1
|
Ren J, Bai Y, Gao J, Hou Y, Mao J, Gao F, Wang J. Diagnostic Value of Serum miR-499a-5p in Chinese Children with Autism Spectrum Disorders. J Mol Neurosci 2025; 75:8. [PMID: 39836335 DOI: 10.1007/s12031-024-02296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
The purpose of this study was to investigate the expression of miR-499a-5p in children with autism spectrum disorders (ASD) and its value in early diagnosis of ASD. This is a retrospective case-control study that included 40 children with ASD as a case group and 43 healthy children as a control group. Magnetic resonance imaging (MRI) was performed on all subjects, and the children were scored with childhood autism rating scale (CARS) and autism behavior checklist (ABC). The expression of miR-499a-5p in serum was detected by RT-qPCR, and the diagnostic value of miR-499a-5p in ASD was evaluated by ROC curve. Pearson correlation coefficient was used to evaluate the correlation between miR-499a-5p levels and scores. Compared with healthy children, the expression level of serum miR-499a-5p was significantly reduced in children with ASD. ROC curve showed that miR-499a-5p is of high diagnostic value for ASD. The results of MRI suggested that the volume of the amygdala in ASD children was significantly larger than that in healthy children, while the volume of the caudate nucleus was significantly reduced. Correlation results showed that the scores of CARS and ABC in the ASD group were significantly negatively correlated with the levels of miR-499a-5p. In the ASD group, the volume of the amygdala was negatively correlated with the level of miR-499a-5p, while the volume of the caudate nucleus was positively correlated with the level of miR-499a-5p. The decreased expression of miR-499a-5p in the serum of children with ASD was significantly related to the changes in brain volume of children with ASD, and the miRNA showed good diagnostic accuracy in children with ASD.
Collapse
Affiliation(s)
- Jie Ren
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanle Bai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jielin Gao
- Department of Pediatrics, Xingtai People's Hospital, No. 16, Hongxing Street, Xiangdu District, Xingtai, 054001, China
| | - Yafei Hou
- Department of Pediatrics, Xingtai People's Hospital, No. 16, Hongxing Street, Xiangdu District, Xingtai, 054001, China
| | - Jie Mao
- Department of Pediatrics, Xingtai People's Hospital, No. 16, Hongxing Street, Xiangdu District, Xingtai, 054001, China
| | - Fengxiao Gao
- Department of Pediatrics, Xingtai People's Hospital, No. 16, Hongxing Street, Xiangdu District, Xingtai, 054001, China.
| | - Jiaqi Wang
- Department II of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 116, Cuiping West Road, Tongzhou District, Beijing, 101121, China.
| |
Collapse
|
2
|
Crocco P, Montesanto A, La Grotta R, Paparazzo E, Soraci L, Dato S, Passarino G, Rose G. The Potential Contribution of MyomiRs miR-133a-3p, -133b, and -206 Dysregulation in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:12772. [PMID: 39684483 DOI: 10.3390/ijms252312772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health concern. The number of people with CVD is expected to rise due to aging populations and increasing risk factors such as obesity and diabetes. Identifying new molecular markers is crucial for early diagnosis and treatment. Among these, plasma levels of some miRNAs, specifically expressed in cardiac and skeletal muscle, known as myomiRs, have gained attention for their roles in cardiovascular health. This study analyzed the plasma levels of miR-133a-3p, -133b, and -206 in the pathogenesis of cardiovascular diseases. Using a case-control study design with patients recruited from several nursing homes from Calabria (southern Italy) characterized by different types of CVD compared with non-CVD controls, we found downregulation of miR-133a-3p in heart failure and miR-133b in stroke, along with the overall decreased expression of miR-133b and miR-206 in CVD patients, although they showed low specificity as biomarkers of CVD (as based on ROC analysis). In silico functional characterization of their targets and signaling pathways revealed their involvement in critical cardiovascular processes. Although further research is necessary to fully elucidate their mechanisms and clinical utility, the findings reported here may provide insight into the potential contribution of myomiRs in the cardiovascular injury framework, also offering indications for new research directions.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Rossella La Grotta
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024; 29:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
4
|
Sheikh MSA, Salma U. Impact of microRNAs on cardiovascular diseases and aging. J Int Med Res 2024; 52:3000605241279190. [PMID: 39370977 PMCID: PMC11459564 DOI: 10.1177/03000605241279190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality for both men and women among all ethnicities worldwide. Although significant improvements in the management of CVD occurred in the 20th century, non-invasive, universal, early diagnostic biomarkers and newer therapeutic drugs are needed for clinical treatment by physicians. MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded, small RNA molecules that are critically controlled by all human biological processes. Moreover, dysregulated miRNA expression is directly involved in various CVDs, including stable coronary artery disease and acute coronary syndrome. Several miRNAs that are enriched in the plasma of CVD patients have potential as clinical biomarkers, and overexpression or inhibition of specific miRNAs has novel therapeutic significance in the management of CVD. Aging is a multifactorial physiological process that gradually deteriorates tissue and organ function and is considered a non-modifiable major risk factor for CVDs. Recently, several studies established that various miRNAs essentially regulate aging and aging-related disease processes. This narrative review briefly discusses the recently updated molecular involvement of miRNAs in CVDs, their possible diagnostic, prognostic, and therapeutic value, and their relationship to the aging process.
Collapse
Affiliation(s)
- Md Sayed Ali Sheikh
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Umme Salma
- Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
6
|
Haybar H, Hadi H, Purrahman D, Mahmoudian-Sani MR, Saki N. Emerging roles of HOTAIR lncRNA in the pathogenesis and prognosis of cardiovascular diseases. Biomark Med 2024; 18:203-219. [PMID: 38411079 DOI: 10.2217/bmm-2023-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Highlights HOTAIR, a long noncoding RNA, plays a role in the regulation of proteins involved in the pathogenesis of cardiovascular disease. Furthermore, it has been identified as a biomarker of this type of disease. Several factors and cells contribute to atherosclerosis, a progressive disease. However, the prognosis of HOTAIR in this disease varies depending on the path in which it plays a role. For this condition, there is no single prognosis to consider.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hakimeh Hadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Qi W, Guan W. A Comprehensive Review on the Importance of MiRNA-206 in the Animal Model and Human Diseases. Curr Neuropharmacol 2024; 22:1064-1079. [PMID: 37032500 PMCID: PMC10964108 DOI: 10.2174/1570159x21666230407124146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
MicroRNA-206 (miR-206) is a microRNA that is involved in many human diseases, such as myasthenia gravis, osteoarthritis, depression, cancers, etc. Both inhibition effects and progression roles of miR-206 have been reported for the past few years. High expression of miR-206 was observed in patients with osteoarthritis, gastric cancer and epithelial ovarian cancer compared to normal people. The study also showed that miR-206 promotes cancer progression in breast cancer patients and avascular necrosis of the femoral head. Meanwhile, several studies have shown that expression levels of miR-206 were down-regulated in laryngeal carcinoma cell multiplication, as well as in hepatocellular carcinoma, non-small lung cancer and infantile hemangioma. Moreover, miR-206 was up-regulated in the mild stage of amyotrophic lateral sclerosis patients and then down-regulated in the moderate and severe stages, indicating that miR-206 has the double effects of starting and aggravating the disease. In neuropsychiatric disorders, such as depression, miR-206 also plays an important role in the progression of the disease; the level of miR-206 is most highly expressed in the brains of patients with depression. In the current review, we summarize the role of miR-206 in various diseases, and miR-206 may be developed as a new biomarker for diagnosing diseases in the near future.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, 226001, Jiangsu, China
- School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
8
|
Scherbak NN, Kruse R, Nyström T, Jendle J. Glimepiride Compared to Liraglutide Increases Plasma Levels of miR-206, miR-182-5p, and miR-766-3p in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Diabetes Metab J 2023; 47:668-681. [PMID: 37349083 PMCID: PMC10555542 DOI: 10.4093/dmj.2022.0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 06/24/2023] Open
Abstract
BACKGRUOUND Diabetes is a chronic disease with several long-term complications. Several glucose-lowering drugs are used to treat type 2 diabetes mellitus (T2DM), e.g., glimepiride and liraglutide, in which both having different modes of action. Circulating microRNAs (miRNAs) are suggested as potential biomarkers that are associated with the disease development and the effects of the treatment. In the current study we evaluated the effect of glimepiride, liraglutide on the expression of the circulating miRNAs. METHODS The present study is a post hoc trial from a previously randomized control trial comparing liraglutide versus glimepiride both in combination with metformin in subjects with T2DM, and subclinical heart failure. miRNAs were determined in the subjects' serum samples with next generation sequencing. Expression patterns of the circulating miRNAs were analyzed using bioinformatic univariate and multivariate analyses (clinical trial registration: NCT01425580). RESULTS Univariate analyses show that treatment with glimepiride altered expression of three miRNAs in patient serum, miR-206, miR-182-5p, and miR-766-3p. Both miR-182-5p and miR-766-3p were also picked up among the top contributing miRNAs with penalized regularised logistic regressions (Lasso). The highest-ranked miRNAs with respect to Lasso coefficients were miR-3960, miR-31-5p, miR-3613-3p, and miR-378a-3p. Liraglutide treatment did not significantly influence levels of circulating miRNAs. CONCLUSION Present study indicates that glucose-lowering drugs differently affect the expression of circulating miRNAs in serum in individuals with T2DM. More studies are required to investigate possible mechanisms by which glimepiride is affecting the expression of circulating miRNAs.
Collapse
Affiliation(s)
- Nikolai N. Scherbak
- Life Science Center, Örebro University, School of Science and Technology, Örebro, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, 3Inflammatory Response and Infection Susceptibility Center (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Thomas Nyström
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Jendle
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
Zarei S, Taghian F, Sharifi G, Abedi H. Alternation of heart microRNA-mRNA network by high-intensity interval training and proanthocyanidin in myocardial ischemia rats: Artificial intelligence and validation experimental. J Food Biochem 2022; 46:e14488. [PMID: 36271618 DOI: 10.1111/jfbc.14488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Heart ischemia is an irreversible condition that occurs via decreased blood flow in vessels by genetic factors, molecular regulators, and environmental conditions. The microRNAs binding to 3´UTR of target genes can influence gene expression and play pivotal roles in several mechanisms identified as a potential biomarker to the pathogenesis. We have screened a pool of microRNAs and mRNAs according to their potential correlation to myocardial ischemia based on artificial intelligence. We constructed the hub genes and mRNA-microRNA networks by R programing language and in silico analysis. Moreover, we calculated the binding affinity of the 3D structure of proanthocyanidin on VEGFα and GATA4 to ameliorate heart tissue after ischemia. Then we treated rats with 300 mg/kg proanthocyanidins and exercised in different intensity and duration times (low, moderate, and high-intensity interval training) for 14 weeks. In the second step, after 14 weeks, isoproterenol hydrochloride was injected into the rats, and myocardial ischemia was induced. We indicated that VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p are regulatable after 14 weeks of exercise training and proanthocyanidin extract consumption and could prevent myocardial injuries in ischemia. Moreover, we revealed different intensity and duration times, and proanthocyanidin modulated the microRNA-mRNA interaction in rats with myocardial ischemia. Proanthocyanidin consumption as a bioactive compound may significantly ameliorate myocardial dysfunction and offset pathological hallmarks of myocardial ischemia. Moreover, exercise has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. PRACTICAL APPLICATIONS: Complimentary medicine identified Proanthocyanidin and exercise are recognized as effective methods to prevent and improve Myocardial ischemia. According to medical biology servers, we explored the VEGFα, GATA4, and GJA1 axis associated with miR-27a-3p, miR-499-5p, miR-206-3p, miR-208a-3p as a vital pathomechanism of myocardial ischemia. Furthermore, proanthocyanidin extract is the effective compound that could has protective effects on myocardial tissue by reprograming genes and genetic regulator factors. Furthermore, proanthocyanidin and swimming training might recover myocardial dysfunction and regulate the hub genes and mRNA-microRNA networks.
Collapse
Affiliation(s)
- Safar Zarei
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gholamreza Sharifi
- Department of Sports Physiology, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Hassanali Abedi
- Research Center for Noncommunicable Diseases, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
10
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Lewandowski P, Goławski M, Baron M, Reichman-Warmusz E, Wojnicz R. A Systematic Review of miRNA and cfDNA as Potential Biomarkers for Liquid Biopsy in Myocarditis and Inflammatory Dilated Cardiomyopathy. Biomolecules 2022; 12:1476. [PMID: 36291684 PMCID: PMC9599237 DOI: 10.3390/biom12101476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myocarditis and inflammatory dilated cardiomyopathy are cardiac diseases leading to heart failure. Liquid biopsy is a concept of replacing traditional biopsy with specialized blood tests. The study aim was to summarize and assess the usefulness of microRNAs and circulating free DNA as biomarkers of myocardial inflammation. For this systematic review, we searched Scopus, Embase, Web of Science, and PubMed. All studies measuring microRNAs in serum/plasma/cardiac tissue or circulating free DNA during myocarditis and non-ischemic dilated cardiomyopathy in humans in which healthy subjects or another cardiac disease served as a comparator were included. Data were extracted and miRNAs were screened and assessed using a scale created in-house. Then, highly graded miRNAs were assessed for usability as liquid biopsy biomarkers. Of 1185 records identified, 56 were eligible and 187 miRNAs were found. We did not identify any studies measuring circulating free DNA. In total, 24 of the screened miRNAs were included in the final assessment, 3 of which were selected as the best and 3 as potential candidates. We were not able to assess the risk of bias and the final inclusion decision was made by consensus. Serum levels of three miRNAs-miR-Chr8:96, miR-155, and miR-206-are the best candidates for myocardial inflammation liquid biopsy panel. Further studies are necessary to prove their role, specificity, and sensitivity.
Collapse
Affiliation(s)
- Piotr Lewandowski
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Maciej Baron
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Edyta Reichman-Warmusz
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Center, Silesia LabMed—Research and Implementation Center, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
12
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
13
|
QIAN M, FENG ZQ, ZHENG RN, HU KW, SUN JZ, SUN HB, DAI L. Qi-Tai-Suan, an oleanolic acid derivative, ameliorates ischemic heart failure via suppression of cardiac apoptosis, inflammation and fibrosis. Chin J Nat Med 2022; 20:432-442. [DOI: 10.1016/s1875-5364(22)60156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/27/2022]
|
14
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
16
|
Yang J, Xu L, Yin X, Zheng YL, Zhang HP, Xu SJ, Wang W, Wang S, Zhang CY, Ma JZ. Excessive Treadmill Training Produces different Cardiac-related MicroRNA Profiles in the Left and Right Ventricles in Mice. Int J Sports Med 2021; 43:219-229. [PMID: 34416779 PMCID: PMC8885328 DOI: 10.1055/a-1539-6702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-volume training followed by inadequate recovery may cause overtraining. This process may undermine the protective effect of regular exercise on the cardiovascular system and may increase the risk of pathological cardiac remodelling. We evaluated whether chronic overtraining changes cardiac-related microRNA profiles in the left and right ventricles. C57BL/6 mice were divided into the control, normal training, and overtrained by running without inclination, uphill running or downhill running groups. After an 8-week treadmill training protocol, the incremental load test and training volume results showed that the model had been successfully established. The qRT-PCR results showed increased cardiac miR-1, miR-133a, miR-133b, miR-206, miR-208b and miR-499 levels in the left ventricle of the downhill running group compared with the left ventricle of the control group. Similarly, compared with the control group, the downhill running induced increased expression of miR-21, miR-17–3p, and miR-29b in the left ventricle. Unlike the changes in the left ventricle, no difference in the expression of the tested miRNAs was observed in the right ventricle. Briefly, our results indicated that overtraining generally affects key miRNAs in the left ventricle (rather than the right ventricle) and that changes in individual miRNAs may cause either adaptive or maladaptive remodelling with overtraining.
Collapse
Affiliation(s)
- Jing Yang
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Lin Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Yin
- Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Li Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hai Peng Zhang
- Department of Exercise and Heath, Nanjing Sport Institute, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sheng Jia Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Wei Wang
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Sen Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ji Zheng Ma
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| |
Collapse
|
17
|
Hu C, Han Y, Zhu G, Li G, Wu X. Krüppel-like factor 5-induced overexpression of long non-coding RNA DANCR promotes the progression of cervical cancer via repressing microRNA-145-3p to target ZEB1. Cell Cycle 2021; 20:1441-1454. [PMID: 34233586 DOI: 10.1080/15384101.2021.1941625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA (lncRNA) differentiation antagonizing non-protein coding RNA (DANCR) participates in the development of diverse cancers. Nevertheless, the impact of DANCR on cervical cancer (CC) remains largely unknown. This study aims to explore the effects of DANCR sponging microRNA-145-3p (miR-145-3p) on CC. Expression of KLF5, DANCR, miR-145-3p, and zinc finger E-box binding homeobox 1 (ZEB1) in CC and adjacent normal tissues was determined. Human CC cell lines were, respectively, treated with silenced DANCR or miR145-3p mimic/inhibitor. Then, the viability, migration, invasion, and apoptosis of CC cells were measured. The cell growth in vivo was observed as well. Chromatin immunoprecipitation assay was performed to analyze the binding of KLF5 and DANCR promoter. Interaction among DANCR, miR-145-3p, and ZEB1 was assessed. KLF5, DANCR, and ZEB1 were upregulated but miR-145-3p was downregulated in CC tissues. KLF5 activated DANCR expression and the high DANCR expression was related to tumor staging, infiltrating muscle depth and lymphatic metastasis of CC patients. Reduced DANCR or elevated miR-145-3p repressed malignant behaviors of CC cells. The tumor diameter and weight were also repressed by DANCR silencing or miR-145-3p elevation. The effect of DANCR knockdown on CC cells could be reversed by miR-145-3p inhibitor. MiR-145-3p was targeted by DANCR and ZEB1 was targeted by miR-145-3p. KLF5-induced overexpression of DANCR promotes CC progression via suppressing miR-145-3p to target ZEB1. This study may provide potential targets for CC treatment.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Gynaecology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Yu Han
- Department of Gynaecology, The Fourth People's Hospital of Haikou, Haikou, Hainan Province, China
| | - Genhai Zhu
- Department of Gynaecology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Guifei Li
- Department of Gynaecology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Xiurong Wu
- Department of Gynaecology, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
18
|
Knockdown of Long Noncoding RNA SNHG14 Protects H9c2 Cells Against Hypoxia-induced Injury by Modulating miR-25-3p/KLF4 Axis in Vitro. J Cardiovasc Pharmacol 2021; 77:334-342. [PMID: 33278191 DOI: 10.1097/fjc.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Cyanotic congenital heart disease (CCHD) is the main cause of death in infants worldwide. Long noncoding RNAs (lncRNAs) have been pointed to exert crucial roles in development of CHD. The current research is designed to illuminate the impact and potential mechanism of lncRNA SNHG14 in CCHD in vitro. The embryonic rat ventricular myocardial cells (H9c2 cells) were exposed to hypoxia to establish the model of CCHD in vitro. Quantitative real-time polymerase chain reaction was conducted to examine relative expressions of SNHG14, miR-25-3p, and KLF4. Cell viability was determined by the MTT assay. Lactate dehydrogenase (LDH) was measured by an LDH assay kit. Apoptosis-related proteins (Bax and Bcl-2) and KLF4 were detected by Western Blot. The targets of SNHG14 and miR-25-3p were verified by the dual-luciferase reporter assay. SNHG14 and KLF4 were upregulated, whereas miR-25-3p was downregulated in hypoxia-induced H9c2 cells and cardiac tissues of patients with CCHD compared with their controls. Knockdown of SNHG14 or overexpression of miR-25-3p facilitated cell viability, while depressing cell apoptosis and release of LDH in hypoxia-induced H9c2 cells. MiR-25-3p was a target of SNHG14 and inversely modulated by SNHG14. MiR-25-3p could directly target KLF4 and negatively regulate expression of KLF4. Repression of miR-25-3p or overexpression of KLF4 reversed the suppression impacts of sh-SNHG14 on cell apoptosis and release of LDH as well as the promotion impact of sh-SNHG14 on cell viability in hypoxia-induced H9c2 cells. Sh-SNHG14 protected H9c2 cells against hypoxia-induced injury by modulating miR-25-3p/KLF4 axis in vitro.
Collapse
|
19
|
Cheng N, Wang MY, Wu YB, Cui HM, Wei SX, Liu B, Wang R. Circular RNA POSTN Promotes Myocardial Infarction-Induced Myocardial Injury and Cardiac Remodeling by Regulating miR-96-5p/BNIP3 Axis. Front Cell Dev Biol 2021; 8:618574. [PMID: 33681183 PMCID: PMC7930329 DOI: 10.3389/fcell.2020.618574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction (MI) is the most prevalent cardiac disease with high mortality, leading to severe heart injury. Circular RNAs (circRNAs) are a new type of regulatory RNAs and participate in multiple pathological cardiac progressions. However, the role of circRNAs Postn (circPostn) in MI modulation remains unclear. Here, we aimed to explore the effect of circPostn on MI-induced myocardial injury and cardiac remodeling. We identified that the expression of circPostn was elevated in the plasma of MI patients, MI mouse model, and hypoxia and reoxygenation (H/R)-treated human cardiomyocytes. The depletion of circPostn significantly attenuated MI-related myocardium injury and reduced the infarct size in MI mouse model. The circPostn knockdown obviously enhanced left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) and inhibited left ventricular anterior wall thickness at diastole (LVAWd) and left ventricular posterior wall thickness at diastole (LVPWd). The depletion of circPostn was able to decrease MI-induced expression of collagen 1α1 and collagen 3α1 in the ventricular tissues of mice. The protein expression of collagen and α-smooth muscle actin (SMA) was up-regulated in MI mice and was inhibited by circPostn knockdown. Meanwhile, the expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was repressed by circPostn depletion in the ventricular tissues of MI mice. Besides, the circPostn depletion attenuated cardiomyocyte apoptosis in mice. Mechanically, circPostn served as a miR-96-5p sponge and miR-96-5p-targeted BNIP3 in human cardiomyocytes, in which circPostn up-regulated BNIP3 expression by targeting miR-96-5p. circPostn promoted H/R-induced cardiomyocyte injury by modulating miR-96-5p/BNIP3 axis. Thus, we conclude that circPostn contributes to MI-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis. Our finding provides new insight into the mechanism by which circPostn regulates MI-related cardiac dysfunction. circPostn, miR-96-5p, and BNIP3 are potential targets for the treatment of MI-caused heart injury.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Ming-Yan Wang
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Yuan-Bin Wu
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Hui-Min Cui
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Shi-Xiong Wei
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Bing Liu
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiovascular Surgery, PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Zhu F, Li Q, Li J, Li B, Li D. Long noncoding Mirt2 reduces apoptosis to alleviate myocardial infarction through regulation of the miR-764/PDK1 axis. J Transl Med 2021; 101:165-176. [PMID: 33199822 DOI: 10.1038/s41374-020-00504-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/08/2022] Open
Abstract
Acute myocardial infarction (AMI) is a common clinical cardiovascular disease, which is the leading cause of death and disability worldwide. Abnormal expression of long noncoding RNAs (lncRNA) is reported to be related to myocardial dysfunctions such as myocardial infarction (MI). In this study, we aimed to investigate the role of lncRNA myocardial infarction-related transcription factors 2 (Mirt2) in AMI and the underlying molecular mechanisms in vivo and in vitro. In vivo AMI model was established by occlusion of the left anterior descending coronary artery. Rats were randomly divided into two groups (five rats per group): the sham group and the AMI group. H9c2 cells were cultured under hypoxia for 4 h and then cultured under normoxia to establish the in vitro hypoxia reoxygenation (H/R) model. Our study shows that the myocardial infarct size and the apoptosis in AMI rats were both significantly increased, indicating that the AMI rat model was successfully established. Additionally, the levels of Mirt2 in AMI rats were increased significantly. Knockdown of Mirt2 by shRNA (shMirt2) had no significant effect on apoptosis and MI in sham rats, but significantly promoted apoptosis and MI in AMI rats. In vitro experiments showed that shMirt2 significantly decreased the level of Mirt2 in H9c2 cells and H9c2 cells treated with H/R. It is worth noting that shMirt2 had no significant effect on H9c2 cells, but significantly increased the levels of oxidative stress markers (malondialdehyde and lactate dehydrogenase), and also increased the number of apoptosis of H/R-treated H9c2 cells. Further mechanistic analysis showed that Mirt2 could protect MI and apoptosis in AMI rats by competitively adsorbing miR-764 and reducing the inhibitory effect of miR-764 on 3-phosphoinositide-dependent kinase 1 (PDK1). More importantly, after overexpression of Mirt2, MI and apoptosis were significantly improved in AMI rats, indicating that Mirt2 showed a protective effect in AMI rats. In summary, these findings suggest that that Mirt2 participated in the regulation of MI through the miR-764/PDK1 axis. Therefore, the current findings provide a theoretical basis for the diagnosis and treatment of clinical MI with changes in Mirt2 levels.
Collapse
Affiliation(s)
- Fen Zhu
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Qing Li
- Department of Cardio-Pulmonary Function, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jun Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Benlei Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|