT) induced distinct conformational shifts in the protein. TPT caused a substantial shift akin to AMPPNP, suggesting ATP-independent 'open-outward' conformation. IRT and SN-38 had relatively moderate effects on the conformation of Pgp. Experimental atomic force microscopy (AFM) imaging supports these findings. Further, the rate of ATPase hydrolysis was correlated with ligand-induced Pgp conformational changes. We hypothesize that the separation between the nucleotide-binding domains (NBDs) creates a conformational barrier for substrate transport. Substrates that reduce the conformational barrier, like TPT, are better transported. The affinity for ATP extracted from Pgp-mediated ATP hydrolysis kinetics curves for TPT was about 2-fold and 3-fold higher than SN-38 and IRT, respectively. On the contrary, the dissociation constants (KD) determined by fluorescence quenching for these drugs were not significantly different. Saturation transfer double difference (STDD) NMR of TPT and IRT with Pgp revealed that similar functional groups of the CPTs are accountable for Pgp-CPTs interactions. Efforts aimed at modifying these functional groups, guided by available structure-activity relationship data for CPTs and DNA-Topoisomerase-I complexes, could pave the way for the development of more potent next-generation CPTs.
Collapse
Affiliation(s)
- Gershon A. K. Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Katherine G. Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
- Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Prchalova E, Kohoutova Z, Knittelova K, Malinak D, Musilek K. Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Arch Toxicol 2023; 97:2839-2860. [PMID: 37642747 DOI: 10.1007/s00204-023-03587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
Collapse
Affiliation(s)
- Eliska Prchalova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Muñoz-Losada K, Da Costa KM, Muñoz-Castiblanco T, Mejía-Giraldo JC, Previato JO, Mendonça-Previato L, Puertas-Mejía MÁ. Glycolipids from Sargassum filipendula, a Natural Alternative for Overcoming ABC Transporter-Mediated MDR in Cancer. Chem Biodivers 2023; 20:e202301058. [PMID: 37747792 DOI: 10.1002/cbdv.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chemotherapy is a widely used strategy to treat cancer, a disease that causes millions of deaths each year. However, its efficacy is reduced by the overexpression of ABC transporters, which are proteins that expel the drugs used in chemotherapy and involved in the multidrug resistance (MDR). Glycolipids have been identified as potential inhibitors of ABC transporters. Algae of the genus Sargassum contain high levels of glycolipids, making them a promising therapeutic alternative against the MDR phenotype. Sargassum filipendula glycolipids were obtained by exhaustive maceration with chloroform/methanol, purified by column and thin layer chromatography, and then characterized by FTIR, NMR, and LC-MS. Cell viability by PI labeling and inhibition of ABC transporters were analyzed by flow cytometry. Assessment of resistance reversal was determined by MTT assay. Ten sulfoquinovosylglycerol-type compounds were found, and six of them are reported for the first time. In particular, moiety 4 (GL-4) showed strong and moderate inhibitory activity against ABCC1 and ABCB1 transporters respectively. Treatment of GL-4 in combination with the antineoplastic drug vincristine sensitized Lucena-1 cell model to drug and reversed the MDR phenotype. This is the first report of glycolipids isolated from S. filipendula capable of inhibiting ABC transporters and thus overcoming acquired drug resistance.
Collapse
Affiliation(s)
- Kelly Muñoz-Losada
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - Kelli Monteiro Da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Tatiana Muñoz-Castiblanco
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - Juan Camilo Mejía-Giraldo
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brasil
| | - Miguel Ángel Puertas-Mejía
- Grupo de Investigación en Compuestos Funcionales, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
| |
Collapse
|
18
|
Decaix T, Magny R, Gouin‐Thibaut I, Delavenne X, Mismetti P, Salem J, Narjoz C, Blanchard A, Pépin M, Auzeil N, Loriot M, Laprévote O. Plasma lipidomic analysis to investigate putative biomarkers of P-glycoprotein activity in healthy volunteers. Clin Transl Sci 2023; 16:1935-1946. [PMID: 37529981 PMCID: PMC10582668 DOI: 10.1111/cts.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
P-glycoprotein (P-gp) is an efflux transporter involved in the bioavailability of many drugs currently on the market. P-gp is responsible for several drug-drug interactions encountered in clinical practice leading to iatrogenic hospital admissions, especially in polypharmacy situations. ABCB1 genotyping only reflects an indirect estimate of P-gp activity. Therefore, it would be useful to identify endogenous biomarkers to determine the P-gp phenotype to predict in vivo activity prior to the initiation of treatment and to assess the effects of drugs on P-gp activity. The objective of this study was to assess changes in plasma lipidome composition among healthy volunteers selected on the basis of their ABCB1 genotype and who received clarithromycin, a known inhibitor of P-gp. Untargeted lipidomic analysis based on liquid chromatography-tandem mass spectrometry was performed before and after clarithromycin administration. Our results revealed changes in plasma levels of some ceramides (Cers) {Cer(d18:1/22:0), Cer(d18:1/22:1), and Cer(d18:1/20:0) by ~38% (p < 0.0001), 13% (p < 0.0001), and 13% (p < 0.0001), respectively} and phosphatidylcholines (PCs) {PC(17:0/14:1), PC(16:0/18:3), and PC(14:0/18:3) by ~24% (p < 0.001), 10% (p < 0.001), and 23.6% (p < 0.001)} associated with both ABCB1 genotype and clarithromycin intake. Through the examination of plasma lipids, our results highlight the relevance of untargeted lipidomics for studying in vivo P-gp activity and, more generally, to safely phenotyping transporters.
Collapse
Affiliation(s)
| | | | | | - Xavier Delavenne
- Clinical Pharmacology DepartmentUniversity Hospital of Saint‐EtienneSaint EtienneFrance
- INSERM, U1059Vascular Dysfunction and HemostasisSaint‐EtienneFrance
| | - Patrick Mismetti
- INSERM, U1059Vascular Dysfunction and HemostasisSaint‐EtienneFrance
- Vascular and Therapeutic Medicine DepartmentSaint‐Etienne University Hospital CenterSaint‐EtienneFrance
| | - Joe‐Elie Salem
- Pharmacology Department, APHP, Pitié‐Salpétrière HospitalGHU Sorbonne UniversityParisFrance
- CIC‐1421 and Institut de Cardiométabolisme et Nutrition (ICAN) UMR ICAN_1166INSERMParisFrance
| | - Céline Narjoz
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
- INSERM U1138, Team 26Research Center of CordeliersParisFrance
| | - Anne Blanchard
- Sorbonne Paris CitéParis Descartes UniversityParisFrance
- Centre d'Investigation Clinique, APHP, INSERM CIC‐1418Européen Georges Pompidou HospitalParisFrance
| | - Marion Pépin
- Department of Geriatrics, APHPGHU Paris‐Saclay University, Ambroise Paré HospitalBoulogne‐BillancourtFrance
- Clinical Epidemiology, UVSQ, Inserm U1018, CESPParis‐Saclay UniversityVillejuifFrance
| | | | - Marie‐Anne Loriot
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
- INSERM U1138, Team 26Research Center of CordeliersParisFrance
- Sorbonne Paris CitéParis Descartes UniversityParisFrance
| | - Olivier Laprévote
- CNRS, CiTCoMParis‐Cité UniversityParisFrance
- Department of Clinical Chemistry, APHP, GHU Paris‐CentreEuropean Georges Pompidou HospitalParisFrance
| |
Collapse
|
19
|
Sabarathinam S, Ganamurali N, Satheesh S, Dhanasekaran D, Raja A. Pharmacokinetic correlation of structurally modified chalcone derivatives as promising leads to treat tuberculosis. Future Med Chem 2023; 15:1903-1913. [PMID: 37877262 DOI: 10.4155/fmc-2023-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
In this study, we evaluated the potential of curated structurally modified chalcone derivatives as anti-tuberculosis (TB) agents through computer-aided drug design. Compounds from the flavonoid family known as chalcones were identified by the chemical group 1,3-diaryl-2-propen-1-one. After a search of the literature, 14 outstanding structurally modified chalcones were selected and evaluated for inhibitory activity against Mycobacterium tuberculosis H37Rv targets. The therapeutic potential of the chalcones was directly based on the drug-likeness and pharmacokinetic properties of the synthesized compounds. Prompt drug selection and personalized therapy are required to prevent TB from progressing and spreading to others. Pharmacokinetic parameters helps in the identification of lead molecule, at the earlier stages of drug development.
Collapse
Affiliation(s)
- Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
- Clinical Trial Unit, Metabolic Ward, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
- Certificate Program-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Nila Ganamurali
- Certificate Program-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sanjana Satheesh
- Department of Biotechnology, Birla Institute of Technology & Science, Dubai Campus, Dubai International Academic City, PO Box 345055, Dubai, United Arab Emirates
| | - Dhivya Dhanasekaran
- Certificate Program-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Arun Raja
- Department of Community Medicine, Sree Balaji Medical College & Hospital, Chrompet, Chennai, Tamil Nadu, 600044, India
| |
Collapse
|
20
|
Zitzmann-Kolbe S, Kristian A, Zopf D, Kamfenkel C, Politz O, Ellingsen C, Hilbig J, Juul MU, Fonslet J, Nielsen CH, Schatz CA, Bjerke RM, Cuthbertson AS, Mumberg D, Hagemann UB. A Targeted Thorium-227 Conjugate Demonstrates Efficacy in Preclinical Models of Acquired Drug Resistance and Combination Potential with Chemotherapeutics and Antiangiogenic Therapies. Mol Cancer Ther 2023; 22:1073-1086. [PMID: 37365121 PMCID: PMC10477831 DOI: 10.1158/1535-7163.mct-22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.
Collapse
|
21
|
Wang J, Li X, Wang F, Cheng M, Mao Y, Fang S, Wang L, Zhou C, Hou W, Chen Y. Placing steroid hormones within the human ABCC3 transporter reveals a compatible amphiphilic substrate-binding pocket. EMBO J 2023; 42:e113415. [PMID: 37485728 PMCID: PMC10476276 DOI: 10.15252/embj.2022113415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones β-estradiol 17-(β-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.
Collapse
Affiliation(s)
- Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xu Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Fang‐Fang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Meng‐Ting Cheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yao‐Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shu‐Cheng Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Wang
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Cong‐Zhao Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Wen‐Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
22
|
Neves RL, Marem A, Carmona B, Arata JG, Cyrillo Ramos MP, Justo GZ, Machado de Melo FH, Oliveira V, Icimoto MY. Expression of thimet oligopeptidase (THOP) modulated by oxidative stress in human multidrug resistant (MDR) leukemia cells. Biochimie 2023; 212:21-30. [PMID: 36997147 DOI: 10.1016/j.biochi.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Thimet oligopeptidase (THOP) is a cytosolic metallopeptidase known to regulate the fate of post-proteasomal peptides, protein turnover and peptide selection in the antigen presentation machinery (APM) system. Oxidative stress influences THOP expression and regulates its proteolytic activity, generating variable cytosolic peptide levels, possibly affecting the immune evasion of tumor cells. In the present work, we examined the association between THOP expression/activity and stress oxidative resistance in human leukemia cells using the K562 cell line, a chronic myeloid leukemia (CML), and the multidrug-resistant (MDR) Lucena 1 (K562-derived MDR cell line) as model. The Lucena 1 phenotype was validated under vincristine treatment and the relative THOP1 mRNA levels and protein expression compared to K562 cell line. Our data demonstrated increased THOP1 gene and protein levels in K562 cells in contrast to the oxidative-resistant Lucena 1, even after H2O2 treatment, suggesting an oxidative stress dependence in THOP regulation. Further, it was observed higher basal levels of reactive oxygen species (ROS) in K562 compared to Lucena 1 cell line using DHE fluorescent probe. Since THOP activity is dependent on its oligomeric state, we also compared its proteolytic activity under reducing agent treatment, which demonstrated that its function modulation with respect to changes in redox state. Finally, the mRNA expression and FACS analyses demonstrated a reduced expression of MHC I only in K562 cell line. In conclusion, our results highlight THOP redox modulation, which could influence antigen presentation in multidrug resistant leukemia cells.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alyne Marem
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | | | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
23
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
24
|
Bennani FE, Doudach L, Karrouchi K, Tarib A, Rudd CE, Ansar M, Faouzi MEA. Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study. J Biomol Struct Dyn 2023; 41:4194-4218. [PMID: 35442150 DOI: 10.1080/07391102.2022.2064915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Cancer remains the leading cause of death in the world despite the significant advancements made in anticancer drug discovery. This study is aimed to computationally evaluate the efficacy of 63 in-house synthesized pyrazole derivatives targeted to bind with prominent cancer targets namely EGFR, RSK1, RAF1, PARP2 and LIN28B known to be expressed, respectively, in lung, colon, skin, ovarian and pancreatic cancer cells. Initially, we perform the molecular docking investigations for all pyrazole compounds with a comparison to known standard drugs for each target. Docking studies have revealed that some pyrazole compounds possess better binding affinity scores than standard drug compounds. Thereafter, a long-range of 1 μs molecular dynamic (MD) simulation study for top ranked docked compounds with all respective proteins was carried out to assess the interaction stability in a dynamic environment. The results suggested that the top ranked complexes showed a stable interaction profile for a longer period of time. The outcome of this study suggests that pyrazole compounds, M33, M36, M76 and M77, are promising molecular candidates that can modulate the studied target proteins significantly in comparison to their known inhibitor based on their selective binding interactions profile. Furthermore, ADME-T profile has been explored to check for the drug-likeness and pharmacokinetics profiles and found that all proposed compounds exhibited acceptable values for being a potential drug-like candidate with non-toxic characteristics. Overall, extensive computational investigations indicate that the four proposed pyrazole inhibitors/modulators studied against each respective target protein will be helpful for future cancer therapeutic developments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelilah Tarib
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Christopher E Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M'hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
25
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
26
|
Aniogo EC, George BP, Abrahamse H. Photobiomodulation Improves Anti-Tumor Efficacy of Photodynamic Therapy against Resistant MCF-7 Cancer Cells. Biomedicines 2023; 11:1547. [PMID: 37371640 DOI: 10.3390/biomedicines11061547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer resistance is a primary concern in cancer treatment, and developing an effective modality or strategy to improve therapeutic outcomes is imperative. Photodynamic therapy (PDT) is a treatment modality that targets the tumor with a photoactive molecule and light for the specific destruction of cancer cells. Photobiomodulation (PBM) is a light exposure of cells to energize their biomolecules to respond to therapy. In the present study, we used PBM to mediate and improve the anti-tumor efficacy of zinc phthalocyanine tetrasulfonic acid (ZnPcS4)-PDT on resistant MCF-7 breast cancer cells and explore molecular changes associated with cell death. Different laser irradiation models were used for PBM and PDT combination. The combined treatment demonstrated an additive effect on the viability and Annexin-V/PI-staining cell death assessed through MTT assay and mitochondrial release of cytochrome c. Rhodamine (Rh123) showed increased affinity to mitochondrial disruption of the strategic treatment with PBM and PDT. Results from the autophagy assay indicate an interplay between the mitochondrial and autophagic proteins. These findings were indicative that PBM might improve the anti-tumor of PDT by inducing autophagy in resistant MCF-7 breast cancer cells that evade apoptosis.
Collapse
Affiliation(s)
- Eric Chekwube Aniogo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
27
|
Sharma S, Choudhary S, Kaur S, Reddy MV, Thota N, Singh A, Koul S, Khan IA, Ahmed Z, Kumar A. Piperine analog PGP-41 treatment overcomes paclitaxel resistance in NCI/ADR-RES ovarian cells by inhibition of MDR1. Chem Biol Interact 2023:110569. [PMID: 37244399 DOI: 10.1016/j.cbi.2023.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Chemoresistance is one of the leading causes of the failure of chemotherapy. Overexpression of P-glycoprotein (P-gp) in cancer cells is one of the most important contributing factors toward the development of chemoresistance. This study was designed to synthesize the derivatives of dihydronaphthyl and to evaluate the P-gp inhibition activity of these compounds. Among all the compounds, PGP-41 showed the most potent P-gp inhibition activity in colorectal adenocarcinoma LS-180 cells. This compound showed potent P-gp inhibition activity in chemoresistant ovarian cell line NCI/ADR-RES. Paclitaxel is one of the first lines of drugs for treating ovarian cancer and is a substrate of P-gp; therefore, NCI/ADR-RES cells are highly resistant to treatment with paclitaxel. Based on this information, we evaluated PGP-41 to overcome the paclitaxel resistance of NCI/ADR-RES cells. PGP-41 was able to sensitize the NCI/ADR-RES cells to the treatment of paclitaxel, which was evident by the reduced IC50 value of paclitaxel from 6.64 μM to 0.12 μM. The sensitization of NCI/ADR-RES cells by PGP-41 was comparable to that of elacridar and Zosuquidar. Further studies revealed that the PGP-41 exerts its effect by downregulating the expression of P-gp. Reduction of P-gp activity leads to the accumulation of higher intracellular concentration of paclitaxel, and thus allowing it to interact with its targets, which further helps in its increased efficacy. Paclitaxel was able to arrest the sensitized NCI/ADR-RES cells into G2M phase, which ultimately led to the induction of apoptotic proteins and the death of cancer cells. Being a different scaffold from zosuquidar and elacridar, further studies are required to develop PGP-41 into a potential drug to overcome chemoresistance in cancer cells.
Collapse
Affiliation(s)
- Sadhana Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Academy of Scientific and Innovative Research, Ghaziabaad, 201002, India
| | - Sushil Choudhary
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Academy of Scientific and Innovative Research, Ghaziabaad, 201002, India
| | - Sukhleen Kaur
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Academy of Scientific and Innovative Research, Ghaziabaad, 201002, India
| | - M Venkat Reddy
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - Niranjan Thota
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Eurofins Selcia Ltd., Chelmsford, London, UK
| | - Amarinder Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - Surrinder Koul
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India
| | - Inshad Ali Khan
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Academy of Scientific and Innovative Research, Ghaziabaad, 201002, India.
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016, India; Academy of Scientific and Innovative Research, Ghaziabaad, 201002, India.
| |
Collapse
|
28
|
Mann D, Labudda K, Zimmermann S, Vocke KU, Gasper R, Kötting C, Hofmann E. ATP binding and ATP hydrolysis in full-length MsbA monitored via time-resolved Fourier transform infrared spectroscopy. Biol Chem 2023:hsz-2023-0122. [PMID: 37185095 DOI: 10.1515/hsz-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
The essential Escherichia coli ATPase MsbA is a lipid flippase that serves as a prototype for multi drug resistant ABC transporters. Its physiological function is the transport of lipopolisaccharides to build up the outer membranes of gram negative bacteria. Although several structural and biochemical studies of MsbA have been conducted previously, a detailed picture of the dynamic processes that link ATP hydrolysis to allocrit transport remains elusive. We report here for the first time time-resolved Fourier transform infrared (FTIR) spectroscopic measurements of the ATP binding and ATP hydrolysis reaction of full-length MsbA and determined reaction rates at 288 K of k 1 = 0.49 ± 0.28 s-1 and k 2 = 0.014 ± 0.003 s-1, respectively. We further verified these rates with photocaged NPEcgAppNHp where only nucleotide binding was observable and the negative mutant MsbA-H537A that showed slow hydrolysis (k 2 < 2 × 10-4 s-1). Besides single turnover kinetics, FTIR measurements also deliver IR signatures of all educts, products and the protein. ADP remains protein-bound after ATP hydrolysis. In addition, the spectral changes observed for the two variants MsbA-S378A and MsbA-S482A correlated with the loss of hydrogen bonding to the γ-phosphate of ATP. This study paves the way for FTIR-spectroscopic investigations of allocrite transport in full-length MsbA.
Collapse
Affiliation(s)
- Daniel Mann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons / ER-C-3: Structural Biology, D-52425 Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute for Biological Information Processing / IBI-6 Cellular Structural Biology, D-52425 Jülich, Germany
| | - Kristin Labudda
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Sophie Zimmermann
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Kai Ulrich Vocke
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Raphael Gasper
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Max Planck Institute of Molecular Physiology, Crystallography and Biophysics Facility, D-44227 Dortmund, Germany
| | - Carsten Kötting
- Ruhr University Bochum, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy, D-44780 Bochum, Germany
| | - Eckhard Hofmann
- Ruhr University Bochum, Protein Crystallography, Department of Biophysics, Universitätsstraße 150, D-44780 Bochum, Germany
| |
Collapse
|
29
|
Yang B, Yan Y, Wang D, Zhang Y, Yin J, Zhu G. On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target. PLoS Negl Trop Dis 2023; 17:e0011217. [PMID: 36972284 PMCID: PMC10079235 DOI: 10.1371/journal.pntd.0011217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/06/2023] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
Cryptosporidium parvum is a globally distributed zoonotic protozoan parasite that causes moderate to severe, sometime deadly, watery diarrhea in humans and animals, for which fully effective treatments are yet unavailable. In studying the mechanism of action of drugs against intracellular pathogens, it is important to validate whether the observed anti-infective activity is attributed to the drug action on the pathogen or host target. For the epicellular parasite Cryptosporidium, we have previously developed a concept that the host cells with significantly increased drug tolerance by transient overexpression of the multidrug resistance protein-1 (MDR1) could be utilized to evaluate whether and how much the observed anti-cryptosporidial activity of an inhibitor was attributed to the inhibitor’s action on the parasite target. However, the transient transfection model was only applicable to evaluating native MDR1 substrates. Here we report an advanced model using stable MDR1-transgenic HCT-8 cells that allows rapid development of novel resistance to non-MDR1 substrates by multiple rounds of drug selection. Using the new model, we successfully validated that nitazoxanide, a non-MDR1 substrate and the only FDA-approved drug to treat human cryptosporidiosis, killed C. parvum by fully (100%) acting on the parasite target. We also confirmed that paclitaxel acted fully on the parasite target, while several other inhibitors including mitoxantrone, doxorubicin, vincristine and ivermectin acted partially on the parasite targets. Additionally, we developed mathematical models to quantify the proportional contribution of the on-parasite-target effect to the observed anti-cryptosporidial activity and to evaluate the relationships between several in vitro parameters, including antiparasitic efficacy (ECi), cytotoxicity (TCi), selectivity index (SI) and Hill slope (h). Owning to the promiscuity of the MDR1 efflux pump, the MDR1-transgenic host cell model could be applied to assess the on-parasite-target effects of newly identified hits/leads, either substrates or non-substrates of MDR1, against Cryptosporidium or other epicellular pathogens.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yueyang Yan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dongqiang Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, the Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
30
|
Wang R, Piggott AM, Chooi YH, Li H. Discovery, bioactivity and biosynthesis of fungal piperazines. Nat Prod Rep 2023; 40:387-411. [PMID: 36374102 DOI: 10.1039/d2np00070a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Covering: up to the end of July, 2022Fungi are prolific producers of piperazine alkaloids, which have been shown to exhibit an array of remarkable biological activities. Since the first fungal piperazine, herquline A, was reported from Penicillium herquei Fg-372 in 1979, a plethora of structurally diverse piperazines have been isolated and characterised from various fungal strains. Significant advancements have been made in recent years towards unravelling the biosynthesis of fungal piperazines and numerous synthetic routes have been proposed. This review provides a comprehensive summary of the current knowledge of the discovery, classification, bioactivity and biosynthesis of piperazine alkaloids reported from fungi, and discusses the perspectives for exploring the structural diversity of fungal piperazines via genome mining of the untapped piperazine biosynthetic pathways.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
31
|
ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 2023; 28:103537. [PMID: 36801375 DOI: 10.1016/j.drudis.2023.103537] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Of the many known multidrug resistance (MDR) mechanisms, ATP-binding cassette (ABC) transporters expelling drug molecules out of cells is a major factor limiting the efficacy of present-day anticancer drugs. In this review, we highlights updated information on the structure, function, and regulatory mechanisms of major MDR-related ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), and the effect of modulators on their functions. We also provide focused information on different modulators of ABC transporters that could be utilized against the emerging MDR crisis in cancer treatment. Finally, we discuss the importance of ABC transporters as therapeutic targets in light of future strategic planning for translating ABC transporter inhibitors into clinical practice.
Collapse
|
32
|
Qin S, Zhang Z, Huang Z, Luo Y, Weng N, Li B, Tang Y, Zhou L, Jiang J, Lu Y, Shao J, Xie N, Nice EC, Chen ZS, Zhang J, Huang C. CCT251545 enhances drug delivery and potentiates chemotherapy in multidrug-resistant cancers by Rac1-mediated macropinocytosis. Drug Resist Updat 2023; 66:100906. [PMID: 36565657 DOI: 10.1016/j.drup.2022.100906] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
It was well known that P-glycoprotein (P-gp/ABCB1) is a master regulator of multidrug resistance (MDR) in cancers. However, the clinical benefit from blocking this pathway remains inconclusive, which motivates a paradigm shift towards alternative strategies for enhancing drug influx. Using a patient-derived organoid (PDO)-based drug screening platform, we report that the combined use of chemotherapy and CCT251545 (CCT) displays robust synergistic effect against PDOs and reduces proliferation of MDR cancer cells in vitro, and results in regression of xenograft tumors, reductions in metastatic dissemination and recurrence rate in vivo. The synergistic activity mediated by CCT can be mainly attributed to the intense uptake of chemotherapeutic agents into the cells, accompanied by alterations in cell phenotypes defined as a mesenchymal epithelial transformation (MET). Mechanistically, analysis of the transcriptome coupled with validation in cellular and animal models demonstrate that the chemosensitizing effect of CCT is profoundly affected by Rac1-dependent macropinocytosis. Furthermore, CCT binds to NAMPT directly, resulting in elevated NAD levels within MDR cancer cells. This effect promotes the assembly of adherents junction (AJ) components with cytoskeleton, which is required for continuous induction of macropinocytosis and consequent drug internalization. Overall, our results illustrate the potential use of CCT as a combination partner for the commonly used chemotherapeutic drugs in the management of MDR cancers.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinheng Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute for Biotechnology, St. John's University, Queens, NY 11439, USA
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
33
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
34
|
Özgen Ö, Özen Eroğlu G, Küçükhüseyin Ö, Akdeniz N, Hepokur C, Kuruca S, Yaylım İ. Vitamin D increases the efficacy of cisplatin on bladder cancer cell lines. Mol Biol Rep 2023; 50:697-706. [PMID: 36370297 DOI: 10.1007/s11033-022-08044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND 1,25(OH)2D3(Calcitriol), which is a broad regulatory molecule, plays a role in changing the efficacy of chemotherapeutic drugs. Cisplatin is one of a current standard chemotherapy regimen for bladder cancer. Increasing the effectiveness of the treatment and reducing the side effects to chemotherapeutics are of great importance in bladder cancer. We aimed to investigate the effect of the combination of cisplatin and calcitriol in order to create a possible advantage in treatment of bladder cancer. METHODS T24, ECV-304 and HUVEC cell lines were treated with calcitriol and cisplatin individually and in combination. Dose determination and combination treatments of calcitriol and cisplatin were evaluated using the MTT assay for cytotoxicity analysis on the cells. Annexin V-PI staining method was used for apoptosis determination by flow cytometry. Also the P-gp expression levels were determined by flow cytometry. RESULTS The combination treatment increased the anti-proliferative efficacy compared to the efficacy in cisplatin alone in T24 cells and reduced the cytotoxicity in the HUVEC healthy cells compared to cisplatin alone. Combination treatment achieved significantly higher apoptosis rate in T24 cells compared with the rates in treatment of cisplatin alone. However apoptosis decreased in HUVEC cell line. P-gp ratios were increased in HUVEC and decreased in T24 cells with combination treatment compared to the numbers in the control cells. The rate of apoptosis and P-gp levels showed no significant change in ECV-304 cells. CONCLUSION Our study revealed that the combination of calcitriol and cisplatin allows the use of cisplatin at lower doses in T24 bladder cancer cell line.
Collapse
Affiliation(s)
- Özge Özgen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey.
| | - Güneş Özen Eroğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| | - Özlem Küçükhüseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| | - Nilgün Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ceylan Hepokur
- Department of Medical Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Fatih-Capa, Istanbul, Turkey
| |
Collapse
|
35
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
36
|
Reversal of multidrug resistance by Fissistigma latifolium–derived chalconoid 2-hydroxy-4,5,6-trimethoxydihydrochalcone in cancer cell lines overexpressing human P-glycoprotein. Biomed Pharmacother 2022; 156:113832. [DOI: 10.1016/j.biopha.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
|
37
|
Quantification of Paeoniflorin by Fully Validated LC-MS/MS Method: Its Application to Pharmacokinetic Interaction between Paeoniflorin and Verapamil. Molecules 2022; 27:molecules27238337. [PMID: 36500431 PMCID: PMC9737983 DOI: 10.3390/molecules27238337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
A rapid, sensitive, and specific LC-MS/MS method was developed and fully validated for the detection of paeoniflorin only in rat plasma, and applied to pharmacokinetic studies, including intravenous, multi-dose oral and combined administrations with verapamil. In this study, tolbutamide was used as the internal standard, and the protein precipitation extraction method, using acetonitrile as the extraction agent, was used for the sample preparation. Subsequently, the supernatant samples were analyzed on a Phenomenex Gemini® NX-C18 column with a flow rate of 1.0 mL/min in a gradient elution procedure. In the extracted rat plasma, the method exhibited high sensitivity (LLOQ of 1.0 ng/mL) upon selecting ammonium adduct ions ([M+NH4]+) as the precursor ions and good linearity over the concentration range of 1.0−2000 ng/mL, with correlation coefficients >0.99. The intra- and inter-batch accuracy RE% values were within ±8.2%, and the precision RSD% values were ≤8.1% and ≤10.0%, respectively. The results show that the method can be successfully applied to quantitate paeoniflorin in biological samples. Additionally, paeoniflorin is subsequently confirmed to be the substrate of the P-gp transporter in vivo and in vitro for the first time, which would be necessary and beneficial to investigate the clinical safety and efficacy of PF with other drugs in the treatment of rheumatoid arthritis.
Collapse
|
38
|
Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression. mBio 2022; 13:e0199322. [PMID: 35968955 PMCID: PMC9426490 DOI: 10.1128/mbio.01993-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.
Collapse
|
39
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
40
|
Abdelkader A, Elzemrany AA, El-Nadi M, Elsabbagh SA, Shehata MA, Eldehna WM, El-Hadidi M, Ibrahim TM. In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology 2022; 573:96-110. [PMID: 35738174 PMCID: PMC9212324 DOI: 10.1016/j.virol.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database (SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simulations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are recommended for biological testing to cease the rapidly growing pandemic.
Collapse
Affiliation(s)
- Ahmed Abdelkader
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Amal A Elzemrany
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mennatullah El-Nadi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Tamer M Ibrahim
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
41
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
42
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
43
|
Kondiah PPD, Rants’o TA, Makhathini SS, Mdanda S, Choonara YE. An Oral 3D Printed PLGA-Tocopherol PEG Succinate Nanocomposite Hydrogel for High-Dose Methotrexate Delivery in Maintenance Chemotherapy. Biomedicines 2022; 10:1470. [PMID: 35884775 PMCID: PMC9313284 DOI: 10.3390/biomedicines10071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.P.D.K.); (T.A.R.); (S.S.M.); (S.M.)
| |
Collapse
|
44
|
Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022; 79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023]
Abstract
The discovery of effective drugs for the treatment of neurodegenerative disorders (NDs) is a deadlock. Due to their complex etiology and high heterogeneity, progresses in the development of novel NDs therapies have been slow, raising social/economic and medical concerns. Nanotechnology and nanomedicine evolved exponentially in recent years and presented a panoply of tools projected to improve diagnosis and treatment. Drug-loaded nanosystems, particularly nanoparticles (NPs), were successfully used to address numerous drug glitches, such as efficacy, bioavailability and safety. Polymeric nanoparticles (PNPs), mainly based on polylactic-co-glycolic acid (PLGA), have been already validated and approved for the treatment of cancer, neurologic dysfunctions and hormonal-related diseases. Despite promising no PNPs-based therapy for neurodegenerative disorders is available up to date. To stimulate the research in the area the studies performed so far with polylactic-co-glycolic acid (PLGA) nanoparticles as well as the techniques aimed to improve PNPs BBB permeability and drug targeting were revised. Bearing in mind NDs pharmacological therapy landscape huge efforts must be done in finding new therapeutic solutions along with the translation of the most promising results to the clinic, which hopefully will converge in the development of effective drugs in a foreseeable future.
Collapse
|
45
|
Abalenikhina YV, Erokhina PD, Mylnikov PY, Shchulkin AV, Yakusheva EN. Functioning of the P-glycoprotein Membrane Transport Protein under Conditions of the Inhibition of Glutathione Synthesis. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abdelaal MR, Haffez H. The potential roles of retinoids in combating drug resistance in cancer: implications of ATP-binding cassette (ABC) transporters. Open Biol 2022; 12:220001. [PMID: 35642494 PMCID: PMC9157304 DOI: 10.1098/rsob.220001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multidrug resistance (MDR) means that tumour cells become unresponsive during or after the course of treatment to one or more of chemotherapeutic drugs. Chemotherapeutic resistance critically limits the treatment outcomes and remains a key challenge for clinicians. The alternation in intracellular drug concentration through the modulation of its transport across the plasma membrane is the major cause for MDR and is adopted by various mediators, including ATP-requiring enzymes (ATPases). Among these ATPases, ABC transporters have been extensively studied, and found to be highly implicated in tumorigenesis and MDR. The present review sheds light on the documented effects of retinoids on ABC enzymes to understand their mechanism in combating cancer cell resistance. This would open the gate to test the mechanism and applicability of different new synthetic retinoids in literature and market as modulators of ATP-dependent efflux pumping activity, and promote their applicability in diminishing anti-cancer drug resistance.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt,Centre of Scientific Excellence ‘Helwan Structural Biology Research (HSBR)’, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt,Centre of Scientific Excellence ‘Helwan Structural Biology Research (HSBR)’, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
47
|
Isolation of MDCK cells with low expression of mdr1 gene and their use in membrane permeability screening. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:275-288. [PMID: 36651516 DOI: 10.2478/acph-2022-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
The Madin-Darby canine kidney (MDCK) cell line is frequently used for permeability screening in drug discovery. It contains endogenous transporters, most prominently canine multidrug resistance P-glycoprotein (Mdr1), which can interfere with studies of P-glycoprotein substrate assessment and permeability measurements. Because MDCK wild type (WT) is genetically heterogeneous, an isolation procedure was investigated in this study to obtain the subclonal line with low P-glycoprotein expression. The best clone obtained had up to 3-fold lower amprenavir efflux and P-glycoprotein expression in comparison to WT. Of 12 standard compounds tested that exhibited active efflux in WT cells, 11 showed a decrease in efflux in the isolated clone. However, the decrease was not below the cut-off value of 2, indicating residual P--glycoprotein activity. Clone isolation via the limiting dilution method, combined with bidirectional amprenavir permeability for clone selection, successfully identified MDCK clones with substantially lower P-glycoprotein efflux and has been demonstrated as a useful tool for assessing passive permeability in early drug discovery.
Collapse
|
48
|
Remofuscin induces xenobiotic detoxification via a lysosome-to-nucleus signaling pathway to extend the Caenorhabditis elegans lifespan. Sci Rep 2022; 12:7161. [PMID: 35504961 PMCID: PMC9064964 DOI: 10.1038/s41598-022-11325-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Lipofuscin is a representative biomarker of aging that is generated naturally over time. Remofuscin (soraprazan) improves age-related eye diseases by removing lipofuscin from retinal pigment epithelium (RPE) cells. In this study, the effect of remofuscin on longevity in Caenorhabditis elegans and the underlying mechanism were investigated. The results showed that remofuscin significantly (p < 0.05) extended the lifespan of C. elegans (N2) compared with the negative control. Aging biomarkers were improved in remofuscin-treated worms. The expression levels of genes related to lysosomes (lipl-1 and lbp-8), a nuclear hormone receptor (nhr-234), fatty acid beta-oxidation (ech-9), and xenobiotic detoxification (cyp-34A1, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A4, cyp-35A5, cyp-35C1, gst-28, and gst-5) were increased in remofuscin-treated worms. Moreover, remofuscin failed to extend the lives of C. elegans with loss-of-function mutations (lipl-1, lbp-8, nhr-234, nhr-49, nhr-8, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A5, and gst-5), suggesting that these genes are associated with lifespan extension in remofuscin-treated C. elegans. In conclusion, remofuscin activates the lysosome-to-nucleus pathway in C. elegans, thereby increasing the expression levels of xenobiotic detoxification genes resulted in extending their lifespan.
Collapse
|
49
|
Kapoor K, Thangapandian S, Tajkhorshid E. Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins. Chem Sci 2022; 13:4150-4169. [PMID: 35440993 PMCID: PMC8985516 DOI: 10.1039/d2sc00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in silico studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.
Collapse
Affiliation(s)
- Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Sundar Thangapandian
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
50
|
Y Alshogran O, Ghraiybah NFA, I Al-Azzam S. Evaluation of the effect of isobutyl paraben and 2-ethyl hexyl paraben on p-glycoprotein functional expression in rats: a pharmacokinetic study. Curr Mol Pharmacol 2022; 15:987-995. [PMID: 35086468 DOI: 10.2174/1874467215666220127121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pharmaceutical excipients have been shown to influence drug disposition through modulating transport protein. OBJECTIVES This study assessed the effect of single dose administration of parabens on the pharmacokinetics (PK) of digoxin, a probe substrate of p-glycoprotein (p-gp), in vivo. Also, the effect of multiple dosing of parabens on p-gp expression was examined. METHODS Rats were randomized into four groups that received either the vehicle, 25mg/kg verapamil, 100mg/kg isobutyl paraben, or 100mg/kg 2-ethyl hexyl paraben, which was followed by giving 0.2mg/kg digoxin via oral gavage. Blood samples were collected at different time points, digoxin concentration was measured using LC/MS-MS, and digoxin PK parameters were estimated. Another set of rats received multiple doses of parabens for 14 days which was followed by measuring intestinal and hepatic mRNA expression of p-gp using qRT-PCR. RESULTS Single dose administration of verapamil significantly increased Cmax (by 60.4%) and AUC0-t (by 61.7%) of digoxin compared to the control group, while the PK parameters of digoxin in rats exposed to parabens were not significantly different from the control. Consistently, the mRNA expression of p-gp in intestine and liver was not affected by parabens treatment. CONCLUSIONS The lack of isobutylparaben and 2-ethylhexyl paraben effect on p-gp may suggest the insignificant interaction of parabens with p-gp drug substrates, which could be of safety considerations when designing pharmaceutical formulations.
Collapse
Affiliation(s)
- Osama Y Alshogran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour F Al Ghraiybah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sayer I Al-Azzam
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|