1
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
2
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
3
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
4
|
Mahato R, Behera DK, Patra B, Das S, Lakra K, Pradhan SN, Abbas SJ, Ali SI. Plant-based natural products in cancer therapeutics. J Drug Target 2024; 32:365-380. [PMID: 38315449 DOI: 10.1080/1061186x.2024.2315474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Various cells in our body regularly divide to replace old cells and dead cells. For a living cell to be growing, cell division and differentiation is highly essential. Cancer is characterised by uncontrollable cell division and invasion of other tissues due to dysregulation in the cell cycle. An accumulation of genetic changes or mutations develops through different physical (UV and other radiations), chemical (chewing and smoking of tobacco, chemical pollutants/mutagens), biological (viruses) and hereditary factors that can lead to cancer. Now, cancer is considered as a major death-causing factor worldwide. Due to advancements in technology, treatment like chemotherapy, radiation therapy, bone marrow transplant, immunotherapy, hormone therapy and many more in the rows. Although, it also has some side effects like fatigue, hair fall, anaemia, nausea and vomiting, constipation. Modern improved drug therapies come with severe side effects. There is need for safer, more effective, low-cost treatment with lesser side-effects. Biologically active natural products derived from plants are the emerging strategy to deal with cancer proliferation. Moreover, they possess anti-carcinogenic, anti-proliferative and anti-mutagenic properties with reduced side effects. They also detoxify and remove reactive substances formed by carcinogenic agents. In this article, we discuss different plant-based products and their mechanism of action against cancer.
Collapse
Affiliation(s)
- Rohini Mahato
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Dillip Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Biswajit Patra
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
- P.G. Department of Botany, Fakir Mohan University, Balasore, Odisha, India
| | - Shradhanjali Das
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Kulwant Lakra
- Department of Community Medicine, Veer Surendra Sai Institute of Medical Sciences and Research, Sambalpur, Odisha, India
| | | | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| |
Collapse
|
5
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
6
|
Joshi AS, Madhusudanan M, Mijakovic I. 3D printed inserts for reproducible high throughput screening of cell migration. Front Cell Dev Biol 2023; 11:1256250. [PMID: 37711850 PMCID: PMC10498783 DOI: 10.3389/fcell.2023.1256250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Cell migration is a fundamental and complex phenomenon that occurs in normal physiology and in diseases like cancer. Hence, understanding cell migration is very important in the fields of developmental biology and biomedical sciences. Cell migration occurs in 3 dimensions (3D) and involves an interplay of migrating cell(s), neighboring cells, extracellular matrix, and signaling molecules. To understand this phenomenon, most of the currently available techniques still rely on 2-dimensional (2D) cell migration assay, also known as the scratch assay or the wound healing assay. These methods suffer from limited reproducibility in creating a cell-free region (a scratch or a wound). Mechanical/heat related stress to cells is another issue which hampers the applicability of these methods. To tackle these problems, we developed an alternative method based on 3D printed biocompatible cell inserts, for quantifying cell migration in 24-well plates. The inserts were successfully validated via a high throughput assay for following migration of lung cancer cell line (A549 cell line) in the presence of standard cell migration promoters and inhibitors. We also developed an accompanying image analysis pipeline which demonstrated that our method outperforms the state-of-the-art methodologies for assessing the cell migration in terms of reproducibility and simplicity.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mukil Madhusudanan
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Yu Y, Zhou M, Long X, Yin S, Hu G, Yang X, Jian W, Yu R. Study on the mechanism of action of colchicine in the treatment of coronary artery disease based on network pharmacology and molecular docking technology. Front Pharmacol 2023; 14:1147360. [PMID: 37405052 PMCID: PMC10315633 DOI: 10.3389/fphar.2023.1147360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Objective: This is the first study to explore the mechanism of colchicine in treating coronary artery disease using network pharmacology and molecular docking technology, aiming to predict the key targets and main approaches of colchicine in treating coronary artery disease. It is expected to provide new ideas for research on disease mechanism and drug development. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Swiss Target Prediction and PharmMapper databases were used to obtain drug targets. GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), DrugBank and DisGeNET databases were utilized to gain disease targets. The intersection of the two was taken to access the intersection targets of colchicine for the treatment of coronary artery disease. The Sting database was employed to analyze the protein-protein interaction network. Gene Ontology (GO) functional enrichment analysis was performed using Webgestalt database. Reactom database was applied for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was simulated using AutoDock 4.2.6 and PyMOL2.4 software. Results: A total of 70 intersecting targets of colchicine for the treatment of coronary artery disease were obtained, and there were interactions among 50 targets. GO functional enrichment analysis yielded 13 biological processes, 18 cellular components and 16 molecular functions. 549 signaling pathways were obtained by KEGG enrichment analysis. The molecular docking results of key targets were generally good. Conclusion: Colchicine may treat coronary artery disease through targets such as Cytochrome c (CYCS), Myeloperoxidase (MPO) and Histone deacetylase 1 (HDAC1). The mechanism of action may be related to the cellular response to chemical stimulus and p75NTR-mediated negative regulation of cell cycle by SC1, which is valuable for further research exploration. However, this research still needs to be verified by experiments. Future research will explore new drugs for treating coronary artery disease from these targets.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Long
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gang Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Chinese Medicine Diagnostics in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Moldovan OL, Sandulea A, Lungu IA, Gâz ȘA, Rusu A. Identification of Some Glutamic Acid Derivatives with Biological Potential by Computational Methods. Molecules 2023; 28:molecules28104123. [PMID: 37241864 DOI: 10.3390/molecules28104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glutamic acid is a non-essential amino acid involved in multiple metabolic pathways. Of high importance is its relationship with glutamine, an essential fuel for cancer cell development. Compounds that can modify glutamine or glutamic acid behaviour in cancer cells have resulted in attractive anticancer therapeutic alternatives. Based on this idea, we theoretically formulated 123 glutamic acid derivatives using Biovia Draw. Suitable candidates for our research were selected among them. For this, online platforms and programs were used to describe specific properties and their behaviour in the human organism. Nine compounds proved to have suitable or easy to optimise properties. The selected compounds showed cytotoxicity against breast adenocarcinoma, lung cancer cell lines, colon carcinoma, and T cells from acute leukaemia. Compound 2Ba5 exhibited the lowest toxicity, and derivative 4Db6 exhibited the most intense bioactivity. Molecular docking studies were also performed. The binding site of the 4Db6 compound in the glutamine synthetase structure was determined, with the D subunit and cluster 1 being the most promising. In conclusion, glutamic acid is an amino acid that can be manipulated very easily. Therefore, molecules derived from its structure have great potential to become innovative drugs, and further research on these will be conducted.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Alexandra Sandulea
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
9
|
Rosell-Hidalgo A, Moore AL, Ghafourian T. Prediction of drug-induced mitochondrial dysfunction using succinate-cytochrome c reductase activity, QSAR and molecular docking. Toxicology 2023; 485:153412. [PMID: 36584908 DOI: 10.1016/j.tox.2022.153412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that links mitochondrial off-target effects with organ toxicities. For this reason, predictive strategies need to be developed to identify mitochondrial dysfunction early in the drug discovery process. In this study, as a major mechanism of mitochondrial toxicity, first, the inhibitory activity of 35 compounds against succinate-cytochrome c reductase (SCR) was investigated. This in vitro study led to the generation of consistent experimental data for a diverse range of compounds, including pharmaceutical drugs and fungicides. Next, molecular docking and protein-ligand interaction fingerprinting (PLIF) analysis were used to identify significant residues and protein-ligand interactions for the Qo site of complex III and Q site of complex II. Finally, this data was used for the development of QSAR models using a regression-based approach to highlight structural and chemical features that might be responsible for SCR inhibition. The statistically validated QSAR models from this work highlighted the importance of low aqueous solubility, low ionisation, fewer 6-membered rings and shorter hydrocarbon alkane chains in the molecular structure for increased inhibition of SCR, hence mitochondrial toxicity. PLIF analysis highlighted two key residues for inhibitory activity of the Qo site of complex III: His 161 as H-bond acceptor and Pro 270 for arene interactions. Currently, there are limited structure-activity models published in the scientific literature for the prediction of mitochondrial toxicity. We believe this study helps shed light on the chemical space for the inhibition of mitochondrial electron transport chain (ETC).
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Taravat Ghafourian
- NSU College of Pharmacy, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
10
|
Malik S, Mintoo MJ, Reddy CN, Kumar R, Kotwal P, Bharate SB, Nandi U, Mondhe DM, Shukla SK. In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:62-76. [PMID: 36253285 DOI: 10.1016/j.joim.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells. METHODS Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice. RESULTS IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively. CONCLUSION IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Collapse
Affiliation(s)
- Sumera Malik
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mubashir J Mintoo
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chilakala Nagarjuna Reddy
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Rajesh Kumar
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Pankul Kotwal
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacokinetics-Pharmacodynamics (PK-PD), Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Sandip B Bharate
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Pharmacokinetics-Pharmacodynamics (PK-PD), Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Dilip M Mondhe
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Sanket K Shukla
- Pharmacology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Sadeghzadeh F, Ziaratnia AS, Homayouni Tabrizi M, Torshizi GH, Alhajamee M, Khademi D. Nanofabrication of PLGA-PEG-chitosan-folic acid systems for delivery of colchicine to HT-29 cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1-17. [PMID: 35864733 DOI: 10.1080/09205063.2022.2105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This survey was conducted to fabrication of PLGA-based nanosystems modified with PEG, chitosan and folic acid to delivery colchicine to cancer cells and to investigate its antioxidant and pro-apoptotic effects. The dual emulsion-evaporation solvent method was used for loading of colchicine on PEGylated PLGA nanoparticles (COL-PP-NPs) and after surface modification with chitosan and folic acid (COL-PPCF-NPs), the nanoparticles were characterized by DLS, SEM and FTIR methods. The HPLC procedure was used to assess the amount of FA binding and COL loading. Antioxidant capacity (ABTS and DPPH free radical scavenging) and toxicity (MTT) of COL-PPCF-NPs were evaluated and then cell inhibition mechanism was assessed by AO/PI staining, flow cytometry and qPCR assay. COL-PPCF-NPs with a size of 250 nm were synthesized in a stable (zeta potential: +34 mV) and mono-dispersed (PDI: 0.32) manner. FA binding and COL loading were reported to be 55% and 89.5%, respectively. COL-PPCF-NPs showed antioxidant effects by inhibiting the free radicals ABTS (108.07 µg/ml) and DPPH (361.61 µg/ml). The selective toxicity of COL-PPCF-NPs against HT-29 cancer cells (118.5 µg/ml) compared to HFF cells was confirmed by MTT data. Increased apoptotic cells (red color) in AO/PI staining, cell arrest in phase SubG1 and G2-M, and altered expression of apoptosis genes confirmed the occurrence of apoptosis in HT-29 treated cells. The use of PPCF-NPs system for delivery of COL can lead to selective toxicity against cancer cells and induction of apoptosis in these cells by folate-mediated binding mechanism at folate receptor positive HT-29 cancer cells.
Collapse
Affiliation(s)
- Farzaneh Sadeghzadeh
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | | | | | - Maitham Alhajamee
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Davoud Khademi
- Department of Materials Science and Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
One-pot synthesis of cyclic-aminotropiminium carboxylate derivatives with DNA binding and anticancer properties. Commun Chem 2022; 5:179. [PMID: 36697960 PMCID: PMC9814901 DOI: 10.1038/s42004-022-00798-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Tropolone, a nonbenzenoid aromatic molecule, is a constituent of troponoid natural products possessing a wide range of bioactivities, including anticancer. This report describes the one-pot synthesis and mechanistic studies of fifteen fluorescent Caryl-Nalkyl-substituted cyclic-aminotroponiminium carboxylate (cATC) derivatives by unusual cycloaddition and rearrangement reactions. Herein, the biochemical studies of four cATC derivatives reveal a non-intercalative binding affinity with DNA duplex. In vitro/in vivo studies show strong anti-tumor activity in three cATC derivatives. These derivatives enter the cells and localize to the nucleus and cytoplasm, which are easily traceable due to their inherent fluorescence properties. These three cATC derivatives reduce the proliferation and migration of HeLa cells more than the non-cancer cell line. They induce p38-p53-mediated apoptosis and inhibit EMT. In xenograft-based mouse models, these cATC derivatives reduce tumor size. Overall, this study reports the synthesis of DNA binding fluorescent Caryl-Nalkyl-cyclic-aminotroponiminium derivatives which show anti-tumor activity with the minimum side effect.
Collapse
|
13
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Adham Foumani E, Irani S, Shokoohinia Y, Mostafaie A. Colchicine of Colchicum autumnale, A Traditional Anti-Inflammatory Medicine, Induces Apoptosis by Activation of Apoptotic Genes and Proteins Expression in Human Breast (MCF-7) and Mouse Breast (4T1) Cell Lines. CELL JOURNAL 2022; 24:647-656. [PMID: 36377214 PMCID: PMC9663959 DOI: 10.22074/cellj.2022.8290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Breast cancer is one of the major causes of mortality among women. Due to many side effects of the existing chemotherapeutic agents, the research of anti-cancer drugs, including natural products, is still a big challenge. Here, we investigated the effects of colchicine on apoptosis of two breast cancer cell lines ( human MCF-7 and mouse 4T1). MATERIALS AND METHODS In this experimental study, we evaluated the apoptotic effects of colchicine on (MCF-7) and (4T1), as well as a human cancer-associated fibroblast cell line as a control group. Extraction and chromatographic techniques were applied to isolate colchicine from Colchicum autumnale L. To compare the isolated colchicine with pure standard colchicine, we used the H-NMR technique. The methyl thiazolyl tetrazolium (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction, Western blotting and annexin V/PI staining were used to evaluate the apoptotic effects of the isolated and standard colchicine. RESULTS Similar to standard colchicine, the isolated colchicine inhibited cell proliferation significantly in cancer cell lines. Colchine inhibited proliferation and induced apoptosis on a dose-dependent manner. The medicine modified the expression of genes-related to apoptosis by up-regulation of P53 ,BAX, CASPASE-3, -9 and down-regulation of BCL-2 gene, which led to an increase in the BAX/BCL-2 ratio. CONCLUSION We showed that isolated colchicine from Colchicum autumnale and pure standard colchicines modulate the expression levels of several genes and therefore exerting their anticancer effects on both human (MCF-7) and mouse (4T1) breast cancer cells. Based on these results, we suggest that colchicine can be a potential candidate for prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Elham Adham Foumani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yalda Shokoohinia
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran,P.O.Box: 6714869914Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
15
|
Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int 2022; 22:206. [PMID: 35655306 PMCID: PMC9161525 DOI: 10.1186/s12935-022-02624-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand 263 136 India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143 005 India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand 248 001 India
| | - Dharam Chand Attri
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy Bucharest, 050463 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
16
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
17
|
ICHIMATA S, HATA Y, HIROTA K, NISHIDA N. Histopathology of acute colchicine intoxication: novel findings and their association with clinical manifestations. J Toxicol Pathol 2022; 35:255-262. [PMID: 35832901 PMCID: PMC9255996 DOI: 10.1293/tox.2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
A 32-year-old woman attempted suicide by ingesting Gloriosa bulbs and died approximately
2 days later. Toxicological examination revealed a potentially fatal blood concentration
of colchicine (0.096 mg/L). In addition to the increased mitotic figures in the
gastrointestinal mucosa, a unique finding for acute colchicine intoxication, pathological
examination showed microvesicular lipid droplets in the liver, kidney, heart, and
conduction system. Furthermore, central chromatolysis of neurons was observed in the
pontine nucleus, medial accessory olivary nucleus, nucleus of the solitary tract, and
nucleus ambiguus. Grumose degeneration of the cerebellar dentate nucleus was also evident.
These pathological findings may help identify colchicine intoxication, even in the absence
of evidence suggesting ingestion during autopsy. Moreover, pathological changes in the
heart and central nervous system may be associated with the development of serious
complications of acute colchicine intoxication.
Collapse
Affiliation(s)
- Shojiro ICHIMATA
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yukiko HATA
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kojiro HIROTA
- Department of Intensive Care and Disaster Medicine, Tonami General Hospital, Toyama, Japan
| | - Naoki NISHIDA
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Rozario AM, Duwé S, Elliott C, Hargreaves RB, Moseley GW, Dedecker P, Whelan DR, Bell TDM. Nanoscale characterization of drug-induced microtubule filament dysfunction using super-resolution microscopy. BMC Biol 2021; 19:260. [PMID: 34895240 PMCID: PMC8665533 DOI: 10.1186/s12915-021-01164-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/μm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.
Collapse
Affiliation(s)
- Ashley M Rozario
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Sam Duwé
- Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Cade Elliott
- School of Chemistry, Monash University, Clayton, 3800, Australia
| | | | - Gregory W Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, 3800, Australia
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, 3552, Australia.
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
19
|
Stingless Bee Propolis: New Insights for Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2169017. [PMID: 34603594 PMCID: PMC8483912 DOI: 10.1155/2021/2169017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.
Collapse
|
20
|
Ergul M, Bakar-Ates F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells. Toxicol In Vitro 2021; 73:105138. [PMID: 33684465 DOI: 10.1016/j.tiv.2021.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
This work examined the cytotoxic effects of colchicine on PC3 cells and elucidated the possible underlying mechanisms of its cytotoxicity. The cells were exposed to colchicine at different concentrations ranging from 1 to 100 ng/mL for 24 h, and it showed considerable cytotoxicity with an IC50 value of 22.99 ng/mL. Mechanistic studies also exhibited that colchicine treatment results in cell cycle arrest at the G2/M phase as well as decreased mitochondrial membrane potential and increased early and late apoptotic cells. The apoptotic and DNA-damaging effects of colchicine have also been verified by fluorescence imaging and ELISA experiments, and they revealed that while colchicine treatment significantly modulated expression as increases in Bax, cleaved caspase 3, cleaved PARP, and 8-hydroxy-desoxyguanosine levels and as a decrease of BCL-2 protein expression. Besides, colchicine treatment significantly increased the total oxidant (TOS) level, which is a signal of oxidative stress and potential cause of DNA damage. Finally, the results of quantitative real-time PCR experiments demonstrated that colchicine treatment concentration-dependently suppressed MMP-9 mRNA expression. Overall, colchicine provides meaningful cytotoxicity on PC3 cells due to induced oxidative stress, reduced mitochondrial membrane potential, increased DNA damage, and finally increased apoptosis in PC3 cells. Nevertheless, further research needs to be conducted to assess the potential of colchicine as an anticancer drug for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
21
|
Zhang N, Zhao L, Cai S, Zeng X, Wu W, Ji B, Zhou F. Ethyl acetate subfractions from ethanol extracts of fermented oats ( Avena sativa L.) exert anti-cancer properties in vitro and in vivo through G2/M and S Phase arrest and apoptosis. J Cancer 2021; 12:1853-1866. [PMID: 33753984 PMCID: PMC7974531 DOI: 10.7150/jca.48993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Cancer is a major public problem and poses a long-term impact on patients' life, work, and study. Oats are widely recognized as healthy food and fermented oats were rich in the higher contents of polyphenols. However, the role of fermented oats in cancer remains elusive. Methods: The effect of ethyl acetate subfractions (EASs) from ethanol extracts of oats fermented by Rhizopus oryzae 3.2751 on cancer cells was verified by series experiments in vitro and in vivo. The cell viability, colony formation, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and western blot were determined in vitro. The toxicity of EASs and xenograft mouse model were performed in vivo. Results: MTT assay indicated that EASs interference suppressed the proliferation of four human cancer cells in a dose-dependent manner without a significant impact on two normal cells. EASs (0.2, 0.4, and 0.8 μg/mL) resulted in the G2/M and S phase arrest, apoptosis, depolarization of MMP, and ROS generation in HepG2 cells by flow cytometry. p53, JNK, caspase-9, and caspase-3 were activated and the expression of Bax was promoted, while the expression of Bcl-2 was reduced in HepG2 cells exposed to EASs via western blot. Furthermore, the in vivo study using a xenograft mouse model demonstrated that EASs attenuated the tumor growth with low systemic toxicity. Conclusions: EASs exhibited anti-cancer activities in vitro and in vivo via cell cycle arrest and apoptosis. This finding suggests that polyphenol-enriched composition from fermented oats might become a promising candidate for impeding the development and progression of liver cancer.
Collapse
Affiliation(s)
- Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Shengbao Cai
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 6505000, China
| | - Xiang Zeng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
22
|
Yousefi H, Mashouri L, Okpechi SC, Alahari N, Alahari SK. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem Pharmacol 2021; 183:114296. [PMID: 33191206 PMCID: PMC7581400 DOI: 10.1016/j.bcp.2020.114296] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023]
Abstract
The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ∼3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. These drugs include fingolimod, colchicine, N4-hydroxycytidine, remdesivir, methylprednisone, oseltamivir, icatibant, perphanizine, viracept, emetine, homoharringtonine, aloxistatin, ribavirin, valrubicin, famotidine, almitrine, amprenavir, hesperidin, biorobin, cromolyn sodium, and antibodies- tocilzumab and sarilumab. Also, we provide a list of 31 drugs that are predicted to function against SARS-CoV-2 infection. In summary, we provide succinct overview of various therapeutic modalities. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. SIGNIFICANCE: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI's goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.
Collapse
Affiliation(s)
- Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Ladan Mashouri
- Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
| | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Nikhilesh Alahari
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA; Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
23
|
Lang DK, Kaur R, Arora R, Saini B, Arora S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anticancer Agents Med Chem 2020; 20:2150-2168. [DOI: 10.2174/1871520620666200705214917] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 01/14/2023]
Abstract
Background:
Cancer is spreading all over the world, and it is becoming the leading cause of major
deaths. Today’s most difficult task for every researcher is to invent a new drug that can treat cancer with minimal
side effects. Many factors, including pollution, modern lifestyle and food habits, exposure to oncogenic
agents or radiations, enhanced industrialization, etc. can cause cancer. Treatment of cancer is done by various
methods that include chemotherapy, radiotherapy, surgery and immunotherapy in combination or singly along
with kinase inhibitors. Most of the anti-cancer drugs use the concept of kinase inhibition.
Objective:
The number of drugs being used in chemotherapy has heterocycles as their basic structure in spite of
various side effects. Medicinal chemists are focusing on nitrogen-containing heterocyclic compounds like pyrrole,
pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimidazole,
etc. as the key building blocks to develop active biological compounds. The aim of this study is to attempt
to compile a dataset of nitrogen-containing heterocyclic anti-cancer drugs.
Methods:
We adopted a structural search on notorious journal publication websites and electronic databases
such as Bentham Science, Science Direct, PubMed, Scopus, USFDA, etc. for the collection of peer-reviewed
research and review articles for the present review. The quality papers were retrieved, studied, categorized into
different sections, analyzed and used for article writing.
Conclusion:
As per FDA databases, nitrogen-based heterocycles in the drug design are almost 60% of unique
small-molecule drugs. Some of the nitrogen-containing heterocyclic anti-cancer drugs are Axitinib, Bosutinib,
Cediranib, Dasatanib (Sprycel®), Erlotinib (Tarceva®), Gefitinib (Iressa®), Imatinib (Gleevec®), Lapatinib (Tykerb
®), Linifanib, Sorafenib (Nexavar®), Sunitinib (Sutent®), Tivozanib, etc. In the present review, we shall focus
on the overview of nitrogen-containing heterocyclic active compounds as anti-cancer agents.
Collapse
Affiliation(s)
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Nakonieczna S, Grabarska A, Kukula-Koch W. The Potential Anticancer Activity of Phytoconstituents against Gastric Cancer-A Review on In Vitro, In Vivo, and Clinical Studies. Int J Mol Sci 2020; 21:E8307. [PMID: 33167519 PMCID: PMC7663924 DOI: 10.3390/ijms21218307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer belongs to the heterogeneous malignancies and, according to the World Health Organization, it is the fifth most commonly diagnosed cancer in men. The aim of this review is to provide an overview on the role of natural products of plant origin in the therapy of gastric cancer and to present the potentially active metabolites which can be used in the natural therapeutical strategies as the support to the conventional treatment. Many of the naturally spread secondary metabolites have been proved to exhibit chemopreventive properties when tested on the cell lines or in vivo. This manuscript aims to discuss the pharmacological significance of both the total extracts and the single isolated metabolites in the stomach cancer prevention and to focus on their mechanisms of action. A wide variety of plant-derived anticancer metabolites from different groups presented in the manuscript that include polyphenols, terpenes, alkaloids, or sulphur-containing compounds, underlines the multidirectional nature of natural products.
Collapse
Affiliation(s)
- Sylwia Nakonieczna
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| | - Aneta Grabarska
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1, Chodźki, 20-093 Lublin, Poland
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1, Chodzki str., 20-093 Lublin, Poland;
| |
Collapse
|
25
|
Nair AB, Gandhi D, Patel SS, Morsy MA, Gorain B, Attimarad M, Shah JN. Development of HPLC Method for Quantification of Sinigrin from Raphanus sativus Roots and Evaluation of Its Anticancer Potential. Molecules 2020; 25:molecules25214947. [PMID: 33114598 PMCID: PMC7663242 DOI: 10.3390/molecules25214947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023] Open
Abstract
Sinigrin, a precursor of allyl isothiocyanate, present in the Raphanus sativus exhibits diverse biological activities, and has an immense role against cancer proliferation. Therefore, the objective of this study was to quantify the sinigrin in the R. sativus roots using developed and validated RP-HPLC method and further evaluated its’ anticancer activity. To achieve the objective, the roots of R. sativus were lyophilized to obtain a stable powder, which were extracted and passed through an ion-exchange column to obtain sinigrin-rich fraction. The RP-HPLC method using C18 analytical column was used for chromatographic separation and quantification of sinigrin in the prepared fraction, which was attained using the mobile phase consisting of 20 mM tetrabutylammonium: acetonitrile (80:20%, v/v at pH 7.0) at a flow rate of 0.5 mL/min. The chromatographic peak for sinigrin was showed at 3.592 min for pure sinigrin, where a good linearity was achieved within the concentration range of 50 to 800 µg/mL (R2 > 0.99), with an excellent accuracy (−1.37% and −1.29%) and precision (1.43% and 0.94%), for intra and inter-day, respectively. Finally, the MTT assay was performed for the sinigrin-rich fraction using three different human cancer cell lines, viz. prostate cancer (DU-145), colon adenocarcinoma (HCT-15), and melanoma (A-375). The cell-based assays were extended to conduct apoptotic and caspase-3 activities, to determine the mechanism of action of sinigrin in the treatment of cancer. MTT assay showed IC50 values of 15.88, 21.42, and 24.58 µg/mL for DU-145, HCT-15, and A-375 cell lines, respectively. Increased cellular apoptosis and caspase-3 expression were observed with sinigrin-rich fraction, indicating significant increase in overexpression of caspase-3 in DU-145 cells. In conclusion, a simple, sensitive, fast, and accurate RP-HPLC method was developed for the estimation of sinigrin in the prepared fraction. The data observed here indicate that sinigrin can be beneficial in treating prostate cancer possibly by inducing apoptosis.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.)
- Correspondence: ; Tel.: +966-536-219-868
| | - Dipal Gandhi
- Department of Pharmacognosy, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| |
Collapse
|
26
|
AbouAitah K, Hassan HA, Swiderska-Sroda A, Gohar L, Shaker OG, Wojnarowicz J, Opalinska A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Targeted Nano-Drug Delivery of Colchicine against Colon Cancer Cells by Means of Mesoporous Silica Nanoparticles. Cancers (Basel) 2020; 12:E144. [PMID: 31936103 PMCID: PMC7017376 DOI: 10.3390/cancers12010144] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Antimitotics are important anticancer agents and include the natural alkaloid prodrug colchicine (COL). However, a major challenge of using COL as an anticancer drug is its cytotoxicity. We developed a novel drug delivery system (DDS) for COL using mesoporous silica nanoparticles (MSNs). The MSNs were functionalized with phosphonate groups, loaded with COL, and coated with folic acid chitosan-glycine complex. The resulting nanoformulation, called MSNsPCOL/CG-FA, was tested for action against cancer and normal cell lines. The anticancer effect was highly enhanced for MSNsPCOL/CG-FA compared to COL. In the case of HCT116 cells, 100% inhibition was achieved. The efficiency of MSNsPCOL/CG-FA ranked in this order: HCT116 (colon cancer) > HepG2 (liver cancer) > PC3 (prostate cancer). MSNsPCOL/CG-FA exhibited low cytotoxicity (4%) compared to COL (~60%) in BJ1 normal cells. The mechanism of action was studied in detail for HCT116 cells and found to be primarily intrinsic apoptosis caused by an enhanced antimitotic effect. Furthermore, a contribution of genetic regulation (metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1), and microRNA (mir-205)) and immunotherapy effects (angiopoietin-2 (Ang-2 protein) and programmed cell death protein 1 (PD-1) was found. Therefore, this study shows enhanced anticancer effects and reduced cytotoxicity of COL with targeted delivery compared to free COL and is a novel method of developing cancer immunotherapy using a low-cost small-molecule natural prodrug.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Lamiaa Gohar
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11511, Egypt;
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Agnieszka Opalinska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland;
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (J.W.); (A.O.); (S.G.); (W.L.)
| |
Collapse
|