1
|
Bellavita R, Barra T, Braccia S, Prisco M, Valiante S, Lombardi A, Leone L, Pisano J, Esposito R, Nastri F, D’Errico G, Falanga A, Galdiero S. Engineering Multifunctional Peptide-Decorated Nanofibers for Targeted Delivery of Temozolomide across the Blood-Brain Barrier. Mol Pharm 2025; 22:1920-1938. [PMID: 40091203 PMCID: PMC11979881 DOI: 10.1021/acs.molpharmaceut.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
A nanoplatform based on self-assembling peptides was developed with the ability to effectively transport and deliver a wide range of moieties across the blood-brain barrier (BBB) for the treatment of glioblastoma. Its surface was functionalized to have a targeted release of TMZ thanks to the targeting peptide that binds to EGFRvIII, which is overexpressed on tumor cells, and gH625, which acts as an enhancer of penetration. Furthermore, the on-demand release of TMZ was achieved through matrix metalloproteinase-9 (MMP-9) cleavage. Nanofibers were characterized for their stability, critical aggregation concentration, and morphology. Next, the effect on both 2D and 3D glioblastoma/astrocytoma (U-87) and glioma (U-118) cell lines was evaluated. The Annexin V/Propidium iodide showed an increase in necrotic and apoptotic cells, and the morphological analysis allowed to discover that both U-118 and U-87 spheroids are smaller in surface, perimeter, and Feret's diameter when treated with NF-TMZ. The developed nanofiber was demonstrated to permeate the BBB in vitro in a 3D spheroidal biodynamic BBB model. Finally, there were no cytotoxic effects of nanofibers without the drug on spheroids, while a significant decrease in viability was observed when NF-TMZ was used. Overall, these results open new opportunities for the evaluation of the efficacy and safety of this nanoplatform in in vivo studies.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Teresa Barra
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Simone Braccia
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Marina Prisco
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Salvatore Valiante
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Assunta Lombardi
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Jessica Pisano
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Rodolfo Esposito
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Flavia Nastri
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Gerardino D’Errico
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
- CSGI
(Unit of Naples), Via
Cintia, Naples 80126, Italy
| | - Annarita Falanga
- Department
of Agricultural Science, University of Naples
Federico II, Via Università
100, Portici, Portici 80055, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| |
Collapse
|
2
|
Dai X, Yin Y, Wang C, Xu H. Hyaluronic acid regulated facile synthesis of size-tunable multifunctional nanomedicine for effective cancer therapy. Int J Biol Macromol 2025; 288:138668. [PMID: 39667478 DOI: 10.1016/j.ijbiomac.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
The complex and heterogeneous nature of cancer necessitates the development of innovative multifunctional nanomedicines (MN). Hyaluronic acid (HA) is a functional carbohydrate polysaccharide that is widely used in various biomedical fields. In this study, we employed HA as a stabilizer and regulator for the synthesis of a size-tunable nanomedicine comprising ferric ions, doxorubicin, and epigallocatechin gallate (EGCG), referred to as HDE-MN, for cancer therapy. A change in the HA ratio can yield HDE-MNs with sizes varying from ~20 nm to over 100 nm. Modified HA can respond to hyaluronidase (HAase) to provide controllable pH/HAase dual-responsive drug release for improved cancer therapy. Moreover, HA can mediate the targeted delivery of HDE-MNs both in vitro and in vivo to cancer cells. In addition, HDE-MNs reversed multidrug resistance owing to the incorporation of EGCG, inducing ferroptosis due to the involvement of ferric ions. More importantly, HDE-MNs have a photothermal conversion effect, enabling photothermal therapy, photothermally enhanced drug release, and ferroptosis, which collectively contribute to significantly improved cancer therapy. Therefore, the HDE-MNs with laser irradiation achieved full ablation of the in vivo tumors. Together with its good biocompatibility, HDE-MNs may be promising for effective cancer therapy.
Collapse
Affiliation(s)
- Xiuliang Dai
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Yina Yin
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
3
|
Zhang Y, Tang N, Zhou H, Zhu Y. Surface engineered multifunctional nano-systems for localised drug delivery against thyroid cancer: A review of current practices. Biomed Pharmacother 2024; 176:116840. [PMID: 38820975 DOI: 10.1016/j.biopha.2024.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Thyroid cancer, the most prevalent cancer of the endocrine system and cervical region, has experienced a significant increase in incidence over recent decades. Nanomedicine has fundamentally revolutionized cancer treatment, particularly through the development of multifunctional nano-therapeutics. The progress in this field has been facilitated by the distinctive properties of nanomaterials, such as their capacity to perform several functions, be modified, and offer various detection methods. These features allow for non-invasive and practical diagnostic techniques through versatile imaging. Surface engineering plays a pivotal role in the design of multifunctional nano-systems for localized drug delivery against thyroid cancer. Nano-systems can be customized via surface modification techniques, such as functionalization with targeting ligands and inclusion of therapeutic drugs. This customization allows the nano-systems to specifically target cancer cells while reducing the impact on non-target cells. As a result, bovine serum albumin-coated nanostructures have emerged as powerful diagnostic and targeting nanosystems for thyroid cancer. This targeted strategy enhances the effectiveness of cancer treatment while reducing overall body toxicity. This comprehensive review aims to provide an extensive overview of the latest advancements in surface-engineered nanoparticle-based approaches for both diagnosing and treating thyroid cancer. It highlights the promising research endeavors aimed at creating novel and effective multifunctional nanomedicine for localized delivery to thyroid cancer sites. The review examines different nanomedicines that have been developed for cancer treatment and diagnosis. It also analyzes the current trends, future possibilities, and obstacles in this rapidly advancing sector. By synthesizing the current state of knowledge on surface-engineered multifunctional nano-systems, this review contributes to a better understanding of their potential applications in thyroid cancer treatment and paves the way for future research directions in this promising field of nanomedicine.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
4
|
Nayak MR, Kamble RR, Kodasi B, Metre TV, Nadoni VB, Shettar AK, Hoskeri JH, Keri RS. Succinct and Expeditious Synthesis of Cu 2O Nanoparticles by Using Liquid Jaggery: Anticancer and Wound Healing Activity Analyses. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/07/2024] [Indexed: 01/06/2025]
Abstract
AbstractNanotechnology has expanded substantially over the last several decades as an aftermath of its ubiquitous prevalence in scientific research and technology. The current study demonstrates the ecologically benign production of novel nanoparticles comprised of copper oxide (Cu2O NPs). Liquid jaggery played an eloquent role in the present endeavour perpetrating both as a reducing and capping agent. Energy‐Dispersive X‐ray spectroscopy (EDX), UV‐Visible Spectroscopy, Field emission‐scanning electron microscopy (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, X‐ray diffraction (XRD) studies, Particle size and Zeta potential supported successful synthesis of Cu2O NPs. This study enumerated and assessed the cytotoxicity of Cu2O NPs on three cancer cell lines: HeLa (cervical cancer), MCF‐7 (breast cancer), and MDAMB‐231 (triple negative breast cancer). IC50 (μg/mL) for Cu2O NPs was recorded as 51.24, 59.24, 64.80 for HeLa, MCF‐7 and MDAMB‐231 cells respectively. The Cu2O NPs also exhibited excellent wound healing efficacy, increased cellular mobility including an elevated rate of closure of wounds (93.70 %).
Collapse
Affiliation(s)
- Manojna R. Nayak
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Ravindra R. Kamble
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Barnabas Kodasi
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Tukaram V Metre
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Vishwa B. Nadoni
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Arun K Shettar
- Division of Preclinical research and Drug Development Cytxon Biosolutions Pvt Ltd Hubli Hubballi 580031 India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology Karnataka State Akkamahadevi Women's University Vijayapura 586108 India
| | - Rangappa S. Keri
- Centre for Nano and Material Science Jain University Bengaluru 562112 India
| |
Collapse
|
5
|
Rodríguez-Gómez FD, Monferrer D, Penon O, Rivera-Gil P. Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products. Front Med (Lausanne) 2024; 10:1308047. [PMID: 38298514 PMCID: PMC10829765 DOI: 10.3389/fmed.2023.1308047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.
Collapse
Affiliation(s)
- Francisco D. Rodríguez-Gómez
- Asphalion SL, Barcelona, Spain
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| | | | | | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedicine Research Park (PRBB), Doctor Aiguader, Barcelona, Spain
| |
Collapse
|
6
|
Chen X, Yu S, Wang P, Zhao X, Sang G. Development and Evaluation of a Novel Hyaluronic Acid and Chitosan-modified Phytosome for Co-delivery of Oxymatrine and Glycyrrhizin for Combination Therapy. Recent Pat Anticancer Drug Discov 2024; 19:154-164. [PMID: 38214355 DOI: 10.2174/1574892818666230215112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) of cancer cells is a major obstacle to efficient cancer chemotherapy. Combination therapy is expected to enhance the anticancer effect and reverse MDR. Numerous patents involve different kinds of nanoparticles for the co-delivery of multiple chemotherapeutics, but the FDA has approved none. OBJECTIVE In this study, oxymatrine (OMT) and glycyrrhizin (GL) were co-loaded into phytosomes as the core of nanocarriers, and the shell was cross-linked with chitosan (CS) and hyaluronic acid (HA) with the capability for the controlled, sequential release and the targeted drug uptake. METHODS Phospholipid complexes of OMT and GL (OGPs) were prepared by a solvent evaporation technique and could self-assemble in an aqueous solution to form phytosomes. CS and HA were sequentially coated on the surface of OGPs via electrostatic interactions to obtain CS coated OGPs (CS-OGPs) and HA modified CS-OGPs (HA-CS-OGPs), respectively. The particle size and zeta potential were measured to optimize the formulations. In vitro cytotoxicity and cellular uptake experiments on HepG2 cells were performed to evaluate the anticancer activity. RESULTS OGPs were obtained with nano-size around 100 nm, and CS and HA coating on phytosomes could change the particle size and surface potential. The drug loading of OMT and GL showed that the nanocarriers could maintain a fixed ratio of 1:1. The in vitro release experiments indicated the release of OMT and GL was pH-dependent and sequential: the release of OMT from CS-OGPs and HA-CS-OGPs was significantly increased at pH 5.0 compared to the release at pH 7.4, while GL exhibited sustained released from CS-OGPs and HA-CS-OGPs at pH 5.0. Furthermore, in vitro cytotoxicity and cellular uptake experiments on HepG2 cells demonstrated that the co-delivery system based on phytosomes had significant synergistic anti-tumor activities, and the effects were enhanced by CS and HA modification. CONCLUSION The delivery of OMT and GL via HA-CS-OGPs might be a promising treatment to reverse MDR in cancer therapy.
Collapse
Affiliation(s)
- Xiaojin Chen
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou 310014, Zhejiang, China
| | - Shuying Yu
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Pingping Wang
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - XinFeng Zhao
- Department of Clinical Laboratory, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Gao Sang
- Department of Traditional Medicine, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
7
|
Awaji AA, Rizk MA, Alsaiari RA, Alqahtani NF, Al-Qadri FA, Alkorbi AS, Hafez HS, Elshaarawy RFM. Chemotherapeutic Activity of Imidazolium-Supported Pd(II) o-Vanillylidene Diaminocyclohexane Complexes Immobilized in Nanolipid as Inhibitors for HER2/neu and FGFR2/FGF2 Axis Overexpression in Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 16:1711. [PMID: 38139837 PMCID: PMC10747766 DOI: 10.3390/ph16121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFβ1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.
Collapse
Affiliation(s)
- Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College in Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Moustafa A. Rizk
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Raiedhah A. Alsaiari
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Fatima A. Al-Qadri
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Ali S. Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Hani S. Hafez
- Zoology Department, Faculty of Science, Suez University, Suez 43533, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
8
|
Li J, Wu K, Zhang J, Gao H, Xu X. Progress in the treatment of drug-loaded nanomaterials in renal cell carcinoma. Biomed Pharmacother 2023; 167:115444. [PMID: 37716114 DOI: 10.1016/j.biopha.2023.115444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common urinary tract tumor that arises from the highly heterogeneous epithelium of the renal tubules. The incidence of kidney cancer is second only to the incidence of bladder cancer, and has shown an upward trend over time. Although surgery is the preferred treatment for localized RCC, treatment decisions should be customized to individual patients considering their overall health status and the risk of developing or worsening chronic kidney disease postoperatively. Anticancer drugs are preferred to prevent perioperative and long-term postoperative complications; however, resistance to chemotherapy remains a considerable problem during the treatment process. To overcome this challenge, nanocarriers have emerged as a promising strategy for targeted drug delivery for cancer treatment. Nanocarriers can transport anticancer agents, achieving several-fold higher cytotoxic concentrations in tumors and minimizing toxicity to the remaining parts of the body. This article reviews the use of nanomaterials, such as liposomes, polymeric nanoparticles, nanocomposites, carbon nanomaterials, nanobubbles, nanomicelles, and mesoporous silica nanoparticles, for RCC treatment, and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinmei Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Wang X, Ye X, Chen Y, Lin J. Mechanism of M2 type macrophage-derived extracellular vesicles regulating PD-L1 expression via the MISP/IQGAP1 axis in hepatocellular carcinoma immunotherapy resistance. Int Immunopharmacol 2023; 124:110848. [PMID: 37633233 DOI: 10.1016/j.intimp.2023.110848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevailing cancer affecting human health. M2 macrophages are essential in mediating immune responses in tumors. This study investigated the action of M2 macrophages in immune escape of HCC. METHODS Mitotic spindle positioning (MISP), IQ motif containing GTPase activating protein 1 (IQGAP1) and programmed cell death-1 (PD-L1) levels in primary HCC/tumor-adjacent tissues were determined by Western blot, followed by correlation analysis. M2 macrophage and CD3+CD8+T cell percentages were estimated by flow cytometry. Hep3B and HepG2 cells were treated with M2 macrophage conditioned medium (M2-CM) and M2 macrophage-derived extracellular vesicles (M2-EVs) and/or co-cultured with CD8+T cells, followed by assessment of cell viability and apoptosis. TNF-α and INF-γ levels were measured by ELISA. MISP and IQGAP1 overexpression plasmids were transfected into HCC cells to explore their role in immune escape. The interactions among MISP, IQGAP1, STAT3, and PD-L1 were analyzed by co-immunoprecipitation. The mechanism of M2-EVs in HCC immune escape was verified in nude mice. RESULTS MISP/IQGAP1/PD-L1 were upregulated in HCC tissues. MISP negatively-correlated with IQGAP1/PD-L1 and IQGAP1 positively-correlated with PD-L1. M2 macrophages were reduced but CD8+T cells were increased in HCC tissues with high MISP expression. M2-CM or M2-EVs inhibited the killing ability of CD8+T cells, increased HCC cell viability, impeded HCC cell apoptosis, induced CD8+T cell apoptosis, downregulated TNF-α and INF-γ, and upregulated PD-L1. M2-EVs facilitated HCC cell immune escape by potentiating IQGAP1 nuclear translocation and activating STAT3 phosphorylation through MISP downregulation. In vivo experiments further verified the action of M2-EVs through MISP. CONCLUSION M2-EVs promote HCC cell immune escape by upregulating PD-L1 through the MISP/IQGAP1/STAT3 axis.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China.
| |
Collapse
|
10
|
Mallick AM, Biswas A, Mishra S, Jadhav S, Chakraborty K, Tripathi A, Mukherjee A, Roy RS. Engineered vitamin E-tethered non-immunogenic facial lipopeptide for developing improved siRNA based combination therapy against metastatic breast cancer. Chem Sci 2023; 14:7842-7866. [PMID: 37502330 PMCID: PMC10370593 DOI: 10.1039/d3sc01071f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
RNA interference based therapeutic gene silencing is an emerging platform for managing highly metastatic breast cancer. Cytosolic delivery of functional siRNA remains the key obstacle for efficient RNAi therapy. To overcome the challenges of siRNA delivery, we have engineered a vitamin E-tethered, short, optimum protease stabilized facial lipopeptide based non-immunogenic, biocompatible siRNA transporter to facilitate the clinical translation in future. Our designed lipopeptide has an Arginine-Sarcosine-Arginine segment for providing optimum protease-stability, minimizing adjacent arginine-arginine repulsion and reducing intermolecular aggregation and α-tocopherol as the lipidic moiety for facilitating cellular permeabilization. Interestingly, our designed non-immunogenic siRNA transporter has exhibited significantly better long term transfection efficiency than HiPerFect and can transfect hard to transfect primary cell line, HUVEC. Our engineered siRNA therapeutics demonstrated high efficacy in managing metastasis against triple negative breast cancer by disrupting the crosstalk of endothelial cells and MDA-MB-231 and reduced stemness and metastatic markers, as evidenced by downregulating critical oncogenic pathways. Our study aimed at silencing Notch1 signalling to achieve "multi-targeted" therapy with a single putative molecular medicine. We have further developed mechanistically rational combination therapy combining Notch1 silencing with a repurposed drug m-TOR inhibitor, metformin, which demonstrated synergistic interaction and enhanced antitumor efficacy against cancer metastasis.
Collapse
Affiliation(s)
- Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sonali Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
11
|
Parihar A, Choudhary N, Sharma P, Khan R. Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. MATERIALS TODAY CHEMISTRY 2023; 30:101499. [DOI: 10.1016/j.mtchem.2023.101499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
12
|
Mehrotra N, Anees M, Tiwari S, Kharbanda S, Singh H. Polylactic acid based polymeric nanoparticle mediated co-delivery of navitoclax and decitabine for cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102627. [PMID: 36410699 DOI: 10.1016/j.nano.2022.102627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Combination chemotherapy with systemic administration of drugs in their free form can be challenging due to non-synchronized pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric nanocarrier for the co-delivery of navitoclax and decitabine (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia and breast cancer cell lines. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good hemocompatibility with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia. In vivo biological activity of NAV/DCB NPs evaluated in xenograft AML and syngeneic breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | | | | | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Sciences Delhi, India.
| |
Collapse
|