1
|
Öz H, Canacankatan N, Antmen ŞE, Aytan H, Tuncel F. 'Investigation of miRNAs That Affect the PI3K/AKT/mTOR Signaling Pathway in Endometrial Cancer'. Cell Biochem Biophys 2025:10.1007/s12013-025-01694-6. [PMID: 39982560 DOI: 10.1007/s12013-025-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Endometrial cancer is a prevalent type of cancer among women worldwide. The irregularity of the PI3K/AKT/mTOR signaling pathway plays a role in the pathogenesis of many cancer types. MicroRNAs are small noncoding RNAs that play crucial roles in the pathogenesis of different cancer types. MicroRNAs target many key components of the PI3K/AKT/mTOR pathway in human tumors. In this study the PI3K/AKT/mTOR pathway was affected in endometrial cancer, and the expression levels of miR-7, miR-17, miR-145, miR-155, miR-206, miR-221, miR-222 were determined. In addition, in silico analyses were examine the molecular interactions between miRNAs and target genes. Identifying dysregulated miRNA expression in endometrial cancer is important for developing miRNA-based therapeutic strategies. In our study, Grade 1 (n = 16), Grade 2 (n = 16), Grade 3 (n = 16), tissues diagnosed with endometrioid adeno carcinoma, control 1 (n = 16) secretory phase and control 2 (n = 16) proliferative phase healthy endometrial tissues without endometrial cancer were included. miRNA expression analysis was performed using the real-time PCR. In our study, the expression of miR-7-5p, miR-145-5p, and miR-206 decreased, whereas the expression of miR-17-5p, miR-221-3p, and miR-222-3p increased in endometrial cancer (p < 0,05). Statistically significant results were not obtained to for the expression levels of miR-21-5p and miR-155-5p. miR-7-5p targets PIK3CD, PIK3R3, PIK3CB and AKT3, miR-17-5p targets PIK3R1 and AKT3, miR-21-5p target PIK3R1, miR-145-5p target AKT3, miR-155-5p targets PIK3CA and PIK3R1, miR-206 target PIK3C2A, miR-221-3p and miR-222-3p target PIK3R1 as identified via in silico analysis. These results can shed light on the development of molecular-targeted therapy strategies. Treatment strategies can be developed by designing ASOs, LNAs, miRNA antagomirs, or miRNA sponges for upregulated miR-17-5p, miR-221-3p, and miR-222-3p, and miRNA mimics for downregulated miR-7-5p, miR-145-5p, and miR-206.
Collapse
Affiliation(s)
- Hasan Öz
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Necmiye Canacankatan
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Şerife Efsun Antmen
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Hakan Aytan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ferah Tuncel
- Department of Pathology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
2
|
Thangavelu L, Moglad E, Afzal M, Almalki WH, Malathi H, Bansal P, Rani B, Walia C, Sivaprasad GV, Rajput P, Imran M. Non-coding RNAs in Parkinson's disease: Regulating SNCA and alpha-synuclein aggregation. Pathol Res Pract 2024; 261:155511. [PMID: 39094523 DOI: 10.1016/j.prp.2024.155511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
3
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Rath S, Hawsawi YM, Alzahrani F, Khan MI. Epigenetic regulation of inflammation: The metabolomics connection. Semin Cell Dev Biol 2024; 154:355-363. [PMID: 36127262 DOI: 10.1016/j.semcdb.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Epigenetic factors are considered the regulator of complex machinery behind inflammatory disorders and significantly contributed to the expression of inflammation-associated genes. Epigenetic modifications modulate variation in the expression pattern of target genes without affecting the DNA sequence. The current knowledge of epigenetic research focused on their role in the pathogenesis of various inflammatory diseases that causes morbidity and mortality worldwide. Inflammatory diseases are categorized as acute and chronic based on the disease severity and are regulated by the expression pattern of various genes. Hence, understanding the role of epigenetic modifications during inflammation progression will contribute to the disease outcomes and therapeutic approaches. This review also focuses on the metabolomics approach associated with the study of inflammatory disorders. Inflammatory responses and metabolic regulation are highly integrated and various advanced techniques are adopted to study the metabolic signature molecules. Here we discuss several metabolomics approaches used to link inflammatory disorders and epigenetic changes. We proposed that deciphering the mechanism behind the inflammation-metabolism loop may have immense importance in biomarkers research and may act as a principal component in drug discovery as well as therapeutic applications.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia.
| | - Faisal Alzahrani
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Embryonic Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Zhu Q, Tan J, Zhan T, Liu M, Zou Y, Liu W. LINC00115 promotes gastric cancer partly by the miR-212-5p/ATPAF1 axis. AN ACAD BRAS CIENC 2023; 95:e20230480. [PMID: 38088732 DOI: 10.1590/0001-3765202320230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/09/2023] [Indexed: 12/18/2023] Open
Abstract
LncRNAs are known to be key regulators in the initiation and development of diverse cancers. Whether LINC00115 is involved in the regulation of gastric cancer (GC) progression remains unclear. Here, we aimed to show the function of LINC00115 in GC. RT-qPCR was used to measure gene expression in GC tissues and cells. Colony formation, EdU, TUNEL, and wound healing assays were used to analyze cellular processes in GC. The in vivo GC xenograft model was established. We observed that LINC00115 was highly expressed in GC. Functionally, silencing LINC00115 inhibited GC cell proliferation, and migration but facilitated GC apoptosis. Mechanistically, LINC00115 sponged miR-212-5p, while miR-212-5p targeted ATPAF1 in GC cells. Rescue assays showed ATPAF1 overexpression countervailed the inhibitory role of LINC00115 depletion in GC progression in vitro and in vivo. Overall, LINC00115 promoted GC progression by upregulating ATPAF1 via miR-212-5p.
Collapse
Affiliation(s)
- Qingxi Zhu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Jie Tan
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Ting Zhan
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Meng Liu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Yanli Zou
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| | - Weijie Liu
- Tongren Hospital of Wuhan University (Wuhan Third Hospital), Department of Gastroenterology, No.241, Pengliuyang Road, Wuhan 430060, Hubei, China
| |
Collapse
|
6
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines 2022; 10:biomedicines10123186. [PMID: 36551942 PMCID: PMC9775075 DOI: 10.3390/biomedicines10123186] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Axons in the peripheral nervous system have the ability to repair themselves after damage, whereas axons in the central nervous system are unable to do so. A common and important characteristic of damage to the spinal cord, brain, and peripheral nerves is the disruption of axonal regrowth. Interestingly, intrinsic growth factors play a significant role in the axonal regeneration of injured nerves. Various factors such as proteomic profile, microtubule stability, ribosomal location, and signalling pathways mark a line between the central and peripheral axons' capacity for self-renewal. Unfortunately, glial scar development, myelin-associated inhibitor molecules, lack of neurotrophic factors, and inflammatory reactions are among the factors that restrict axonal regeneration. Molecular pathways such as cAMP, MAPK, JAK/STAT, ATF3/CREB, BMP/SMAD, AKT/mTORC1/p70S6K, PI3K/AKT, GSK-3β/CLASP, BDNF/Trk, Ras/ERK, integrin/FAK, RhoA/ROCK/LIMK, and POSTN/integrin are activated after nerve injury and are considered significant players in axonal regeneration. In addition to the aforementioned pathways, growth factors, microRNAs, and astrocytes are also commendable participants in regeneration. In this review, we discuss the detailed mechanism of each pathway along with key players that can be potentially valuable targets to help achieve quick axonal healing. We also identify the prospective targets that could help close knowledge gaps in the molecular pathways underlying regeneration and shed light on the creation of more powerful strategies to encourage axonal regeneration after nervous system injury.
Collapse
|
8
|
Liu J, Qu X. The roles of long non-coding RNAs in ocular diseases. Exp Eye Res 2021; 207:108561. [PMID: 33812869 DOI: 10.1016/j.exer.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
In recent years, lncRNAs have been shown to regulate gene expression at the epigenetic, transcriptional and translational level, thus exerting various functions in biological and pathological processes involving cell proliferation, apoptosis, cell cycle and immune response. An increasing number of researches have unveiled that lncRNAs are dysregulated in pathogenesis and the development of different ocular diseases, such as glaucoma, cataract, retinal disease and ocular tumors. Also, it has been reported that lncRNAs may exert significant roles in various ocular diseases. Here, we summarized the functions of lncRNAs on relevant ocular diseases and further clarified their mechanisms. Here, several previous studies with detailed information of lncRNAs which have been proved to be the diagnostic or prognostic biomarkers and potential therapeutic targets were included. Also, it is our hope to provide a thorough knowledge of the functions of lncRNAs in eye diseases and the methods by which lncRNAs can influence ocular diseases.
Collapse
Affiliation(s)
- Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
9
|
Ebrahimpour A, Sarfi M, Rezatabar S, Tehrani SS. Novel insights into the interaction between long non-coding RNAs and microRNAs in glioma. Mol Cell Biochem 2021; 476:2317-2335. [PMID: 33582947 DOI: 10.1007/s11010-021-04080-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Glioma is the most common brain tumor of the central nervous system. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified to play a vital role in the initiation and progression of glioma, including tumor cell proliferation, survival, apoptosis, invasion, and therapy resistance. New documents emerged, which indicated that the interaction between long non-coding RNAs and miRNAs contributes to the tumorigenesis and pathogenesis of glioma. LncRNAs can act as competing for endogenous RNA (ceRNA), and molecular sponge/deregulator in regulating miRNAs. These interactions stimulate different molecular signaling pathways in glioma, including the lncRNAs/miRNAs/Wnt/β-catenin molecular signaling pathway, the lncRNAs/miRNAs/PI3K/AKT/mTOR molecular signaling pathway, the lncRNAs-miRNAs/MAPK kinase molecular signaling pathway, and the lncRNAs/miRNAs/NF-κB molecular signaling pathway. In this paper, the basic roles and molecular interactions of the lncRNAs and miRNAs pathway glioma were summarized to better understand the pathogenesis and tumorigenesis of glioma.
Collapse
Affiliation(s)
- Anahita Ebrahimpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Rezatabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Boliar S, Russell DG. Lnc(ing)RNAs to the "shock and kill" strategy for HIV-1 cure. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1272-1280. [PMID: 33717648 PMCID: PMC7907223 DOI: 10.1016/j.omtn.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The advent of antiretroviral therapy almost 25 years ago has transformed HIV-1 infection into a manageable chronic condition, albeit still incurable. The inability of the treatment regimen to eliminate latently infected cells that harbor the virus in an epigenetically silent state poses a major hurdle. Current cure approaches are focused on a "shock and kill" strategy that uses latency-reversing agents to chemically reverse the proviral quiescence in latently infected cells, followed by immune-mediated clearance of reactivated cells. To date, hundreds of compounds have been investigated for viral reactivation, yet none has resulted in a functional cure. The insufficiency of these latency-reversing agents (LRAs) alone indicates a critical need for additional, alternate approaches such as genetic manipulation. Long non-coding RNAs (lncRNAs) are an emerging class of regulatory RNAs with functional roles in many cellular processes, including epigenetic modulation. A number of lncRNAs have already been implicated to play important roles in HIV-1 latency and, as such, pharmacological modulation of lncRNAs constitutes a rational alternative approach in HIV-1 cure research. In this review, we discuss the current state of knowledge of the role of lncRNAs in HIV-1 infection and explore the scope for a lncRNA-mediated genetic approach within the shock and kill strategy of HIV-1 cure.
Collapse
Affiliation(s)
- Saikat Boliar
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Corresponding author: Saikat Boliar, Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:101-118. [PMID: 33335796 PMCID: PMC7732971 DOI: 10.1016/j.omtn.2020.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
12
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
13
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
14
|
Zhu Y, Ai R, Ding Z, He Q, Zhang X, Dong Y, He Y. LncRNA‐01126 inhibits the migration of human periodontal ligament cells through MEK/ERK signaling pathway. J Periodontal Res 2020; 55:631-641. [DOI: 10.1111/jre.12749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yiting Zhu
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
| | - Rongshuang Ai
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
| | - Zhiqiang Ding
- School of Computer Science Chongqing Institute of Engineering Chongqing China
| | - Qian He
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
- Department of Laboratory Medicine The First People’s Hospital of Longquanyi District Chengdu China
| | - Xinxin Zhang
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
- Department of Laboratory Medicine Qilu Hospital of Shandong University (Qingdao) Shandong China
| | - Yilin Dong
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
| | - Yujuan He
- Department of Laboratory Medicine Key Laboratory of Diagnostic Medicine (Ministry of Education) Chongqing Medical University Chongqing China
| |
Collapse
|
15
|
Han X, Sekino Y, Babasaki T, Goto K, Inoue S, Hayashi T, Teishima J, Sakamoto N, Sentani K, Oue N, Yasui W, Matsubara A. Microtubule-associated protein tau (MAPT) is a promising independent prognostic marker and tumor suppressive protein in clear cell renal cell carcinoma. Urol Oncol 2020; 38:605.e9-605.e17. [PMID: 32139291 DOI: 10.1016/j.urolonc.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Microtubule-associated protein tau (MAPT) overexpression has been linked to poor prognosis in several cancers. MAPT-AS1 is a long noncoding RNA existing at the antisense strand of the MAPT promoter region. The clinical significance of MAPT and MAPT-AS-1 in clear cell renal cell carcinoma (ccRCC) is unknown. This study aimed to assess the expression and function of MAPT and MAPT-AS1 in ccRCC. METHODS The expression of MAPT was determined using immunohistochemistry in ccRCC. The effects of MAPT knockdown on cell growth and invasion were evaluated and the interaction between MAPT and microtubule-associated protein tau antisense (MAPT-AS1) were analyzed. The expression of MAPT-AS1 was determined using quantitative reverse transcription polymerase chain reaction in ccRCC tissues. We investigated the effect of MAPT-AS1 knockdown on cell growth and invasion. We analyzed the regulation of MAPT and MAPT-AS1. RESULTS Immunohistochemistry in 135 ccRCC cases showed that 61% of the cases were positive for MAPT. Kaplan-Meier analysis showed that the low expression of MAPT was associated with poor overall survival after nephrectomy. Knockdown of MAPT enhanced cell growth and invasion. quantitative reverse transcription polymerase chain reaction revealed a positive correlation between MAPT and MAPT-AS1. The expression of MAPT-AS1 was higher in ccRCC tissue than in nonneoplastic kidney tissue. Kaplan-Meier analysis showed that the low expression of MAPT-AS1 was associated with poor overall survival after nephrectomy by in silico analysis. MAPT-AS1 knockdown promoted cell growth and invasion activity. P53 knockout suppressed the expression of MAPT and MAPT-AS1. CONCLUSION These results suggest that MAPT and MAPT-AS1 may be promising predictive biomarkers for survival and play a tumor-suppressive role in ccRCC.
Collapse
Affiliation(s)
- Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
16
|
Zeng J, Liu Z, Zhang C, Hong T, Zeng F, Guan J, Tang S, Hu Z. Prognostic value of long non-coding RNA SNHG20 in cancer: A meta-analysis. Medicine (Baltimore) 2020; 99:e19204. [PMID: 32118721 PMCID: PMC7478608 DOI: 10.1097/md.0000000000019204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Small nucleolar RNA host gene 20 (SNHG20) is a newly identified long non-coding RNA (lncRNA). Accumulative evidence suggest that SNHG20 is highly related to tumorigenesis. However, whether the levels of SNHG20 can be used for prognosis of patients with different cancer types was unclear. The present study aims to explore the role of SNHG20 in tumor prognosis and its clinical significance. METHODS Related articles published before March 14, 2019 were searched in PubMed, Excerpta Medica Database (EMBASE), ISI Web of Science, and China National Knowledge Infrastructure (CNKI). Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were obtained using Stata 11.0 software and used to for determination of the link between the levels of SNHG20 and overall survival (OS). Fixed or random model was chosen depending on the heterogeneity of the studies. A quality assessment of the included studies was performed according to the Newcastle-Ottawa scale. This study was approved by the Medical Ethics Committee of Xiangya Hospital of Central South University. RESULTS After a strict filtering process, a total of 1149 patients from 15 studies were enrolled in this study. Pooled data showed that elevated level of SNHG20 was correlated not only with poor overall survival (HR = 2.49, 95% confidence interval (CI): 2.05-2.98), but also with tumor-node-metastasis stage (TNM) (odds ratio (OR) = 3.32, 95% CI: 2.27-4.86), high histological grade (OR = 2.11, 95% CI: 1.55-2.87), tumor size (OR = 2.92, 95% CI: 2.17-3.91), and lymph node metastasis (OR = 4.48, 95% CI: 2.90-6.92). Of note, there is no significant heterogeneity difference among the studies. CONCLUSION Up-regulated SNHG20 predicts unfavorable prognosis for multiple kinds of cancers although further studies are in need to verify its clinical applications.
Collapse
Affiliation(s)
- Jiling Zeng
- Department of Neurology, The Second Affiliated Hospital of Xiangya
| | - Zhuoyi Liu
- Department of Neurosurgery, Xiangya Hospital
| | - Chao Zhang
- Department of Neurosurgery, Xiangya Hospital
| | - Tao Hong
- Department of Urinary Surgery, The Third Affiliated Hospital of Xiangya
| | | | - Jing Guan
- Department of Radiology, The Second Affiliated Hospital of Xiangya
| | - Siyuan Tang
- Department of Tumor Radiotherapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Affiliated Hospital of Xiangya
| |
Collapse
|
17
|
Turunen TA, Roberts TC, Laitinen P, Väänänen MA, Korhonen P, Malm T, Ylä-Herttuala S, Turunen MP. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci Rep 2019; 9:10332. [PMID: 31316122 PMCID: PMC6637125 DOI: 10.1038/s41598-019-46841-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have well-characterized roles in cytoplasmic gene regulation, where they act by binding to mRNA transcripts and inhibiting their translation (i.e. post-transcriptional gene silencing, PTGS). However, miRNAs have also been implicated in transcriptional gene regulation and alternative splicing, events that are restricted to the cell nucleus. Here we performed nuclear-cytoplasmic fractionation in a mouse endothelial cell line and characterized the localization of miRNAs in response to hypoxia using small RNA sequencing. A highly diverse population of abundant miRNA species was detected in the nucleus, of which the majority (56%) was found to be preferentially localized in one compartment or the other. Induction of hypoxia resulted in changes in miRNA levels in both nuclear and cytoplasmic compartments, with the majority of changes being restricted to one location and not the other. Notably, the classical hypoxamiR (miR-210-3p) was highly up-regulated in the nuclear compartment after hypoxic stimulus. These findings reveal a previously unappreciated level of molecular complexity in the physiological response occurring in ischemic tissue. Furthermore, widespread differential miRNA expression in the nucleus strongly suggests that these small RNAs are likely to perform extensive nuclear regulatory functions in the general case.
Collapse
Affiliation(s)
- Tiia A Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pia Laitinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, PO Box 100, 70029 KUH, Kuopio, Finland
| | - Mikko P Turunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210, Kuopio, Finland.
| |
Collapse
|
18
|
Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019; 5:ncrna5010017. [PMID: 30781588 PMCID: PMC6468922 DOI: 10.3390/ncrna5010017] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of RNAs that are not translated into proteins was an important breakthrough, defining the diversity of molecules involved in eukaryotic regulation of gene expression. These non-coding RNAs can be divided into two main classes according to their length: short non-coding RNAs, such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). The lncRNAs in association with other molecules can coordinate several physiological processes and their dysfunction may impact in several pathologies, including cancer and infectious diseases. They can control the flux of genetic information, such as chromosome structure modulation, transcription, splicing, messenger RNA (mRNA) stability, mRNA availability, and post-translational modifications. Long non-coding RNAs present interaction domains for DNA, mRNAs, miRNAs, and proteins, depending on both sequence and secondary structure. The advent of new generation sequencing has provided evidences of putative lncRNAs existence; however, the analysis of transcriptomes for their functional characterization remains a challenge. Here, we review some important aspects of lncRNA biology, focusing on their role as regulatory elements in gene expression modulation during physiological and disease processes, with implications in host and pathogens physiology, and their role in immune response modulation.
Collapse
|
19
|
Jung M, Dodsworth M, Thum T. Inflammatory cells and their non-coding RNAs as targets for treating myocardial infarction. Basic Res Cardiol 2018; 114:4. [PMID: 30523422 PMCID: PMC6290728 DOI: 10.1007/s00395-018-0712-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Myocardial infarction triggers infiltration of several types of immune cells that coordinate both innate and adaptive immune responses. These play a dual role in post-infarction cardiac remodeling by initiating and resolving inflammatory processes, which needs to occur in a timely and well-orchestrated way to ensure a reestablishment of normalized cardiac functions. Thus, therapeutic modulation of immune responses might have benefits for infarct patients. While such strategies have shown great potential in treating cancer, applications in the post-infarction context have been disappointing. One challenge has been the complexity and plasticity of immune cells and their functions in cardiac regulation and healing. The types appear in patterns that are temporally and spatially distinct, while influencing each other and the surrounding tissue. A comprehensive understanding of the immune cell repertoire and their regulatory functions following infarction is sorely needed. Processes of cardiac remodeling trigger additional genetic changes that may also play critical roles in the aftermath of cardiovascular disease. Some of these changes involve non-coding RNAs that play crucial roles in the regulation of immune cells and may, therefore, be of therapeutic interest. This review summarizes what is currently known about the functions of immune cells and non-coding RNAs during post-infarction wound healing. We address some of the challenges that remain and describe novel therapeutic approaches under development that are based on regulating immune responses through non-coding RNAs in the aftermath of the disease.
Collapse
Affiliation(s)
- Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Dodsworth
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
20
|
Periodontitis may modulate long-non coding RNA expression. Arch Oral Biol 2018; 95:95-99. [DOI: 10.1016/j.archoralbio.2018.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022]
|
21
|
Wang D, Li J, Cai F, Xu Z, Li L, Zhu H, Liu W, Xu Q, Cao J, Sun J, Tang J. Overexpression of MAPT-AS1 is associated with better patient survival in breast cancer. Biochem Cell Biol 2018; 97:158-164. [PMID: 30074401 DOI: 10.1139/bcb-2018-0039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most frequent malignant disease in women worldwide. It is a heterogeneous and complex genetic disease with different molecular characteristics. MAPT-AS1, a long non-coding RNA (lncRNA) existing at the anti-sense strand of the MAPT (microtubule associated protein tau) promoter region, was believed to regulate MAPT, which was associated with disease state in Parkinson's disease. But the role of MAPT-AS1 in breast cancer has never been reported. In our study we found that MAPT-AS1 is overexpressed in breast cancer but not in triple negative breast cancer (TNBC), and that high expression of MAPT-AS1 was correlated with better patient survival. In addition, the level of MAPT-AS1 was correlated with the expression of MAPT, and MAPT was associated with survival time in breast cancer. Our study suggests that MAPT-AS1 may play a role and be a potential survival predictive biomarker in breast cancer.
Collapse
Affiliation(s)
- Dongfeng Wang
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jian Li
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Fengling Cai
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Zhi Xu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Li Li
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Huanfeng Zhu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Wei Liu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Qingyu Xu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jian Cao
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jingfeng Sun
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jinhai Tang
- c Department of Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Gangzhou Road, Nanjing 210029, China
| |
Collapse
|
22
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
23
|
Lu X, Liu Z, Ning X, Huang L, Jiang B. The Long Noncoding RNA HOTAIR Promotes Colorectal Cancer Progression by Sponging miR-197. Oncol Res 2017; 26:473-481. [PMID: 29137688 PMCID: PMC7844719 DOI: 10.3727/096504017x15105708598531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xinyang Lu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Zhiqiang Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Xiaofei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Biao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| |
Collapse
|
24
|
Coenen-Stass AML, Wood MJA, Roberts TC. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med 2017; 23:989-1001. [PMID: 28988850 DOI: 10.1016/j.molmed.2017.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
Abstract
miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice. The relationship between muscle pathology and extracellular myomiR release is complex, and incompletely understood. Here, we discuss current progress leading towards the clinical utility of extracellular miRNAs as putative DMD biomarkers, and their possible contribution to muscle physiology.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Institute of Neurology, Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, Queen Square, London, WC1N 3BG, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Liyanage KIP, Ganegoda GU. Therapeutic Approaches and Role of ncRNAs in Cardiovascular Disorders and Insulin Resistance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4078346. [PMID: 29057258 PMCID: PMC5625813 DOI: 10.1155/2017/4078346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Diseases resulting from alterations in gene expressions through mutations in the genes or through changes in the gene expression regulation could be identified through the analysis of RNA expressions. ncRNAs play a significant role in regulation of the gene expression by controlling the expression levels of the coding RNAs and other cellular processes. Discoveries have shown that the human genome is encoded with sequences responsible for the transcription of thousands of ncRNAs. Even though the studies conducted on ncRNAs are still at initial stages, facts established so far display biomarkers that confirm their relationship with certain diseases such as cancers, cardiovascular diseases, and insulin resistance. These studies have been facilitated with high throughput modern sequencing techniques such as microarrays and RNA sequencing. The data obtained through the above analysis are processed with the aid of existing databases, to deduce conclusions on different diagnostic biomarkers and therapeutic targets for specific diseases. This review focuses on the association of ncRNAs in disease prediction, focusing mainly on cardiovascular diseases and disorders caused by insulin resistance. The report also analyzes regulatory functions of ncRNAs and novel approaches used in disease therapeutics.
Collapse
|
26
|
Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genomics 2017; 293:1-15. [PMID: 28894972 DOI: 10.1007/s00438-017-1370-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (Pol II) transcribes two classes of RNAs, protein-coding and non-protein-coding (ncRNA) genes. ncRNAs are also synthesized by RNA polymerases I and III (Pol I and III). In humans, the number of ncRNA genes exceeds more than twice that of protein-coding genes. However, the history of studying Pol II-synthesized ncRNA is relatively short. Since early 2000s, important biological and pathological functions of these ncRNA genes have begun to be discovered and intensively studied. And transcription mechanisms of long non-coding RNA (lncRNA) have been recently reported. Transcription of lncRNAs utilizes some transcription factors and mechanisms shared in that of protein-coding genes. In addition, tissue specificity in lncRNA gene expression has been shown. LncRNAs play essential roles in regulating the expression of neighboring or distal genes through different mechanisms. This leads to the implication of lncRNAs in a wide variety of biological pathways and pathological development. In this review, the newly discovered transcription mechanisms, characteristics, and functions of lncRNA are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Agriculture & Life Sciences Building 1, Room 207, 80 Dae-Hak Ro, Daegu, Republic of Korea.
| |
Collapse
|
27
|
Darvishi B, Farahmand L, Majidzadeh-A K. Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:164-180. [PMID: 28624192 PMCID: PMC5415966 DOI: 10.1016/j.omtn.2017.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer. It is associated with a very poor prognosis and intrinsically resistant to several conventional and targeted chemotherapy agents and has a 5-year survival rate of less than 25%. Because the treatment options for TNBC are very limited and not efficient enough for achieving minimum desired goals, shifting toward a new generation of anti-cancer agents appears to be very critical. Among recent alternative approaches being proposed, small interfering RNA (siRNA) gene therapy can potently suppress Bcl-2 proto-oncogene and p-glycoprotein gene expression, the most important chemotherapy resistance inducers in TNBC. When resensitized, primarily ineffective chemotherapy drugs turn back into valuable sources for further intensive chemotherapy. Regrettably, siRNA's poor stability, rapid clearance in the circulatory system, and poor cellular uptake mostly hampers the beneficial outcomes of siRNA therapy. Considering these drawbacks, dual siRNA/chemotherapy drug encapsulation in targeted delivery vehicles, especially mesoporous silica nanoparticles (MSNs) appears to be the most reasonable solution. The literature is full of reports of successful treatments of multi-drug-resistant cancer cells by administration of dual drug/siRNA-loaded MSNs. Here we tried to answer the question of whether application of a similar approach with identical delivery devices in TNBC is rational.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran.
| |
Collapse
|
28
|
Emerging roles for ncRNAs in alcohol use disorders. Alcohol 2017; 60:31-39. [PMID: 28438526 DOI: 10.1016/j.alcohol.2017.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Chronic alcohol exposure produces widespread neuroadaptations and alterations in gene expression in human alcoholics and animal models. Technological advances in the past decade have increasingly highlighted the role of non-protein-coding RNAs (ncRNAs) in the regulation of gene expression and function. These recently characterized molecules were discovered to mediate diverse processes in the central nervous system, from normal development and physiology to regulation of disease, including alcoholism and other psychiatric disorders. This review will investigate the recent studies in human alcoholics and rodent models that have profiled different classes of ncRNAs and their dynamic alcohol-dependent regulation in brain.
Collapse
|
29
|
Li F, Xu JW, Wang L, Liu H, Yan Y, Hu SY. MicroRNA-221-3p is up-regulated and serves as a potential biomarker in pancreatic cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:482-487. [PMID: 28434388 DOI: 10.1080/21691401.2017.1315429] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been demonstrated that circulating MicroRNAs (miRNAs) could be potential biomarkers for cancer diagnosis and prognosis. For pancreatic cancer (PCa), little is known about miR-221-3p biological function or its prognostic value. In the current study, we profiled miR-221-3p expression in PCa cell lines. Compared with normal pancreases ductal epithelial cells, miR-221-3p is up-regulated in all PCa cell lines analysed. In SW1990 cells, overexpression of miR-221-3p increased cell proliferation and inhibited apoptosis, while inhibition of miR-221-3p decreased cell growth rate and promoted apoptosis. Compared with adjacent non-tumour tissues, miR-221-3p was up-regulated in all 21 PCa tissues. Expression level of miR-221-3p was investigated in plasma and statistical analyses showed that circulating miR-221-3p expression level was correlated with distant metastasis and TNM stages. The receiver-operating characteristic (ROC) curves and the area under the ROC curve (AUC) suggested that the diagnostic efficacy for distant metastasis of miR-221-3p is better than CA19-9 (AUC: 0.689 vs. 0.587). To summary, we found miR-221-3p could promote cell proliferation and inhibit apoptosis in PCa cells and circulating miR-221-3p could serve as a biomarker for PCa.
Collapse
Affiliation(s)
- Feng Li
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , China
| | - Jian-Wei Xu
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , China
| | - Lei Wang
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , China
| | - Han Liu
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , China
| | - Ye Yan
- b Departments of Ultrasound and Radiology , Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - San-Yuan Hu
- a Department of General Surgery , Qilu Hospital of Shandong University , Jinan , China
| |
Collapse
|
30
|
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ. Targeting noncoding RNAs in disease. J Clin Invest 2017; 127:761-771. [PMID: 28248199 DOI: 10.1172/jci84424] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.
Collapse
MESH Headings
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Cytomegalovirus Retinitis/drug therapy
- Cytomegalovirus Retinitis/genetics
- Cytomegalovirus Retinitis/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
|
31
|
Xu J, Zhang R, Zhao J. The Novel Long Noncoding RNA TUSC7 Inhibits Proliferation by Sponging MiR-211 in Colorectal Cancer. Cell Physiol Biochem 2017; 41:635-644. [PMID: 28214867 DOI: 10.1159/000457938] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS The novel long noncoding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) has been reported as a potential tumor suppressor, while the functional role of TUSC7 is still unknown in colorectal cancer (CRC). Here, we characterized TUSC7 expression profile in CRC patients and investigated its biological function and potential molecular mechanism. METHODS RNA isolation, qRT-PCR, cell counter kit-8 assay, cell cycle assay, EdU assay, and western blot were performed. Statistical analyses were performed using SPSS 18.0 software and p value < 0.05 was considered as statistically significant. RESULTS In a cohort of CRC patients, we found TUSC7 was significantly downregulated in CRC tissues compared with adjacent non-tumor tissues (P < 0.01). Patients with high expression of TUSC7 had better survival than those with low expression of TUSC7 (HR = 0.342, 95% CI: 0.120-0.972, P = 0.044). Cell count kit 8 and EdU assays showed that ectopic expression of TUSC7 in HCT116 and SW480 cells significantly inhibited cell proliferation rate. After silence of TUSC7 with small interfering RNA, cell proliferation rate increased. Flow cytometry analyses revealed cycles were arrested at G1 phase after TUSC7 overexpression. We found there were 2 binding sites of miR-211-3p within the sequence of TUSC7 and TUSC7 expression level was negatively correlated with miR-211-3p. TUSC7 overexpression increased the expression level of CDK6, which is a downstream target of miR-211-3p, in both RNA and protein level. Furthermore, luciferase reporter assay indicated that TUSC7 could sponge miR-211-3p. CONCLUSION To summary, we demonstrated that TUSC7 is a potential tumor suppressor in CRC, and TUSC7 could inhibit CRC cell proliferation by completely sponging miR-211-3p.
Collapse
|
32
|
Pickard MR, Williams GT. The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells. Oncotarget 2017; 7:10104-16. [PMID: 26862727 PMCID: PMC4891107 DOI: 10.18632/oncotarget.7173] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Growth arrest-specific 5 (GAS5) lncRNA promotes apoptosis, and its expression is down-regulated in breast cancer. GAS5 lncRNA is a decoy of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM), which is essential for the regulation of breast cancer cell apoptosis. This preclinical study aimed to determine if the GAS5 HREM sequence alone promotes the apoptosis of breast cancer cells. Nucleofection of hormone-sensitive and –insensitive breast cancer cell lines with a GAS5 HREM DNA oligonucleotide increased both basal and ultraviolet-C-induced apoptosis, and decreased culture viability and clonogenic growth, similar to GAS5 lncRNA. The HREM oligonucleotide demonstrated similar sequence specificity to the native HREM for its functional activity and had no effect on endogenous GAS5 lncRNA levels. Certain chemically modified HREM oligonucleotides, notably DNA and RNA phosphorothioates, retained pro-apoptotic. activity. Crucially the HREM oligonucleotide could overcome apoptosis resistance secondary to deficient endogenous GAS5 lncRNA levels. Thus, the GAS5 lncRNA HREM sequence alone is sufficient to induce apoptosis in breast cancer cells, including triple-negative breast cancer cells. These findings further suggest that emerging knowledge of structure/function relationships in the field of lncRNA biology can be exploited for the development of entirely novel, oligonucleotide mimic-based, cancer therapies.
Collapse
Affiliation(s)
- Mark R Pickard
- Apoptosis Research Group, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| | - Gwyn T Williams
- Apoptosis Research Group, School of Life Sciences, Keele University, Keele ST5 5BG, United Kingdom
| |
Collapse
|
33
|
Streets AJ, Magayr TA, Huang L, Vergoz L, Rossetti S, Simms RJ, Harris PC, Peters DJM, Ong ACM. Parallel microarray profiling identifies ErbB4 as a determinant of cyst growth in ADPKD and a prognostic biomarker for disease progression. Am J Physiol Renal Physiol 2017; 312:F577-F588. [PMID: 28077374 DOI: 10.1152/ajprenal.00607.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of end-stage renal disease. The disease course can be highly variable and treatment options are limited. To identify new therapeutic targets and prognostic biomarkers of disease, we conducted parallel discovery microarray profiling in normal and diseased human PKD1 cystic kidney cells. A total of 1,515 genes and 5 miRNA were differentially expressed by more than twofold in PKD1 cells. Functional enrichment analysis identified 30 dysregulated signaling pathways including the epidermal growth factor (EGF) receptor pathway. In this paper, we report that the EGF/ErbB family receptor ErbB4 is a major factor driving cyst growth in ADPKD. Expression of ErbB4 in vivo was increased in human ADPKD and Pkd1 cystic kidneys, both transcriptionally and posttranscriptionally by mir-193b-3p. Ligand-induced activation of ErbB4 drives cystic proliferation and expansion suggesting a pathogenic role in cystogenesis. Our results implicate ErbB4 activation as functionally relevant in ADPKD, both as a marker of disease activity and as a new therapeutic target in this major kidney disease.
Collapse
Affiliation(s)
- Andrew J Streets
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom;
| | - Tajdida A Magayr
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Linghong Huang
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Laura Vergoz
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Sandro Rossetti
- Division of Nephrology, Mayo Clinic and Foundation, Rochester, Minnesota; and
| | - Roslyn J Simms
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| | - Peter C Harris
- Division of Nephrology, Mayo Clinic and Foundation, Rochester, Minnesota; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert C M Ong
- Kidney Genetics Group, Academic Unit of Nephrology, The Medical School, University of Sheffield, United Kingdom
| |
Collapse
|
34
|
Affiliation(s)
- Aamir Ahmad
- Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Av, Mobile, AL, USA
| |
Collapse
|
35
|
Abstract
There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.
Collapse
Affiliation(s)
- Gianluca Civenni
- Laboratory of Experimental Therapeutics, IOR, Institute of Oncology Research, Via Vela 6, Bellinzona, 6500, Switzerland.
| |
Collapse
|
36
|
Kornienko AE, Vlatkovic I, Neesen J, Barlow DP, Pauler FM. A human haploid gene trap collection to study lncRNAs with unusual RNA biology. RNA Biol 2016; 13:196-220. [PMID: 26670263 PMCID: PMC4829315 DOI: 10.1080/15476286.2015.1110676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator.
Collapse
Affiliation(s)
- Aleksandra E Kornienko
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| | - Irena Vlatkovic
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria.,b Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10 , 1090 Vienna , Austria
| | - Jürgen Neesen
- b Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10 , 1090 Vienna , Austria
| | - Denise P Barlow
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| | - Florian M Pauler
- a CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 , 1090 Vienna , Austria
| |
Collapse
|
37
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|
38
|
Abstract
MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded RNA molecules that primarily function to negatively regulate gene expression at the post-transcriptional level. miRNAs have thus been implicated in the regulation of a wide variety of normal cell functions and pathophysiological conditions. The miRNA machinery consists of a series of protein complexes which act to: (1) cleave the precursor-miRNA hairpin from its primary transcript (i.e. DROSHA and DGCR8); (2) traffic the miRNA hairpin between nucleus and cytoplasm (i.e. XPO5); (3) remove the loop sequence of the hairpin by a second nucleolytic cleavage reaction (i.e. DICER1); (4) facilitate loading of the mature miRNA sequence into an Argonaute protein (typically AGO2) as part of the RNA-Induced Silencing Complex (RISC); (5) guide the loaded RISC complex to complementary, or semi-complementary, target transcripts and (6) facilitate gene silencing via one of several possible mechanisms.
Collapse
|
39
|
Pileczki V, Cojocneanu-Petric R, Maralani M, Neagoe IB, Sandulescu R. MicroRNAs as regulators of apoptosis mechanisms in cancer. ACTA ACUST UNITED AC 2016; 89:50-5. [PMID: 27004025 PMCID: PMC4777469 DOI: 10.15386/cjmed-512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs or miRNAs are small non-coding RNAs that regulate gene expression. Their discovery has brought new knowledge in biological processes of cancer. Involvement of miRNAs in cancer development includes several major pathways from cell transformation to tumor cell development, metastasis and resistance to treatment. The first part of this review discusses miRNAs function in the intrinsic and extrinsic pathways of apoptosis. Due to the fact that many miRNAs that regulate apoptosis have been shown to play a major role in tumor cell resistance to treatment, in the second part of the review we aim at discussing miRNAs potential in becoming curative molecules.
Collapse
Affiliation(s)
- Valentina Pileczki
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Faculty of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | - Ioana Berindan Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Robert Sandulescu
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Roberts TC, Morris KV, Wood MJA. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0507. [PMID: 25135968 DOI: 10.1098/rstb.2013.0507] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
41
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
42
|
HIV Latency and the noncoding RNA therapeutic landscape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:169-89. [PMID: 25757621 DOI: 10.1007/978-1-4939-2432-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Human Immunodeficiency Virus (HIV) belongs to the subfamily of lentiviruses that are characterized by long incubation periods and chronic, persistent infection. The virus integrates into the genome of infected CD4+ cells and, in a subpopulation of cells, adopts a transcriptionally silent state, a process referred to a viral latency. This property makes it exceedingly difficult to therapeutically target the virus and eradicate infection. If left untreated, the inexorable demise of the infected individual's immune system ensues, a causal result of Acquired Immunodeficiency Syndrome (AIDS). Latently infected cells provide a reservoir that maintains viral infection indefinitely. In this chapter we explore the role of noncoding RNAs in HIV infection and in the establishment and maintenance of viral latency. Both short and long noncoding RNAs are endogenous modulators of epigenetic regulation in human cells and play an active role in gene expression. Lastly, we explore therapeutic modalities based on expressed RNAs that are capable of countering infection, transcriptionally regulating the virus, and suppressing or activating the latent state.
Collapse
|
43
|
Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, Hu W, Yu B, Wang Y, Ding F, Liu Y, Gu X. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2014; 23:423-33. [PMID: 25394845 PMCID: PMC4351454 DOI: 10.1038/mt.2014.220] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinghui Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chu Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Hu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
44
|
Roberts TC. The MicroRNA Biology of the Mammalian Nucleus. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e188. [PMID: 25137140 PMCID: PMC4221600 DOI: 10.1038/mtna.2014.40] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of genome-encoded small RNAs that are primarily considered to be post-transcriptional negative regulators of gene expression acting in the cytoplasm. Over a decade of research has focused on this canonical paradigm of miRNA function, with many success stories. Indeed, miRNAs have been identified that act as master regulators of a myriad of cellular processes, and many miRNAs are promising therapeutic targets or disease biomarkers. However, it is becoming increasingly apparent that the canonical view of miRNA function is incomplete. Several lines of evidence now point to additional functions for miRNAs in the nucleus of the mammalian cell. The majority of cellular miRNAs are present in both the nucleus and the cytoplasm, and certain miRNAs show specific nuclear enrichment. Additionally, some miRNAs colocalize with sub-nuclear structures such as the nucleolus and chromatin. Multiple components of the miRNA processing machinery are present in the nuclear compartment and are shuttled back and forth across the nuclear envelope. In the nucleus, miRNAs act to regulate the stability of nuclear transcripts, induce epigenetic alterations that either silence or activate transcription at specific gene promoters, and modulate cotranscriptional alternative splicing events. Nuclear miRNA-directed gene regulation constitutes a departure from the prevailing view of miRNA function and as such, warrants detailed further investigation.
Collapse
Affiliation(s)
- Thomas C Roberts
- 1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA [2] Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Roberts TC, Morris KV. Not so pseudo anymore: pseudogenes as therapeutic targets. Pharmacogenomics 2014; 14:2023-34. [PMID: 24279857 DOI: 10.2217/pgs.13.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudogenes are junk DNA gene remnants generated by inactivating mutations or the loss of regulatory sequences, often following gene duplication or retrotransposition events. These pseudogenes have previously been considered to be molecular fossils derived from once-coding genes. In many cases, pseudogenes confer no observable selective advantage to the host organism and may be on a path towards removal from the genome. However, pseudogenes can also serve as raw material for the exaptation of novel functions, particularly in relation to the regulation of gene expression. Many pseudogenes are resurrected as noncoding RNA genes, which function in RNA-based gene regulatory circuits. As such, functional pseudogenes might simply be considered as 'genes'. Here, we discuss the role of these pseudogene-derived RNAs as regulators of gene expression in the context of human disease. In particular, we consider the manipulation of pseudogene transcripts through the use of antisense oligonucleotides, siRNAs, aptamers or classical gene therapy approaches as novel pharmacological strategies.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
46
|
Roberts TC, Morris KV, Weinberg MS. Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics 2013; 9:13-20. [PMID: 24149621 DOI: 10.4161/epi.26700] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly being recognized as epigenetic regulators of gene transcription. The diversity and complexity of lncRNA genes means that they exert their regulatory effects by a variety of mechanisms. Although there is still much to be learned about the mechanism of lncRNA function, general principles are starting to emerge. In particular, the application of high throughput (deep) sequencing methodologies has greatly advanced our understanding of lncRNA gene function. lncRNAs function as adaptors that link specific chromatin loci with chromatin-remodeling complexes and transcription factors. lncRNAs can act in cis or trans to guide epigenetic-modifier complexes to distinct genomic sites, or act as scaffolds which recruit multiple proteins simultaneously, thereby coordinating their activities. In this review we discuss the genomic organization of lncRNAs, the importance of RNA secondary structure to lncRNA functionality, the multitude of ways in which they interact with the genome, and what evolutionary conservation tells us about their function.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular and Experimental Medicine; The Scripps Research Institute; La Jolla, CA USA; Department of Physiology, Anatomy and Genetics; University of Oxford; Oxford, United Kingdom
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine; The Scripps Research Institute; La Jolla, CA USA; School of Biotechnology and Biomedical Sciences; University of New South Wales; Kensington, NSW Australia
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine; The Scripps Research Institute; La Jolla, CA USA; Antiviral Gene Therapy Research Unit; Department of Molecular Medicine and Haematology; School of Pathology; University of the Witwatersrand; Johannesburg, South Africa
| |
Collapse
|
47
|
Varela MA, Roberts TC, Wood MJA. Epigenetics and ncRNAs in brain function and disease: mechanisms and prospects for therapy. Neurotherapeutics 2013; 10:621-31. [PMID: 24068583 PMCID: PMC3805859 DOI: 10.1007/s13311-013-0212-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The most fundamental roles of non-coding RNAs (ncRNAs) and epigenetic mechanisms are the guidance of cellular differentiation in development and the regulation of gene expression in adult tissues. In brain, both ncRNAs and the various epigenetic gene regulatory mechanisms play a fundamental role in neurogenesis and normal neuronal function. Thus, epigenetic chromatin remodelling can render coding sites transcriptionally inactive by DNA methylation, histone modifications or antisense RNA interactions. On the other hand, microRNAs (miRNAs) are ncRNA molecules that can regulate the expression of hundreds of genes post-transcriptionally, typically recognising binding sites in the 3' untranslated region (UTR) of mRNA transcripts. Furthermore, there are a myriad of interactions in the interface of miRNAs and epigenetics. For example, epigenetic mechanisms can silence miRNA coding sites, and miRNAs can be the effectors of transcriptional gene silencing, targeting complementary promoters or silencing the expression of epigenetic modifier genes like MECP2 and EZH2 leading to global changes in the epigenome. Alterations in this regulatory machinery play a key role in the pathology of complex disorders including cancer and neurological diseases. For example, miRNA genes are frequently inactivated by epimutations in gliomas. Here we describe the interactions between epigenetic and ncRNA regulatory systems and discuss therapeutic potential, with an emphasis on tumors, cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A. Varela
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | - Thomas C. Roberts
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- />Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Matthew J. A. Wood
- />Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| |
Collapse
|