1
|
Zhong Y, Guo J, Zhang Z, Zheng Y, Yang M, Su Y. Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against Edwardsiella tarda. Virulence 2024; 15:2367647. [PMID: 38884466 PMCID: PMC11185186 DOI: 10.1080/21505594.2024.2367647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Ziyi Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Manjun Yang
- Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, Lasa, Xizang, People’s Republic of China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Jureckova K, Nykrynova M, Slaninova E, Fleuriot-Blitman H, Amstutz V, Hermankova K, Bezdicek M, Mrazova K, Hrubanova K, Zinn M, Obruca S, Sedlar K. Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum. Comput Struct Biotechnol J 2024; 23:2681-2694. [PMID: 39035834 PMCID: PMC11259993 DOI: 10.1016/j.csbj.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Hugo Fleuriot-Blitman
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Véronique Amstutz
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Kristyna Hermankova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine – Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine – Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Mrazova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
3
|
Tripathi A, Giri VP, Pandey S, Chauhan P, Kumar N, Verma P, Tiwari V, Verma P, Mishra A. Dismantling of necrotroph Alternaria alternata by cellular intervention of Peppermint Oil Nanoemulsion (PNE). Microb Pathog 2024; 197:107041. [PMID: 39433141 DOI: 10.1016/j.micpath.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Alternaria alternata, a common necrotrophic fungal pathogen, poses a significant threat to various crops, causing substantial yield losses and quality deterioration. In the present study, we explore the potential fungicidal properties of Peppermint Oil Nanoemulsion (PNE) against A. alternata and investigate its impact on the fungal phenotype. Our previous study synthesized the PNE using a nanoemulsion approach, optimizing its formulation for enhanced stability and efficacy. The present study extended the assessment of a multidisciplinary approach to comprehensively analyze the fungicidal efficacy of PNE against A. alternata. Notably, in a liquid growth medium, 0.5 % of PNE could reduce A. alternata's biomass by 96 %. PNE-treated mycelia were stained with a nitro-blue tetrazolium (NBT) dye to assess ROS accumulation during oxidative stress induced by PNE. A higher degree of ROS generative potential of PNE has appeared in 72 h treated mycelia. PNE-treated mycelium showed cell wall alterations, with red fluorescence peaking at 0.5 %, indicating a dose-dependent effect compared to the untreated control. Consequently, PNE treatment led to a significant early hour increase in electrical conductivity (EC), extended to 306.03-353.33 μS/cm compared to 277.67-280.33 μS/cm untreated control. Scanning Electron Microscopy (SEM) analysis of A. alternata reflects the osmotic imbalance and structural damage in mycelia as the obvious cause of fungal inhibition. In addition, a phenotype microarray analysis of PNE-treated A. alternata mycelia revealed a significant phenotypic loss in 37 out of 708 substrates, potentially impacting metabolic pathways essential for fungi's functional processes. The study found that downregulation of genes like Cre A, NmrA, SOD, IMP, EfP, and Erg, which are linked to A. alternata's stress coping mechanisms, leads to alterations in survival and adaptation. Additionally, understanding the phenotypic changes induced by PNE contributes to our knowledge of the mode of action of this nanoemulsion against A. alternata. In conclusion, this study provides a comprehensive analysis of the fungicidal and phenotypic effects of PNE, offering a promising avenue for sustainable fungal control. The implications of our research extend to the development of novel, natural fungicidal agents for agricultural applications.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ved Prakash Giri
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India
| | - Shipra Pandey
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Chauhan
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; School of Sciences, P P Savani University, Kosamba, Surat, 394125, India
| | - Navinit Kumar
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratibha Verma
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinita Tiwari
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Verma
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aradhana Mishra
- Microbial Technology Division, CSIR National Botanical Research Institute, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Kang YG, Kwon J, Kwon S, Kim AR. Synergistic Effects of Korean Mistletoe and Apple Peel Extracts on Muscle Strength and Endurance. Nutrients 2024; 16:3255. [PMID: 39408221 PMCID: PMC11478607 DOI: 10.3390/nu16193255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Muscular strength and endurance are vital for physical fitness. While mistletoe extract has shown efficacy in significantly increasing muscle strength and endurance, its accessibility is limited. This study explores combining mistletoe and apple peel extracts as an effective muscle health supplement. Analyses of histology, RNA, and protein in the combined extract-treated mouse group demonstrated significant enhancements in muscle strength and endurance, evidenced by larger muscle fibers, improved mitochondrial function, and a higher ratio of type I and IIa muscle fibers. Combining half doses of each extract resulted in greater improvements than using each extract separately, indicating a synergistic effect. Pathway analysis suggests that the observed synergy arises from complementary mechanisms, with a mistletoe extract-induced decrease in myostatin (MSTN) and an apple peel extract-induced increase in IGF1, leading to a sharp rise in AKT, S6K, and MuRF1, which promote myogenesis, along with a significant increase in PGC-1α, TFAM, and MEF2C, which are critical for mitochondrial biogenesis. This research provides practical insights into developing cost-effective, natural supplements to enhance muscle performance and endurance, with potential applications in athletic performance, improving muscle growth and endurance in children, and addressing age-related muscle decline.
Collapse
Affiliation(s)
- Youn-Goo Kang
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
| | - Joonhyuk Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Soonjun Kwon
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ah-Ram Kim
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea;
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
5
|
Spinelli S, Guida L, Passalacqua M, Magnone M, Caushi B, Zocchi E, Sturla L. The ABA/LANCL1-2 Hormone/Receptors System Controls ROS Production in Cardiomyocytes through ERRα. Biomedicines 2024; 12:2071. [PMID: 39335584 PMCID: PMC11428665 DOI: 10.3390/biomedicines12092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Rat H9c2 cardiomyocytes overexpressing the abscisic acid (ABA) hormone receptors LANCL1 and LANCL2 have an increased mitochondrial proton gradient, respiration, and vitality after hypoxia/reoxygenation. Our aim was to investigate the role of the ABA/LANCL1-2 system in ROS turnover in H9c2 cells. H9c2 cells were retrovirally infected to induce the overexpression or silencing of LANCL1 and LANCL2, without or with the concomitant silencing of the transcription factor ERRα. Enzymes involved in radical production or scavenging were studied by qRT-PCR and Western blot. The mitochondrial proton gradient and ROS were measured with specific fluorescent probes. ROS-generating enzymes decreased, ROS-scavenging enzymes increased, and mitochondrial ROS were reduced in LANCL1/2-overexpressing vs. control cells infected with the empty vector, while the opposite occurred in LANCL1/2-silenced cells. The knockdown of ERRα abrogated all beneficial effects on ROS turnover in LANCL1/2 overexpressing cells. Taken together, these results indicate that the ABA/LANCL1-2 system controls ROS turnover in H9c2 via ERRα. The ABA/LANCL system emerges as a promising target to improve cardiomyocyte mitochondrial function and resilience to oxidative stress.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Lucrezia Guida
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Mirko Magnone
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Bujar Caushi
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Elena Zocchi
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.); (B.C.); (E.Z.)
| |
Collapse
|
6
|
Di Domenico F, Lanzillotta C, Perluigi M. Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Lett 2024; 598:2047-2066. [PMID: 38472147 DOI: 10.1002/1873-3468.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Redox reactions play a critical role for intracellular processes, including pathways involved in metabolism and signaling. Reactive oxygen species (ROS) act either as second messengers or generators of protein modifications, fundamental mechanisms for signal transduction. Disturbance of redox homeostasis is associated with many disorders. Among these, Alzheimer's disease is a neurodegenerative pathology that presents hallmarks of oxidative damage such as increased ROS production, decreased activity of antioxidant enzymes, oxidative modifications of macromolecules, and changes in mitochondrial homeostasis. Interestingly, alteration of redox homeostasis is closely associated with defects of energy metabolism, involving both carbohydrates and lipids, the major energy fuels for the cell. As the brain relies exclusively on glucose metabolism, defects of glucose utilization represent a harmful event for the brain. During aging, a progressive perturbation of energy metabolism occurs resulting in brain hypometabolism. This condition contributes to increase neuronal cell vulnerability ultimately resulting in cognitive impairment. The current review discusses the crosstalk between alteration of redox homeostasis and brain energy defects that seems to act in concert in promoting Alzheimer's neurodegeneration.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
7
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Qian P, Liu Y, Zhang H, Zhang P, Xie Y, Wu C. Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:1492. [PMID: 38791708 PMCID: PMC11117276 DOI: 10.3390/ani14101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets had better weight gain and growth rates. Counts of red blood cells and monocytes were increased in the PS and GPS groups, compared to GLU group. Contents of serum triglyceride and total cholesterol were markedly elevated in the TS, PS and GPS groups. There were lower levels of serum glucose, insulin and cholecystokinin, and higher agouti-related peptide contents in the PS group compared to GLU group. PS and GPS could enhance glycolysis and TCA cycle by increasing their enzyme activities and transcriptional levels. Additionally, starch sources markedly heightened mRNA levels of key genes involved in the respiratory electron transport chain. Additionally, elevated mRNA levels of key antioxidant genes were shown in the TS and GTS groups. Moreover, TS and PS could promote immunity by upregulating transcriptional levels of the complement system, lysozyme and hepcidin. Taken together, starch exhibited better growth via increasing glycolysis and TCA cycle compared with GLU, and PS could improve antioxidant and immune capacities in largemouth bass.
Collapse
Affiliation(s)
| | - Yan Liu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| |
Collapse
|
9
|
Man S, Ma W, Jiang H, Haider A, Shi S, Li X, Wu Z, Song Y. Evaluating the efficacy and mechanisms of Hua-Zhuo-Ning-Fu-Decoction on psoriasis using integrated bioinformatics analysis and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117856. [PMID: 38316220 DOI: 10.1016/j.jep.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hua Zhuo Ning Fu Decoction (HZD) is an empirical prescription from traditional Chinese medicine that shows excellent clinical results for psoriasis patients. Uncertainty lingered over HZD's potential anti-psoriasis mechanisms. AIM OF THE STUDY The study's objective is to investigate the pharmacological processes and therapeutic effects of HZD on psoriasis. MATERIALS AND METHODS In the initial phase of the study, an investigation was conducted to assess the effects of HZD on psoriasis-afflicted mice using an imiquimod (IMQ)-induced murine model. The experimental mice were randomly allocated to different groups, including the IMQ-induced model group, the control group, the HZD therapy groups with varying dosage levels (low, medium, and high), and Dexamethasone (DEX, the positive control medicine) group. Bioinformatics analysis and molecular docking were subsequently employed to identify the primary components and molecular targets associated with the therapeutic action of HZD in the context of psoriasis. Additionally, to find the impacts on metabolite regulation, plasma metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used. It's interesting to note that the combined mechanisms from metabolomics were examined in tandem with the targets. In vivo tests were the last step in validating the potential mechanism. Throughout the trial, the following data were recorded: body weight, psoriasis area and severity index (PASI). The molecular targets connected to HZD's anti-psoriasis activities were revealed using histological examination, western blot (WB), and ELISA investigation. RESULTS In mice induced with IMQ, HZD shown good anti-psoriasis effects in terms of PASI score and epidermal acanthosis. 95 HZD targets and 77 bioactive chemicals connected to psoriasis were found by bioinformatics research; of these, 7 key targets (EPHX2, PLA2G2A, TBXAS1, MAOA, ALDH1A3, ADH1A, and ADH1B) were linked to the mechanisms of HZD, the combination degree of which was finally expressed by the score of docking. In addition, HZD regulated nine metabolites. In line with this, HZD modified three metabolic pathways. Additionally, a combined examination of 7 key targets and 9 metabolites suggested that the metabolism of arachidonic acid might be the key metabolic route, which was identified by ELISA analysis. The in vivo investigation shown that HZD could control cytokines associated to inflammation (IL-10, TGF-β, IL-17A, and IL-23), as well as important antioxidant system markers (ROS, GSH, and MDA). Moreover, HZD controlled iron levels and the expression of ferroptosis-related proteins (ACSL4 and GPX4), suggesting that ferroptosis played a crucial role in this process. CONCLUSIONS Our findings demonstrated the whole mechanism and anti-psoriasis effectiveness of HZD, which will promote its clinical application and aid in the investigation of new bioactive components of HZD against psoriasis.
Collapse
Affiliation(s)
- Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenke Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Jiang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Shasha Shi
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhuzhu Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongmei Song
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
10
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S, Cabrera-Orefice A. The mitochondrial respiratory chain from Rhodotorula mucilaginosa, an extremophile yeast. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149035. [PMID: 38360260 DOI: 10.1016/j.bbabio.2024.149035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalia Chiquete-Félix
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Uribe-Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Knab A, Anwer AG, Pedersen B, Handley S, Marupally AG, Habibalahi A, Goldys EM. Towards label-free non-invasive autofluorescence multispectral imaging for melanoma diagnosis. JOURNAL OF BIOPHOTONICS 2024; 17:e202300402. [PMID: 38247053 DOI: 10.1002/jbio.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
This study focuses on the use of cellular autofluorescence which visualizes the cell metabolism by monitoring endogenous fluorophores including NAD(P)H and flavins. It explores the potential of multispectral imaging of native fluorophores in melanoma diagnostics using excitation wavelengths ranging from 340 nm to 510 nm and emission wavelengths above 391 nm. Cultured immortalized cells are utilized to compare the autofluorescent signatures of two melanoma cell lines to one fibroblast cell line. Feature analysis identifies the most significant and least correlated features for differentiating the cells. The investigation successfully applies this analysis to pre-processed, noise-removed images and original background-corrupted data. Furthermore, the applicability of distinguishing melanomas and healthy fibroblasts based on their autofluorescent characteristics is validated using the same evaluation technique on patient cells. Additionally, the study tentatively maps the detected features to underlying biological processes. This research demonstrates the potential of cellular autofluorescence as a promising tool for melanoma diagnostics.
Collapse
Affiliation(s)
- Aline Knab
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Abhilash Goud Marupally
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Signorello MG, Ravera S, Leoncini G. Oxidative Stress Induced by Cortisol in Human Platelets. Int J Mol Sci 2024; 25:3776. [PMID: 38612585 PMCID: PMC11011787 DOI: 10.3390/ijms25073776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Hypercortisolism is known to affect platelet function. However, few studies have approached the effect of exogenous cortisol on human platelets, and the results obtained are conflicting and unconvincing. In this study, the effect of exogenous cortisol on several parameters indicative of oxidative status in human platelets has been analysed. We have found that cortisol stimulates ROS production, superoxide anion formation, and lipid peroxidation, with these parameters being in strict correlation. In addition, cortisol decreases GSH and membrane SH-group content, evidencing that the hormone potentiates oxidative stress, depleting platelet antioxidant defence. The involvement of src, syk, PI3K, and AKT enzymes in oxidative mechanisms induced by cortisol is shown. The main sources of ROS in cells can include uncontrolled increase of NADPH oxidase activity and uncoupled aerobic respiration during oxidative phosphorylation. Both mechanisms seem to be involved in ROS formation induced by cortisol, as the NADPH oxidase 1 inhibitor 2(trifluoromethyl)phenothiazine, and rotenone and antimycin A, complex I and III inhibitor, respectively, significantly reduce oxidative stress. On the contrary, the NADPH oxidase inhibitor gp91ds-tat, malate and NaCN, complex II and IV inhibitor, respectively, have a minor effect. It is likely that, in human platelets, oxidative stress induced by cortisol can be associated with venous and arterial thrombosis, greatly contributing to cardiovascular diseases.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
| | - Giuliana Leoncini
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, 16132 Genova, Italy;
| |
Collapse
|
14
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024:e12999. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Jakubek P, Kalinowski P, Karkucinska-Wieckowska A, Kaikini A, Simões ICM, Potes Y, Kruk B, Grajkowska W, Pinton P, Milkiewicz P, Grąt M, Pronicki M, Lebiedzinska-Arciszewska M, Krawczyk M, Wieckowski MR. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J 2024; 38:e23466. [PMID: 38318780 DOI: 10.1096/fj.202302447r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Aakruti Kaikini
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Inês C M Simões
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Xu J, Wang T, Sun C, Liu P, Chen J, Hou X, Yu T, Gao Y, Liu Z, Yang L, Zhang L. Eugenol improves salt tolerance via enhancing antioxidant capacity and regulating ionic balance in tobacco seedlings. FRONTIERS IN PLANT SCIENCE 2024; 14:1284480. [PMID: 38293630 PMCID: PMC10825873 DOI: 10.3389/fpls.2023.1284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Salt stress inhibits plant growth by disturbing plant intrinsic physiology. The application of exogenous plant growth regulators to improve the plant tolerance against salt stress has become one of the promising approaches to promote plant growth in saline environment. Eugenol (4-allyl-2- methoxyphenol) is the main ingredient in clove oil and it is known for its strong antioxidant and anti-microbial activities. Eugenol also has the ability of inhibiting several plant pathogens, implying the potential use of eugenol as an environmental friendly agrichemical. However, little is known about the possible role of eugenol in the regulation of plant tolerance against abiotic stress. Therefore, here we investigated the effectiveness of phytochemical eugenol in promoting salt tolerance in tobacco seedlings through physiological, histochemical, and biochemical method. The seedling roots were exposed to NaCl solution in the presence or absence of eugenol. Salt stress inhibited seedling growth, but eugenol supplementation effectively attenuated its effects in a dose-dependent manner, with an optimal effect at 20 µM. ROS (reactive oxygen species) accumulation was found in seedlings upon salt stress which was further resulted in the amelioration of lipid peroxidation, loss of membrane integrity, and cell death in salt-treated seedlings. Addition of eugenol highly suppressed ROS accumulation and reduced lipid peroxidation generation. Both enzymatic and non-enzymatic antioxidative systems were activated by eugenol treatment. AsA/DHA and GSH/GSSG were also enhanced upon eugenol treatment, which helped maintain redox homeostasis upon salinity. Eugenol treatment resulted in an increase in the content of osmoprotectants (e.g. proline, soluble sugar and starch) in salt-treated seedlings. Na+ levels decreased significantly in seedlings upon eugenol exposure. This may result from the upregulation of the expression of two ionic transporter genes, SOS1 (salt-hypersensitive 1) and NHX1 (Na+/H+ anti-transporter 1). Hierarchical cluster combined correlation analysis uncovered that eugenol induced salt tolerance was mediated by redox homeostasis and maintaining ionic balance in tobacco seedlings. This work reveals that eugenol plays a crucial role in regulating plant resistant physiology. This may extend its biological function as a novel biostimulant and opens up new possibilities for improving crop productivity in the saline agricultural environment.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Changwei Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Tao Yu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
17
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
18
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
19
|
Sanchez-Rodriguez L, Galvez-Fernandez M, Rojas-Benedicto A, Domingo-Relloso A, Amigo N, Redon J, Monleon D, Saez G, Tellez-Plaza M, Martin-Escudero JC, Ramis R. Traffic Density Exposure, Oxidative Stress Biomarkers and Plasma Metabolomics in a Population-Based Sample: The Hortega Study. Antioxidants (Basel) 2023; 12:2122. [PMID: 38136241 PMCID: PMC10740723 DOI: 10.3390/antiox12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Laura Sanchez-Rodriguez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Ayelén Rojas-Benedicto
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
- Department of Communicable Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nuria Amigo
- Biosfer Teslab, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universidad de Rovira i Virgili, 43007 Tarragona, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, Clinical Analysis Service, Hospital Universitario Dr. Peset-FISABIO, Universitat de Valencia, 46020 Valencia, Spain;
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Juan Carlos Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, 47012 Valladolid, Spain;
| | - Rebeca Ramis
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Dorogova NV, Fedorova SA, Bolobolova EU, Baricheva EM. The misregulation of mitochondria-associated genes caused by GAGA-factor lack promotes autophagic germ cell death in Drosophila testes. Genetica 2023; 151:349-355. [PMID: 37819589 DOI: 10.1007/s10709-023-00197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The Drosophila GAGA-factor encoded by the Trithorax-like (Trl) gene is DNA-binding protein with unusually wide range of applications in diverse cell contexts. In Drosophila spermatogenesis, reduced GAGA expression caused by Trl mutations induces mass autophagy leading to germ cell death. In this work, we investigated the contribution of mitochondrial abnormalities to autophagic germ cell death in Trl gene mutants. Using a cytological approach, in combination with an analysis of high-throughput RNA sequencing (RNA-seq) data, we demonstrated that the GAGA deficiency led to considerable defects in mitochondrial ultrastructure, by causing misregulation of GAGA target genes encoding essential components of mitochondrial molecular machinery. Mitochondrial anomalies induced excessive production of reactive oxygen species and their release into the cytoplasm, thereby provoking oxidative stress. Changes in transcription levels of some GAGA-independent genes in the Trl mutants indicated that testis cells experience ATP deficiency and metabolic aberrations, that may trigger extensive autophagy progressing to cell death.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Elena U Bolobolova
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Elina M Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
21
|
Zamakhaev M, Bespyatykh J, Goncharenko A, Shumkov M. The Benefits of Toxicity: M. smegmatis VapBC TA Module Is Induced by Tetracycline Exposure and Promotes Survival. Microorganisms 2023; 11:2863. [PMID: 38138007 PMCID: PMC10745673 DOI: 10.3390/microorganisms11122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. Mycolicibacterium smegmatis, a common model organism for studying Mycobacterium tuberculosis physiology, has eight TA loci, including mazEF and vapBC. This study aims to investigate the physiological significance of these TA systems. Proteomic profiling was conducted on a culture overexpressing the VapC toxin, and the involvement of VapC in M. smegmatis stress responses to heat shock and antibiotic treatment was examined. While deciphering the underlying mechanisms of the altered stress resistance, we assessed the antibiotic susceptibility of vapBC, mazEF, and double vapBC-mazEF deletion mutants. Additionally, the mRNA levels of vapC and mazF were measured following tetracycline supplementation. The results reveal changes in the abundance of metabolic enzymes and stress response proteins associated with VapC overexpression. This activation of the general stress response leads to reduced thermosensitivity in M. smegmatis, but does not affect susceptibility to ciprofloxacin and isoniazid. Under tetracycline treatment, both vapC and mazF expression levels are increased, and the fate of the cell depends on the interaction between the corresponding TA systems.
Collapse
Affiliation(s)
- Mikhail Zamakhaev
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia;
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047 Moscow, Russia
| | - Anna Goncharenko
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Mikhail Shumkov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| |
Collapse
|
22
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
23
|
Geng Z, Guan S, Wang S, Yu Z, Liu T, Du S, Zhu C. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci Ther 2023; 29:3121-3135. [PMID: 37424172 PMCID: PMC10580346 DOI: 10.1111/cns.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
AIM Mitochondria is one of the important organelles involved in cell energy metabolism and regulation and also play a key regulatory role in abnormal cell processes such as cell stress, cell damage, and cell canceration. Recent studies have shown that mitochondria can be transferred between cells in different ways and participate in the occurrence and development of many central nervous system diseases. We aim to review the mechanism of mitochondrial transfer in the progress of central nervous system diseases and the possibility of targeted therapy. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched to identify the experiments of intracellular mitochondrial transferrin central nervous system. The focus is on the donors, receptors, transfer pathways, and targeted drugs of mitochondrial transfer. RESULTS In the central nervous system, neurons, glial cells, immune cells, and tumor cells can transfer mitochondria to each other. Meanwhile, there are many types of mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, receptor cell endocytosis, gap junction channels, and intercellular contact. A variety of stress signals, such as the release of damaged mitochondria, mitochondrial DNA, or other mitochondrial products and the elevation of reactive oxygen species, can trigger the transfer of mitochondria from donor cells to recipient cells. Concurrently, a variety of molecular pathways and related inhibitors can affect mitochondrial intercellular transfer. CONCLUSION This study reviews the phenomenon of intercellular mitochondrial transfer in the central nervous system and summarizes the corresponding transfer pathways. Finally, we propose targeted pathways and treatment methods that may be used to regulate mitochondrial transfer for the treatment of related diseases.
Collapse
Affiliation(s)
- Ziang Geng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu Guan
- Department of Surgical Oncology and Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Siqi Wang
- Department of Radiation OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhongxue Yu
- Department of Cardiovascular UltrasoundThe First Hospital of China Medical UniversityShenyangChina
| | - Tiancong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaonan Du
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Chen Zhu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
24
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Khalifa AA, Ali MA, Elsokkary NH, Elblehi SS, El-Mas MM. Mitochondrial modulation of amplified preconditioning influences of remote ischemia plus erythropoietin against skeletal muscle ischemia/reperfusion injury in rats. Life Sci 2023; 329:121979. [PMID: 37516431 DOI: 10.1016/j.lfs.2023.121979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
AIMS Skeletal muscle ischemia and reperfusion (S-I/R) injury is relieved by interventions like remote ischemic preconditioning (RIPC). Here, we tested the hypothesis that simultaneous exposure to a minimal dose of erythropoietin (EPO) boosts the protection conferred by RIPC against S-I/R injury and concomitant mitochondrial oxidative and apoptotic defects. MAIN METHODS S-I/R injury was induced in rats by 3-h right hindlimb ischemia followed by 3-h of reperfusion, whereas RIPC involved 3 brief consecutive I/R cycles of the contralateral hindlimb. KEY FINDINGS S-I/R injury caused (i) rises in serum lactate dehydrogenase and creatine kinase and falls in serum pyruvate, (ii) structural deformities like sarcoplasm vacuolations, segmental necrosis, and inflammatory cells infiltration, and (iii) decreased amplitude and increased duration of electromyography action potentials. These defects were partially ameliorated by RIPC and dose-dependently by EPO (500 or 5000 IU/kg). Further, greater repairs of S-I/R-evoked damages were seen after prior exposure to the combined RIPC/EPO-500 intervention. The latter also caused more effective (i) preservation of mitochondrial number (confocal microscopy assessed Mitotracker red staining) and function (citrate synthase activity), (ii) suppression of mitochondrial DNA damage and indices of oxidative stress and apoptosis (succinate dehydrogenase, myeloperoxidase, cardiolipin, and cytochrome c), (iii) preventing calcium and nitric oxide metabolites (NOx) accumulation and glycogen consumption, and (iv) upregulating EPO receptors (EPO-R) gene expression. SIGNIFICANCE dual RIPC/EPO conditioning exceptionally mends structural, functional, and neuronal deficits caused by I/R injury and interrelated mitochondrial oxidative and apoptotic damage. Clinically, the utilization of relatively low EPO doses could minimize the hormone-related adverse effects.
Collapse
Affiliation(s)
- Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, Egypt.
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
26
|
Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, Lara-Barba E, de Solminihac J, Pradenas C, Molina L, Herrera-Luna Y, Utreras-Mendoza Y, Elizondo-Vega R, Vega-Letter AM, Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med 2023; 21:613. [PMID: 37689642 PMCID: PMC10493034 DOI: 10.1186/s12967-023-04493-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units. Therefore, this review provides an introducing view on the structure and energy-related functions of mitochondria as well as their dynamics. In turn, we summarize current knowledge on how these features are deregulated in different neurodegenerative diseases, including frontotemporal dementia, multiple sclerosis, amyotrophic lateral sclerosis, Friedreich ataxia, Alzheimer´s disease, Parkinson´s disease, and Huntington's disease. Finally, we analyzed current advances in mitochondrial transfer between diverse cell types that actively participate in neurodegenerative processes, and how they might be projected toward developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Javiera de Solminihac
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
27
|
Bákány B, Antal R, Szentesi P, Emri T, Leiter É, Csernoch L, Keller NP, Pócsi I, Dienes B. The bZIP-type transcription factors NapA and RsmA modulate the volumetric ratio and the relative superoxide ratio of mitochondria in Aspergillus nidulans. Biol Futur 2023; 74:337-346. [PMID: 37814124 DOI: 10.1007/s42977-023-00184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Basic leucine zipper (bZIP) transcription factors are crucial components of differentiation, cellular homeostasis and the environmental stress defense of eukaryotes. In this work, we further studied the consequence of gene deletion and overexpression of two bZIP transcription factors, NapA and RsmA, on superoxide production, mitochondrial morphology and hyphal diameter of Aspergillus nidulans. We have found that reactive oxygen species production was influenced by both gene deletion and overexpression of napA under tert-butylhydroperoxide (tBOOH) elicited oxidative stress. Furthermore, gene expression of napA negatively correlated with mitochondrial volumetric ratio as well as sterigmatocystin production of A. nidulans. High rsmA expression was accompanied with elevated relative superoxide ratio in the second hyphal compartment. A negative correlation between the expression of rsmA and catalase enzyme activity or mitochondrial volumetric ratio was also confirmed by statistical analysis. Hyphal diameter was independent on either rsmA and napA expression as well as 0.2 mM tBOOH treatment.
Collapse
Affiliation(s)
- Bernadett Bákány
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Réka Antal
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary.
| | - László Csernoch
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
- Department of Plant Pathology, University of Wisconsin, Madison, USA
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Beatrix Dienes
- Institute of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELRN-UD Cell Physiology Research Group, Debrecen, Hungary
| |
Collapse
|
28
|
Spinelli S, Guida L, Passalacqua M, Magnone M, Cossu V, Sambuceti G, Marini C, Sturla L, Zocchi E. Abscisic Acid and Its Receptors LANCL1 and LANCL2 Control Cardiomyocyte Mitochondrial Function, Expression of Contractile, Cytoskeletal and Ion Channel Proteins and Cell Proliferation via ERRα. Antioxidants (Basel) 2023; 12:1692. [PMID: 37759995 PMCID: PMC10526111 DOI: 10.3390/antiox12091692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratorio di Nefrologia Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Vanessa Cossu
- Section Human Anatomy, Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy;
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
| | - Gianmario Sambuceti
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy
| | - Cecilia Marini
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (G.S.); (C.M.)
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20100 Milan, Italy
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (L.G.); (M.P.); (M.M.)
| |
Collapse
|
29
|
Ekeuku SO, Mohd Murshid N, Shukri SN, Mohd Sahardi NFN, Makpol S. Effect of Vitamin E on Transcriptomic Alterations in Alzheimer's Disease. Int J Mol Sci 2023; 24:12372. [PMID: 37569747 PMCID: PMC10418953 DOI: 10.3390/ijms241512372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Research into ageing is focused on understanding why some people can maintain cognitive ability and others lose autonomy, affecting their quality of life. Studies have revealed that age-related neurodegenerative disorders like Alzheimer's disease (AD) are now major causes of death among the elderly, surpassing malignancy. This review examines the effects of vitamin E on transcriptomic changes in ageing and neurodegenerative diseases, using AD as an example, and how different transcriptome profiling techniques can shape the results. Despite mixed results from transcriptomic studies on AD patients' brains, we think advanced technologies could offer a more detailed and accurate tool for such analysis. Research has also demonstrated the role of antioxidant modifiers in preventing AD. This review will explore the key findings regarding AD and its modulation by vitamin E, emphasizing the shift in its epidemiology during the ageing process.
Collapse
Affiliation(s)
| | | | | | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
30
|
Ma J, Pan Z, Du H, Chen X, Zhu X, Hao W, Zheng Q, Tang X. Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells. Oncol Lett 2023; 26:327. [PMID: 37415631 PMCID: PMC10320424 DOI: 10.3892/ol.2023.13913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/29/2023] [Indexed: 07/08/2023] Open
Abstract
Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.
Collapse
Affiliation(s)
- Jun Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hongchao Du
- Department of General Surgery, Binzhou Medical University Affiliated Yantai Yeda Hospital, Yantai, Shandong 265599, P.R. China
| | - Xiaojie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejie Zhu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Shihezi, Xinjiang 832099, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
31
|
Kawai Y, Kawai M, Mackenzie ES, Dashti Y, Kepplinger B, Waldron KJ, Errington J. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat Commun 2023; 14:4123. [PMID: 37433811 DOI: 10.1038/s41467-023-39723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Inhibition of bacterial cell wall synthesis by antibiotics such as β-lactams is thought to cause explosive lysis through loss of cell wall integrity. However, recent studies on a wide range of bacteria have suggested that these antibiotics also perturb central carbon metabolism, contributing to death via oxidative damage. Here, we genetically dissect this connection in Bacillus subtilis perturbed for cell wall synthesis, and identify key enzymatic steps in upstream and downstream pathways that stimulate the generation of reactive oxygen species through cellular respiration. Our results also reveal the critical role of iron homeostasis for the oxidative damage-mediated lethal effects. We show that protection of cells from oxygen radicals via a recently discovered siderophore-like compound uncouples changes in cell morphology normally associated with cell death, from lysis as usually judged by a phase pale microscopic appearance. Phase paling appears to be closely associated with lipid peroxidation.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Maki Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilidh Sohini Mackenzie
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Kevin John Waldron
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
32
|
Damrongrungruang T, Panutyothin N, Kongjun S, Thanabat K, Ratha J. Combined bisdemethoxycurcumin and potassium iodide-mediated antimicrobial photodynamic therapy. Heliyon 2023; 9:e17490. [PMID: 37455953 PMCID: PMC10345248 DOI: 10.1016/j.heliyon.2023.e17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Antimicrobial photodynamic therapy is emerging as a promising way to treat infections with minimal side effects. Typically, a single photosensitizer used in photodynamic therapy is capable of generating only one type of reactive oxygen species, which may have inadequate capability to eradicate certain types of microbes, especially Candida species. Thus, the use of combined photosensitizers is examined as a means of achieving superior antimicrobial results. We postulate that bisdemethoxycurcumin, a type I reactive oxygen species generator, combined with potassium iodide, an antimicrobial iodide molecule, might exhibit superior antimicrobial effects compared to a single photosensitizer-mediated photodynamic therapy. The effects of bisdemethoxycurcumin + potassium iodide + dental blue light on Candida albicans reduction were examined. Candida biofilms were treated with 20, 40 or 80 μM bisdemethoxycurcumin, 100 mM potassium iodide or a combination of these species for 20 min before irradiation with a dental blue light (90 J/cm2). The negative and positive controls were phosphate buffer saline and nystatin at 1 : 100,000 units/ml, respectively. Candidal numbers were quantified at 0, 1, 6 and 24 h. Hydroxyl radicals were spectrophotometrically measured using 2-[6-(4'amino phynoxyl-3H-xanthen-3-on-9-yl)] benzoic acid or APF probe-mediated fluorescence intensity (Varioskan) at 490/515 nm (excitation/emission). Candidal counts and hydroxyl radical comparisons were performed using the Kruskal-Wallis test and one-way ANOVA, respectively. Correlations between candidal numbers and hydroxyl radical levels were done with a Pearson correlation test. Forty μM bisdemethoxycurcumin+100 mM KI could provide a 3.5 log10 CFU/ml reduction after 6 h. Bisdemethoxycurcumin alone generated OH levels that were strongly correlated with candidal reduction. In conclusion, 40 μM bisdemethoxycurcumin+100 mM KI could reduce C. albicans biofilm.
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
- Melatonin Research Program, The Research and Academic Affairs, Khon Kaen University, 40002, Thailand
| | - Nichapat Panutyothin
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Sirapakorn Kongjun
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Kittapak Thanabat
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Juthamat Ratha
- Melatonin Research Program, The Research and Academic Affairs, Khon Kaen University, 40002, Thailand
| |
Collapse
|
33
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
34
|
Starr LA, McKay LE, Peter KN, Seyfarth LM, Berkowitz LA, Caldwell KA, Caldwell GA. Attenuation of Dopaminergic Neurodegeneration in a C. elegans Parkinson's Model through Regulation of Xanthine Dehydrogenase (XDH-1) Expression by the RNA Editase, ADR-2. J Dev Biol 2023; 11:jdb11020020. [PMID: 37218814 DOI: 10.3390/jdb11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lindsey A Starr
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E McKay
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kylie N Peter
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lena M Seyfarth
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
35
|
Atlante A, Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr Issues Mol Biol 2023; 45:4451-4479. [PMID: 37232752 PMCID: PMC10217700 DOI: 10.3390/cimb45050283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mitochondria have made a long evolutionary path from ancient bacteria immigrants within the eukaryotic cell to become key players for the cell, assuming crucial multitasking skills critical for human health and disease. Traditionally identified as the powerhouses of eukaryotic cells due to their central role in energy metabolism, these chemiosmotic machines that synthesize ATP are known as the only maternally inherited organelles with their own genome, where mutations can cause diseases, opening up the field of mitochondrial medicine. More recently, the omics era has highlighted mitochondria as biosynthetic and signaling organelles influencing the behaviors of cells and organisms, making mitochondria the most studied organelles in the biomedical sciences. In this review, we will especially focus on certain 'novelties' in mitochondrial biology "left in the shadows" because, although they have been discovered for some time, they are still not taken with due consideration. We will focus on certain particularities of these organelles, for example, those relating to their metabolism and energy efficiency. In particular, some of their functions that reflect the type of cell in which they reside will be critically discussed, for example, the role of some carriers that are strictly functional to the typical metabolism of the cell or to the tissue specialization. Furthermore, some diseases in whose pathogenesis, surprisingly, mitochondria are involved will be mentioned.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
36
|
Transcriptome analysis reveals the potential mechanism of carotenoids change in hepatopancreas under low-temperature storage from swimming crab (Portunus trituberculatus). Food Chem 2023; 408:135241. [PMID: 36549153 DOI: 10.1016/j.foodchem.2022.135241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The hepatopancreas of swimming crab (Portunus trituberculatus) rich in carotenoids would undergo serious color deterioration during cold storage, and then made portunid lose its commodity value. In this study, we firstly elucidated the change mechanism of its carotenoids during storage at the molecular level using transcriptome technology. We concluded that low-temperature would inhibit aerobic respiration of portunid, leading to a lower pH and inducing the degradation of carotenoids. After that, longer cold storage time would increase the oxidative stress in portunid, resulting in a further decrease in carotenoids content. Finally, the strong autolysis of portunid could release carotenoids stored in other parts such as ovary to the external environment, resulting in the increase of carotenoids detection content. This research could provide a basis for further developing the fresh-keeping technology of portunid during low-temperature storage.
Collapse
|
37
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
38
|
Mendes D, Silva AM, Oliveira MM, Andrade PB, Videira RA. An Experimental Approach to Address the Functional Relationship between Antioxidant Enzymes and Mitochondrial Respiratory Complexes. Methods Protoc 2023; 6:mps6020032. [PMID: 37104014 PMCID: PMC10142429 DOI: 10.3390/mps6020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Mitochondrial dysfunction and cytosolic oxidative stress are pathological biomarkers interlinked in several chronic diseases and cellular toxicity promoted by high-energy radiation or xenobiotics. Thus, assessing the activities of the mitochondrial redox chain complexes and the cytosolic antioxidant enzymes in the same cell culture system is a valuable approach to addressing the challenge of chronic diseases or unveiling the molecular mechanisms underlying the toxicity of physical and chemical stress agents. The present article gathers the experimental procedures to obtain, from isolated cells, a mitochondria-free cytosolic fraction and a mitochondria-rich fraction. Furthermore, we describe the methodologies to evaluate the activity of the main antioxidant enzymes in the mitochondria-free cytosolic fraction (superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase), and the activity of the individual mitochondrial complexes I, II and IV, as well as the conjugated activity of complexes I-III and complexes II-III in the mitochondria-rich fraction. The protocol to test the citrate synthase activity was also considered and used to normalize complexes. The procedures were optimized within an experimental setup to allow that each condition to be tested only requires sampling of one T-25 flask of cells 2D cultured, as the typical results presented and discussed here.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Maria Silva
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria Manuel Oliveira
- Chemistry Center-Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5001-801 Vila Real, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
39
|
Apel C, Levasseur M, Lejeune C, Korch SB, Guérard F, David M, Askora A, Litaudon M, Roussi F, Gakière B, Chaput J, Virolle MJ. Metabolic adjustments in response to ATP spilling by the small DX protein in a Streptomyces strain. Front Cell Dev Biol 2023; 11:1129009. [PMID: 36968208 PMCID: PMC10030506 DOI: 10.3389/fcell.2023.1129009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms. However, such strategy has been rarely implemented in Streptomyces species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of Streptomyces, the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong ErmE promoter. This construct and the empty vector were introduced into the species Streptomyces albogriseolus/viridodiastaticus yielding A37 and A36, respectively. A37 yielded higher biomass than A36 indicating that the DX-mediated ATP degradation resulted into a stimulation of A37 metabolism, consistently with what was reported in other microorganisms. The comparative analysis of the metabolomes of A36 and A37 revealed that A37 had a lower content in glycolytic and Tricarboxylic Acid Cycle intermediates as well as in amino acids than A36, these metabolites being consumed for biomass generation in A37. In contrast, the abundance of other molecules indicative either of energetic stress (ADP, AMP, UMP, ornithine and thymine), of activation (NAD and threonic acid) or inhibition (citramalic acid, fatty acids, TAG and L-alanine) of the oxidative metabolism, was higher in A37 than in A36. Furthermore, hydroxyl-pyrimidine derivatives and polycyclic aromatic polyketide antibiotics belonging to the angucycline class and thought to have a negative impact on respiration were also more abundantly produced by A37 than by A36. This comparative analysis thus revealed the occurrence in A37 of antagonistic metabolic strategies, namely, activation or slowing down of oxidative metabolism and respiration, to maintain the cellular energetic balance. This study thus demonstrated that DX constitutes an efficient biotechnological tool to enhance the expression of the specialized metabolic pathways present in the Streptomyces genomes that may include cryptic pathways. Its use thus might lead to the discovery of novel bioactive molecules potentially useful to human health.
Collapse
Affiliation(s)
- Cécile Apel
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Marceau Levasseur
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Clara Lejeune
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Shaleen B. Korch
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Florence Guérard
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Michelle David
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Ahmed Askora
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Marc Litaudon
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Fanny Roussi
- Département de Chimie des Substances Naturelles et Chimie Médicinale, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - Bertrand Gakière
- Plateforme SPOmics-Métabolome, Institut des Sciences des Plantes (IPS2), UMR 9213, Université Paris-Saclay, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
| | - John Chaput
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Marie-Joelle Virolle
- Département de Microbiologie, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Université Paris-Saclay, CEA, Centre National de le Recherche Scientifique, Gif-sur-Yvette, France
- *Correspondence: Marie-Joelle Virolle,
| |
Collapse
|
40
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
41
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
42
|
Bouchendhomme T, Soret M, Grard T, Lencel P. Differentiating between fresh and frozen-thawed fish fillets by muscle fibre permeability measurement. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Khan T, Waseem R, Zehra Z, Aiman A, Bhardwaj P, Ansari J, Hassan MI, Islam A. Mitochondrial Dysfunction: Pathophysiology and Mitochondria-Targeted Drug Delivery Approaches. Pharmaceutics 2022; 14:pharmaceutics14122657. [PMID: 36559149 PMCID: PMC9785072 DOI: 10.3390/pharmaceutics14122657] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are implicated in a wide range of functions apart from ATP generation, and, therefore, constitute one of the most important organelles of cell. Since healthy mitochondria are essential for proper cellular functioning and survival, mitochondrial dysfunction may lead to various pathologies. Mitochondria are considered a novel and promising therapeutic target for the diagnosis, treatment, and prevention of various human diseases including metabolic disorders, cancer, and neurodegenerative diseases. For mitochondria-targeted therapy, there is a need to develop an effective drug delivery approach, owing to the mitochondrial special bilayer structure through which therapeutic molecules undergo multiple difficulties in reaching the core. In recent years, various nanoformulations have been designed such as polymeric nanoparticles, liposomes, inorganic nanoparticles conjugate with mitochondriotropic moieties such as mitochondria-penetrating peptides (MPPs), triphenylphosphonium (TPP), dequalinium (DQA), and mitochondrial protein import machinery for overcoming barriers involved in targeting mitochondria. The current approaches used for mitochondria-targeted drug delivery have provided promising ways to overcome the challenges associated with targeted-drug delivery. Herein, we review the research from past years to the current scenario that has identified mitochondrial dysfunction as a major contributor to the pathophysiology of various diseases. Furthermore, we discuss the recent advancements in mitochondria-targeted drug delivery strategies for the pathologies associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zainy Zehra
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
- Correspondence:
| |
Collapse
|
44
|
Soares RB, Manguinhas R, Costa JG, Saraiva N, Gil N, Rosell R, Camões SP, Batinic-Haberle I, Spasojevic I, Castro M, Miranda JP, Amaro F, Pinto J, Fernandes AS, Guedes de Pinho P, Oliveira NG. MnTnHex-2-PyP 5+ Displays Anticancer Properties and Enhances Cisplatin Effects in Non-Small Cell Lung Cancer Cells. Antioxidants (Basel) 2022; 11:2198. [PMID: 36358570 PMCID: PMC9686800 DOI: 10.3390/antiox11112198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/13/2023] Open
Abstract
The manganese(III) porphyrin MnTnHex-2-PyP5+ (MnTnHex) is a potent superoxide dismutase mimic and modulator of redox-based transcriptional activity that has been studied in the context of different human disease models, including cancer. Nevertheless, for lung cancer, hardly any information is available. Thus, the present work aims to fill this gap and reports the effects of MnTnHex in non-small cell lung cancer (NSCLC) cells, more specifically, A549 and H1975 cells, in vitro. Both cell lines were initially characterized in terms of innate levels of catalase, glutathione peroxidase 1, and peroxiredoxins 1 and 2. To assess the effect of MnTnHex in NSCLC, alone or in combination with cisplatin, endpoints related to the cell viability, cell cycle distribution, cell motility, and characterization of the volatile carbonyl compounds (VCCs) generated in the extracellular medium (i.e., exometabolome) were addressed. The results show that MnTnHex as a single drug markedly reduced the viability of both NSCLC cell lines, with some IC50 values reaching sub-micromolar levels. This redox-active drug also altered the cell cycle distribution, induced cell death, and increased the cytotoxicity pattern of cisplatin. MnTnHex also reduced collective cell migration. Finally, the metabolomics study revealed an increase in the levels of a few VCCs associated with oxidative stress in MnTnHex-treated cells. Altogether these results suggest the therapeutic potential of MnTnHex to be further explored, either alone or in combination therapy with cisplatin, in NSCLC.
Collapse
Affiliation(s)
- Rita B. Soares
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - João G. Costa
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Nuno Saraiva
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Rafael Rosell
- Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Ctra de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Barcelona, Spain
| | - Sérgio P. Camões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine and PK/PD Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Filipa Amaro
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana S. Fernandes
- Universidade Lusófona’s Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
45
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
46
|
Kampa RP, Flori L, Sęk A, Spezzini J, Brogi S, Szewczyk A, Calderone V, Bednarczyk P, Testai L. Luteolin-Induced Activation of Mitochondrial BK Ca Channels: Undisclosed Mechanism of Cytoprotection. Antioxidants (Basel) 2022; 11:1892. [PMID: 36290615 PMCID: PMC9598376 DOI: 10.3390/antiox11101892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/29/2023] Open
Abstract
Luteolin (LUT) is a well-known flavonoid that exhibits a number of beneficial properties. Among these, it shows cardioprotective effects, as confirmed by numerous studies. However, its effect on mitochondrial potassium channels, the activation of which is related to cytoprotection, as well as on heart ischemia/reperfusion (I/R) damage prevention, has not yet been investigated. The large conductance calcium-regulated potassium channel (mitoBKCa) has been identified in both the mitochondria of the vascular endothelial cells, which plays a significant role in the functioning of the cardiovascular system under oxidative stress-related conditions, and in the mitochondria of cardiomyocytes, where it is deeply involved in cardiac protection against I/R injury. Therefore, the aim of this study was to explore the role of the mitoBKCa channel in luteolin-induced cytoprotection. A number of in vitro, in vivo, ex vivo and in silico studies have confirmed that luteolin activates this channel in the mitochondria of cardiomyocytes and endothelial cells, which in turn leads to the protection of the endothelium and a significant reduction in the extent of damage resulting from myocardial infarction, where this effect was partially abolished by the mitoBKCa channel blocker paxilline. In conclusion, these results suggest that luteolin has cardioprotective effects, at least in part, through the activation of the mitoBKCa channel, shedding light on a new putative mechanism of action.
Collapse
Affiliation(s)
- Rafał P. Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Jacopo Spezzini
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Vincenzo Calderone
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences–SGGW (WULS-SGGW), 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Lara Testai
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| |
Collapse
|
47
|
Reiterer M, Eakin A, Johnson RS, Branco CM. Hyperoxia Reprogrammes Microvascular Endothelial Cell Response to Hypoxia in an Organ-Specific Manner. Cells 2022; 11:cells11162469. [PMID: 36010546 PMCID: PMC9406746 DOI: 10.3390/cells11162469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Organ function relies on microvascular networks to maintain homeostatic equilibrium, which varies widely in different organs and during different physiological challenges. The endothelium role in this critical process can only be evaluated in physiologically relevant contexts. Comparing the responses to oxygen flux in primary murine microvascular EC (MVEC) obtained from brain and lung tissue reveals that supra-physiological oxygen tensions can compromise MVEC viability. Brain MVEC lose mitochondrial activity and undergo significant alterations in electron transport chain (ETC) composition when cultured under standard, non-physiological atmospheric oxygen levels. While glycolytic capacity of both lung and brain MVEC are unchanged by environmental oxygen, the ability to trigger a metabolic shift when oxygen levels drop is greatly compromised following exposure to hyperoxia. This is particularly striking in MVEC from the brain. This work demonstrates that the unique metabolism and function of organ-specific MVEC (1) can be reprogrammed by external oxygen, (2) that this reprogramming can compromise MVEC survival and, importantly, (3) that ex vivo modelling of endothelial function is significantly affected by culture conditions. It further demonstrates that physiological, metabolic and functional studies performed in non-physiological environments do not represent cell function in situ, and this has serious implications in the interpretation of cell-based pre-clinical models.
Collapse
Affiliation(s)
- Moritz Reiterer
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda Eakin
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M. Branco
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK
- Correspondence:
| |
Collapse
|
48
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
49
|
Lopes NMD, Lens HHM, da Silva Brito WA, Bianchi JK, Marinello PC, Cecchini R, Armani A, Cecchini AL. Role of papillary thyroid carcinoma patients with Hashimoto thyroiditis: evaluation of oxidative stress and inflammatory markers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2366-2378. [PMID: 35902455 DOI: 10.1007/s12094-022-02891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most frequent subtype of thyroid cancer; Hashimoto's thyroiditis (HT), autoimmune disease, commonly affects the thyroid gland; there is possibly a correlation between both, but the exact mechanisms that involve this relationship are still under debate. Since oxidative stress (OS) and the inflammatory environment participate in the development of several types of cancer, the objective of the present study was to establish the microenvironment and systemic participation of OS and inflammatory markers in patients with PTC and HT. METHODS Blood and tissue samples were collected from 115 patients: BENIGN (n = 63); PTC (n = 27); HT (n = 15) and PTC + HT (n = 10), and sixty-three were samples from healthy individuals (control group). RESULTS Superoxide dismutase, Catalase, reduced Glutathione, markers of lipid peroxidation and inflammation were evaluated in blood. Immunohistochemistry was performed on 3-nitrotyrosine, 4-hydroxynonenal, Ki-67 and VEGF. The results indicate that antioxidant enzymes were more active in groups with thyroid disorders compared to control, while the concentration of Reduced glutathione was reduced in BENIGN and PTC groups. When PTC and PTC + HT groups were analyzed, no significant differences were found in relation to the antioxidant defense and inflammatory markers. The ability to contain the induced lipid peroxidation was lower and a high level of malondialdehyde was observed in the PTC group. All immunohistochemical markers had higher scores in the PTC group compared to PTC + HT. CONCLUSION There was a more pronounced presence of OS and a greater activity of cell proliferation and angiogenesis markers in PTC than in PTC + HT group.
Collapse
Affiliation(s)
- Natália Medeiros Dias Lopes
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Hannah Hamada Mendonça Lens
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Walison Augusto da Silva Brito
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Julya Karen Bianchi
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rubens Cecchini
- Laboratory of Physiopathology and Free Radicals, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - André Armani
- Department of Surgery, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Universidade Estadual de Londrina, Celso Garcia Cid, PR445, Km 380 University Campus, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
50
|
Biliary Drainage Reduces Intestinal Barrier Damage in Obstructive Jaundice by Regulating Autophagy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3301330. [PMID: 35909583 PMCID: PMC9307405 DOI: 10.1155/2022/3301330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
This study aims to investigate the mechanism by which biliary drainage reduces intestinal barrier damage in obstructive jaundice (OJ). A biliary drainage model was established in rats with OJ to detect changes in inflammatory factors and diamine oxidase (DAO), a marker of intestinal mucosal damage. The expression of autophagy-related genes in the intestinal mucosa after biliary drainage was detected using a reverse transcription-polymerase chain reaction. The rats were separated into two groups that received the autophagy activator rapamycin (RAPA) or the autophagy inhibitor 3-methyladenine (3-MA) to further investigate whether biliary drainage could alleviate the inflammatory response, oxidative stress, mitochondrial complex IV damage, and thus barrier damage in rats with OJ. The expression levels of inflammatory factors and the serum DAO content were increased in rats with OJ (P < 0.05). Biliary drainage further induced autophagy, reduced the expression levels of inflammatory factors, decreased the serum DAO content (P < 0.05), and improved intestinal mucosal damage. Administration of RAPA to OJ rats with biliary drainage increased autophagy (P < 0.05); decreased inflammatory factor secretion (P < 0.05), the serum DAO content (P < 0.05), oxidative stress (P < 0.05), and mitochondrial respiratory chain complex IV damage (P < 0.05); and ameliorated intestinal mucosal injury in OJ rats. When OJ rats were treated with 3-MA, intestinal mucosal injury, intestinal mitochondrial injury, and oxidative stress were all aggravated (P < 0.05). Biliary drainage can reduce the expression of inflammatory factors, oxidative stress, and mitochondrial injury by inducing intestinal mucosal autophagy in OJ rats, thus suggesting its role in the alleviation of intestinal mucosal injury.
Collapse
|