1
|
Van Zandt AR, MacLean AG. Advances in HIV therapeutics and cure strategies: findings obtained through non-human primate studies. J Neurovirol 2023; 29:389-399. [PMID: 37635184 DOI: 10.1007/s13365-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Human immunodeficiency virus (HIV), the main contributor of the ongoing AIDS epidemic, remains one of the most challenging and complex viruses to target and eradicate due to frequent genome mutation and immune evasion. Despite the development of potent antiretroviral therapies, HIV remains an incurable infection as the virus persists in latent reservoirs throughout the body. To innovate a safe and effective cure strategy for HIV in humans, animal models are needed to better understand viral proliferation, disease progression, and therapeutic response. Nonhuman primates infected with simian immunodeficiency virus (SIV) provide an ideal model to study HIV infection and pathogenesis as they are closely related to humans genetically and express phenotypically similar immune systems. Examining the clinical outcomes of novel treatment strategies within nonhuman primates facilitates our understanding of HIV latency and advances the development of a true cure to HIV.
Collapse
Affiliation(s)
- Alison R Van Zandt
- Tulane National Primate Research Center, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Covington, LA, USA.
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
- Tulane Center for Aging, New Orleans, LA, USA.
| |
Collapse
|
2
|
Cao B, Kong X, Kettering C, Yu P, Ragin A. Determinants of HIV-induced brain changes in three different periods of the early clinical course: A data mining analysis. NEUROIMAGE-CLINICAL 2015; 9:75-82. [PMID: 26413474 PMCID: PMC4543221 DOI: 10.1016/j.nicl.2015.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To inform an understanding of brain status in HIV infection, quantitative imaging measurements were derived at structural, microstructural and macromolecular levels in three different periods of early infection and then analyzed simultaneously at each stage using data mining. Support vector machine recursive feature elimination was then used for simultaneous analysis of subject characteristics, clinical and behavioral variables, and immunologic measures in plasma and CSF to rank features associated with the most discriminating brain alterations in each period. The results indicate alterations beginning in initial infection and in all periods studied. The severity of immunosuppression in the initial virus host interaction was the most highly ranked determinant of earliest brain alterations. These results shed light on the initial brain changes induced by a neurotropic virus and their subsequent evolution. The pattern of ongoing alterations occurring during and beyond the period in which virus is suppressed in the systemic circulation supports the brain as a viral reservoir that may preclude eradication in the host. Data mining capabilities that can address high dimensionality and simultaneous analysis of disparate information sources have considerable utility for identifying mechanisms underlying onset of neurological injury and for informing new therapeutic targets. The brain was examined in initial stages of HIV using imaging and data mining. Brain alterations were identified in all studied periods of the early course. Severity of immunosuppression was the highest ranked determinant of onset. MMP-1 and CD33+CD36+ monocytes were identified as determinants in every period. The brain may represent an early reservoir that precludes viral eradication.
Collapse
Affiliation(s)
- Bokai Cao
- Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan, Chicago, IL 60607, USA
| | - Xiangnan Kong
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Casey Kettering
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Suite 1600, 737 N. Michigan Ave, Chicago, IL 60611, USA
| | - Philip Yu
- Department of Computer Science, University of Illinois at Chicago, 851 S. Morgan, Chicago, IL 60607, USA
| | - Ann Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Suite 1600, 737 N. Michigan Ave, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection. J Virol 2015; 89:5602-14. [PMID: 25762733 DOI: 10.1128/jvi.00143-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Japanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage. In vitro studies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB. IMPORTANCE Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infection per se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.
Collapse
|
4
|
Renner NA, Sansing HA, Inglis FM, Mehra S, Kaushal D, Lackner AA, Maclean AG. Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. J Cell Physiol 2013; 228:1284-94. [PMID: 23154943 DOI: 10.1002/jcp.24283] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/02/2012] [Indexed: 01/18/2023]
Abstract
The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukocyte entry. Cultured astrocytes typically have a polygonal morphology until stimulated. We hypothesized that cultured astrocytes which were induced to stellate would have an activated phenotype compared with polygonal cells. We investigated the activation of astrocytes derived from adult macaques to the cytokine TNF-α under resting and stellated conditions by four parameters: morphology, intermediate filament expression, adhesion, and cytokine secretion. Astrocytes were stellated following transient acidification; resulting in increased expression of GFAP and vimentin. Stellation was accompanied by decreased adhesion that could be recovered with proinflammatory cytokine treatment. Surprisingly, there was decreased secretion of proinflammatory cytokines by stellated astrocytes compared with polygonal cells. These results suggest that astrocytes are capable of multiple phenotypes depending on the stimulus and the order stimuli are applied.
Collapse
Affiliation(s)
- Nicole A Renner
- Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 2011; 1399:96-115. [PMID: 21641584 DOI: 10.1016/j.brainres.2011.05.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4(+) T cells and cells of the monocyte-macrophage lineage, resulting in immunodeficiency in an infected patient. Along with this immune deficiency, HIV-1 has been linked to a number of neurological symptoms in the absence of opportunistic infections or other co-morbidities, suggesting that HIV-1 is able to cross the blood-brain barrier (BBB), enter the central nervous system (CNS), and cause neurocognitive impairment. HIV-1-infected monocyte-macrophages traverse the BBB and enter the CNS throughout the course of HIV-1 disease. Once in the brain, both free virus and virus-infected cells are able to infect neighboring resident microglia and astrocytes and possibly other cell types. HIV-1-infected cells in both the periphery and the CNS give rise to elevated levels of viral proteins, including gp120, Tat, and Nef, and of host inflammatory mediators such as cytokines and chemokines. It has been shown that the viral proteins may act alone or in concert with host cytokines and chemokines, affecting the integrity of the BBB. The pathological end point of these interactions may facilitate a positive feedback loop resulting in increased penetration of HIV into the CNS. It is proposed in this review that the dysregulation of the BBB during and after neuroinvasion is a critical component of the neuropathogenic process and that dysregulation of this protective barrier is caused by a combination of viral and host factors including secreted viral proteins, components of the inflammatory process, the aging process, therapeutics, and drug or alcohol abuse.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
6
|
Ivey NS, Renner NA, Moroney-Rasmussen T, Mohan M, Redmann RK, Didier PJ, Alvarez X, Lackner AA, MacLean AG. Association of FAK activation with lentivirus-induced disruption of blood-brain barrier tight junction-associated ZO-1 protein organization. J Neurovirol 2010; 15:312-23. [PMID: 19521898 DOI: 10.1080/13550280902998413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of tight junction proteins between brain microvascular endothelial cells (BMECs) of the blood-brain barrier (BBB) is lost during development of human immunodeficiency virus (HIV) encephalitis (HIVE). Although many studies have focused on the strains of virus that induce neurological sequelae or on the macrophages/microglia that are associated with development of encephalitis, the molecular signaling pathways within the BMECs involved have yet to be resolved. We have previously shown that there is activation and disruption of an in vitro BBB model using lentivirus-infected CEMx174 cells. We and others have shown similar disruption in vivo. Therefore, it was of interest to determine if the presence of infected cells could disrupt intact cerebral microvessels immediately ex vivo, and if so, which signaling pathways were involved. The present data demonstrate that disruption of tight junctions between BMECs is mediated through activation of focal adhesion kinase (FAK) by phosphorylation at TYR-397. Inhibition of FAK activation is sufficient to prevent tight junction disruption. Thus, it may be possible to inhibit the development of HIVE by using inhibitors of FAK.
Collapse
Affiliation(s)
- Nathan S Ivey
- Tulane Primate Center, Pathology, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fletcher NF, Meeker RB, Hudson LC, Callanan JJ. The neuropathogenesis of feline immunodeficiency virus infection: barriers to overcome. Vet J 2010; 188:260-9. [PMID: 20418131 DOI: 10.1016/j.tvjl.2010.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 03/19/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus, and both natural and experimental infections are associated with neuropathology. FIV enters the brain early following experimental infection, most likely via the blood-brain and blood-cerebrospinal fluid barriers. The exact mechanism of entry, and the factors that influence this entry, are not fully understood. As FIV is a recognised model of HIV-1 infection, understanding such mechanisms is important, particularly as HIV enters the brain early in infection. Furthermore, the development of strategies to combat this central nervous system (CNS) infection requires an understanding of the interactions between the virus and the CNS. In this review the results of both in vitro and in vivo FIV studies are assessed in an attempt to elucidate the mechanisms of viral entry into the brain.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
8
|
Lu LS, Hung LM, Liao CH, Wu CC, Su MJ. Effects of rosiglitazone on native low-density-lipoprotein-induced respiratory burst in circulating monocytes and on the leukocyte-endothelial interaction in cholesterol-fed rats. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:251-60. [PMID: 17450350 DOI: 10.1007/s00210-007-0159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Low-density lipoprotein (LDL) has been implicated in the initiation and progression of atherosclerotic vascular disease. But whether LDL can elicit similar effects in the microcirculation remain unexplored. To approach this issue, the hypothesis that LDL promotes oxidative stress in monocytes and results in microvascular inflammation was tested. Native LDL was capable of stimulating respiratory burst in rat monocytes, and this was blocked by BAPTA, cytochalasin B, apocynin, and diphenyliodonium. In monocytes from rats on a high-cholesterol (4%) diet, increased intracellular calcium, actin polymerization, respiratory burst, and surface CD18 expression were found. Concurrently, leukocyte-endothelial interaction was enhanced in the cremaster microcirculation. Rosiglitazone, an insulin-sensitizing agent with antiinflammatory properties, was found to suppress native-LDL-induced actin polymerization and respiratory burst in monocytes. It also improved leukocytes activation and leukocyte-endothelial interaction due to the high cholesterol intake. Hence, native LDL stimulation of monocytes contributed to hypercholesterolemia-associated microvascular inflammation, which could be treated by rosiglitazone.
Collapse
Affiliation(s)
- Long Sheng Lu
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Maclean AG, Belenchia GE, Bieniemy DN, Moroney-Rasmussen TA, Lackner AA. Simian immunodeficiency virus disrupts extended lengths of the blood-brain barrier. J Med Primatol 2005; 34:237-42. [PMID: 16128918 DOI: 10.1111/j.1600-0684.2005.00121.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that there is disruption of the blood-brain barrier during terminal AIDS encephalitis in both human immunodeficiency virus (HIV)-infected humans and simian immunodeficiency virus (SIV)-infected rhesus macaques. Much, although by no means all, of the neuropathological findings of HIV and SIV infection involves accumulation of monocytes/macrophages that have likely crossed the blood-brain barrier (BBB). There is no convincing, rigorous, demonstration of HIV (or SIV) infecting endothelial cells in vivo. However, this is not to say that HIV infection would not have any effects on the physiology of microvascular brain endothelial cells. Because of the elaborate nature of cerebral microvessels, previous studies of cerebral endothelial cells have been constrained by sectioning artifacts. Examination of freshly isolated cerebral microvessels allows investigation of extended lengths of vessels (>150 mum) without sectioning artifacts. These studies determine the changes in the expression of the tight junction protein zo-1 protein on the endothelial cells of cerebral capillaries at terminal acquired immune deficiency syndrome, demonstrating that there is a decreased expression of zo-1 protein over extended lengths of microvessels.
Collapse
Affiliation(s)
- A G Maclean
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | | | | | | | | |
Collapse
|
10
|
Kim WK, Avarez X, Williams K. The role of monocytes and perivascular macrophages in HIV and SIV neuropathogenesis: information from non-human primate models. Neurotox Res 2005; 8:107-15. [PMID: 16260389 DOI: 10.1007/bf03033823] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perivascular macrophages are located in the perivascular space of cerebral microvessels and thus uniquely situated at the intersection between the brain parenchyma and blood. Connections between the nervous and immune systems are mediated in part through these cells that are ideally located to sense perturbations in the periphery and turnover by cells entering the central nervous system (CNS) from the circulation. It has become clear that unique subsets of brain macrophages exist in normal and SIV- or HIV-infected brains, and perivascular macrophages and similar cells in the meninges and choroid plexus play a central role in lentiviral neuropathogenesis. Common to all these cell populations is their likely replacement within the CNS by monocytes. Studies of SIV-infected non-human primates and HIV-infected humans underscore the importance of virus-infected and activated monocytes, which traffic to the CNS from blood to become perivascular macrophages, potentially drive the blood-brain barrier damage and cause neuronal injury. This review summarizes what we know about SIV- and HIV-induced neuropathogenesis focusing on brain perivascular macrophages and their precursors in blood that may mediate HIV CNS infection and injury.
Collapse
Affiliation(s)
- W-K Kim
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|