1
|
Al-Sabah S, Adi L, Bünemann M, Krasel C. The Effect of Cell Surface Expression and Linker Sequence on the Recruitment of Arrestin to the GIP Receptor. Front Pharmacol 2020; 11:1271. [PMID: 32903502 PMCID: PMC7438548 DOI: 10.3389/fphar.2020.01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptor are important targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. Originally identified for their role in desensitization, internalization and recycling of G protein-coupled receptors (GPCRs), arrestins have since been shown to act as scaffolding proteins that allow GPCRs to signal in a G protein-independent manner. While GLP-1R has been reported to interact with arrestins, this aspect of cell signaling remains controversial for GIPR. Using a (FRET)-based assay we have previously shown that yellow fluorescent protein (YFP)-labeled GIPR does not recruit arrestin. This GIPR-YFP construct contained a 10 amino acid linker between the receptor and a XbaI restriction site upstream of the YFP. This linker was not present in the modified GIPR-SYFP2 used in subsequent FRET and bioluminescence resonance energy transfer (BRET) assays. However, its removal results in the introduction of a serine residue adjacent to the end of GIPR’s C-terminal tail which could potentially be a phosphorylation site. The resulting receptor was indeed able to recruit arrestin. To find out whether the serine/arginine (SR) coded by the XbaI site was indeed the source of the problem, it was substituted with glycine/glycine (GG) by site-directed mutagenesis. This substitution abolished arrestin recruitment in the BRET assay but only significantly reduced it in the FRET assay. In addition, we show that the presence of a N-terminal FLAG epitope and influenza hemagglutinin signal peptide were also required to detect arrestin recruitment to the GIPR, most likely by increasing receptor cell surface expression. These results demonstrate how arrestin recruitment assay configuration can dramatically alter the result. This becomes relevant when drug discovery programs aim to identify ligands with “biased agonist” properties.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lobna Adi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Moritz Bünemann
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| | - Cornelius Krasel
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Sanchez-Soto M, Verma RK, Willette BKA, Gonye EC, Moore AM, Moritz AE, Boateng CA, Yano H, Free RB, Shi L, Sibley DR. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci Signal 2020; 13:13/617/eaaw5885. [PMID: 32019899 DOI: 10.1126/scisignal.aaw5885] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired β-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with β-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired β-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the β2-adrenergic receptor (β2R) to build β2R-WT and β2R-Y1995.38A models in complex with the full β2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in β2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in β2R-Y1995.38A, which is predicted to affect its interactions with β-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.
Collapse
Affiliation(s)
- Marta Sanchez-Soto
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - Blair K A Willette
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Elizabeth C Gonye
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Annah M Moore
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Comfort A Boateng
- Basic Pharmaceutical Sciences, High Point University, One University Parkway, High Point, NC 27268, USA
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA.
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
A mechanistic model of a PDGFRα(+) cell. J Theor Biol 2016; 408:127-136. [PMID: 27521526 DOI: 10.1016/j.jtbi.2016.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 02/06/2023]
Abstract
A novel platelet-derived growth factor receptor alpha-positive cell (PDGFRα(+)) has recently been identified as part of the purinergic inhibitory neural control mechanism in the gastrointestinal (GI) tract. The mechanism through which PDGFRα(+) cells mediate GI muscle relaxation has been found to be associated with the purine receptors P2Y1 and apamin-sensitive SK3 channels that are highly expressed in these cells. This study aims to develop a mechanistic model elucidating a proposed mechanism through which PDGFRα(+) cells contribute to purinergic inhibitory neuromuscular transmission. In accordance with recent experimental findings, the model describes how the binding of neurotransmitters, released from enteric neurons, triggers the release of Ca(2+) from the endoplasmic reticulum in the PDGFRα(+) cells, and how this subsequently leads to large amplitude transient outward currents, which in turn hyperpolarize the cell. The model has been validated against experimental recordings and good agreement was found under normal and pharmacologically-altered conditions. This model demonstrates the feasibility of the proposed mechanism and provides a basis for understanding the mechanism underlying purinergic control of colonic motility.
Collapse
|
5
|
Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 2016; 42:1387-97. [PMID: 26873833 DOI: 10.1007/s00134-016-4249-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
Abstract
Catecholamines are endogenous neurosignalling mediators and hormones. They are integral in maintaining homeostasis by promptly responding to any stressor. Their synthetic equivalents are the current mainstay of treatment in shock states to counteract myocardial depression and/or vasoplegia. These phenomena are related in large part to decreased adrenoreceptor sensitivity and altered adrenergic signalling, with resultant vascular and cardiomyocyte hyporeactivity. Catecholamines are predominantly used in supraphysiological doses to overcome these pathological consequences. However, these adrenergic agents cause direct organ damage and have multiple 'off-target' biological effects on immune, metabolic and coagulation pathways, most of which are not monitored or recognised at the bedside. Such detrimental consequences may contribute negatively to patient outcomes. This review explores the schizophrenic 'Jekyll-and-Hyde' characteristics of catecholamines in critical illness, as they are both necessary for survival yet detrimental in excess. This article covers catecholamine physiology, the pleiotropic effects of catecholamines on various body systems and pathways, and potential alternatives for haemodynamic support and adrenergic modulation in the critically ill.
Collapse
|
6
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of insulin and glucagon secretion as well as lipid metabolism and appetite. These biological functions make their respective receptors (GIPR and GLP-1R) attractive targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. The use of these native peptides in the treatment of these conditions is limited by their short half-lives. However, long-acting GLP-1R agonists and inhibitors of the enzyme that rapidly inactivates GIP and GLP-1 (dipeptidyl peptidase IV) are in clinical use. Although there is a loss of response to both hormones in T2DM, this effect appears to be more pronounced for GIP. This has made targeting GIPR less successful than GLP-1R. Furthermore, results demonstrating that GIPR knockout mice were resistant to diet-induced obesity suggested that GIPR antagonists may prove to be useful therapeutics. More recently, molecules that activate both receptors have shown promise in terms of glycemic and body weight control. This review focused on recent advances in the understanding of the signaling mechanisms and regulation of these two clinically important receptors.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- *Dr. Suleiman Al-Sabah, Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
7
|
Rosethorne EM, Bradley ME, Kent TC, Charlton SJ. Functional desensitization of the β 2 adrenoceptor is not dependent on agonist efficacy. Pharmacol Res Perspect 2015; 3:e00101. [PMID: 25692019 PMCID: PMC4317232 DOI: 10.1002/prp2.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/24/2022] Open
Abstract
Chronic treatment with β 2 adrenoceptor agonists is recommended as a first-line maintenance therapy for chronic obstructive pulmonary disease (COPD). However, a potential consequence of long-term treatment may be the loss of functional response (tachyphylaxis) over time. In this study, we have investigated the tendency of such agonists, with a range of efficacies, to develop functional desensitization to cAMP responses in primary human bronchial smooth muscle cells following prolonged agonist exposure. The data show that upon repeat exposure, all agonists produced functional desensitization to the same degree and rate. In addition, β 2 adrenoceptor internalization and β-arrestin-2 recruitment were monitored using β 2·eGFP visualization and the PathHunter™ β-arrestin-2 assay, respectively. All agonists were capable of causing robust receptor internalization and β-arrestin-2 recruitment, the rate of which was influenced by agonist efficacy, as measured in those assays. In summary, although a relationship exists between agonist efficacy and the rate of both receptor internalization and β-arrestin-2 recruitment, there is no correlation between agonist efficacy and the rate or extent of functional desensitization.
Collapse
Affiliation(s)
- Elizabeth M Rosethorne
- Novartis Institutes for Biomedical ResearchWimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom
- School of Life Sciences, Queen’s Medical Centre, University of NottinghamNottingham, NG7 2UH, United Kingdom
| | - Michelle E Bradley
- Novartis Institutes for Biomedical ResearchWimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom
| | - Toby C Kent
- Novartis Institutes for Biomedical ResearchWimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom
| | - Steven J Charlton
- Novartis Institutes for Biomedical ResearchWimblehurst Road, Horsham, West Sussex, RH12 5AB, United Kingdom
- School of Life Sciences, Queen’s Medical Centre, University of NottinghamNottingham, NG7 2UH, United Kingdom
| |
Collapse
|
8
|
Hauger RL, Olivares-Reyes JA, Braun S, Hernandez-Aranda J, Hudson CC, Gutknecht E, Dautzenberg FM, Oakley RH. Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment. ACTA ACUST UNITED AC 2013; 186:62-76. [PMID: 23820308 DOI: 10.1016/j.regpep.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/18/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
The primary goal was to determine agonist-specific regulation of CRF2(a) receptor function. Exposure of human retinoblastoma Y79 cells to selective (UCN2, UCN3 or stresscopins) and non-selective (UCN1 or sauvagine) agonists prominently desensitized CRF2(a) receptors in a rapid, concentration-dependent manner. A considerably slower rate and smaller magnitude of desensitization developed in response to the weak agonist CRF. CRF1 receptor desensitization stimulated by CRF, cortagine or stressin1-A had no effect on CRF2(a) receptor cyclic AMP signaling. Conversely, desensitization of CRF2(a) receptors by UCN2 or UCN3 did not cross-desensitize Gs-coupled CRF1 receptor signaling. In transfected HEK293 cells, activation of CRF2(a) receptors by UCN2, UCN3 or CRF resulted in receptor phosphorylation and internalization proportional to agonist potency. Neither protein kinase A nor casein kinases mediated CRF2(a) receptor phosphorylation or desensitization. Exposure of HEK293 or U2OS cells to UCN2 or UCN3 (100nM) produced strong βarrestin2 translocation and colocalization with membrane CRF2(a) receptors while CRF (1μM) generated only weak βarrestin2 recruitment. βarrestin2 did not internalize with the receptor, however, indicating that transient CRF2(a) receptor-arrestin complexes dissociate at or near the cell membrane. Since deletion of the βarrestin2 gene upregulated Gs-coupled CRF2(a) receptor signaling in MEF cells, a βarrestin2 mechanism restrains Gs-coupled CRF2(a) receptor signaling activated by urocortins. We further conclude that the rate and extent of homologous CRF2(a) receptor desensitization are governed by agonist-specific mechanisms affecting GRK phosphorylation, βarrestin2 recruitment, and internalization thereby producing unique signal transduction profiles that differentially affect the stress response.
Collapse
Affiliation(s)
- Richard L Hauger
- Center of Excellence for Stress and Mental Health, San Diego VA Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA; Department of Psychiatry, School of Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Halai R, Croker DE, Suen JY, Fairlie DP, Cooper MA. A Comparative Study of Impedance versus Optical Label-Free Systems Relative to Labelled Assays in a Predominantly Gi Coupled GPCR (C5aR) Signalling. BIOSENSORS 2012; 2:273-90. [PMID: 25585930 PMCID: PMC4263554 DOI: 10.3390/bios2030273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/11/2012] [Accepted: 07/24/2012] [Indexed: 12/18/2022]
Abstract
Profiling ligand function on G-protein coupled receptors (GPCRs) typically involves using transfected cells over-expressing a target of interest, a labelled ligand, and intracellular secondary messenger reporters. In contrast, label-free assays are sensitive enough to allow detection in native cells, which may provide a more physiologically relevant readout. Here, we compare four agonists (native agonists, a peptide full agonist and a peptide partial agonist) that stimulate the human inflammatory GPCR C5aR. The receptor was challenged when present in human monocyte-derived macrophages (HMDM) versus stably transfected human C5aR-CHO cells. Receptor activation was compared on label-free optical and impedance biosensors and contrasted with results from two traditional reporter assays. The rank order of potencies observed across label-free and pathway specific assays was similar. However, label-free read outs gave consistently lower potency values in both native and transfected cells. Relative to pathway-specific assays, these technologies measure whole-cell responses that may encompass multiple signalling events, including down-regulatory events, which may explain the potency discrepancies observed. These observations have important implications for screening compound libraries against GPCR targets and for selecting drug candidates for in vivo assays.
Collapse
Affiliation(s)
- Reena Halai
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Daniel E Croker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jacky Y Suen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Palmitoylation of human proteinase-activated receptor-2 differentially regulates receptor-triggered ERK1/2 activation, calcium signalling and endocytosis. Biochem J 2011; 438:359-67. [PMID: 21627585 DOI: 10.1042/bj20101958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
hPAR(2) (human proteinase-activated receptor-2) is a member of the novel family of proteolytically activated GPCRs (G-protein-coupled receptors) termed PARs (proteinase-activated receptors). Previous pharmacological studies have found that activation of hPAR(2) by mast cell tryptase can be regulated by receptor N-terminal glycosylation. In order to elucidate other post-translational modifications of hPAR(2) that can regulate function, we have explored the functional role of the intracellular cysteine residue Cys(361). We have demonstrated, using autoradiography, that Cys(361) is the primary palmitoylation site of hPAR(2). The hPAR(2)C361A mutant cell line displayed greater cell-surface expression compared with the wt (wild-type)-hPAR(2)-expressing cell line. hPAR(2)C361A also showed a decreased sensitivity and efficacy (intracellular calcium signalling) towards both trypsin and SLIGKV. In stark contrast, hPAR(2)C361A triggered greater and more prolonged ERK (extracellular-signal-regulated kinase) phosphorylation compared with that of wt-hPAR(2) possibly through Gi, since pertussis toxin inhibited the ability of this receptor to activate ERK. Finally, flow cytometry was utilized to assess the rate and extent of receptor internalization following agonist challenge. hPAR(2)C361A displayed faster internalization kinetics following trypsin activation compared with wt-hPAR(2), whereas SLIGKV had a negligible effect on internalization for either receptor. In conclusion, palmitoylation plays an important role in the regulation of PAR(2) expression, agonist sensitivity, desensitization and internalization.
Collapse
|
11
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
12
|
Rosethorne EM, Turner RJ, Fairhurst RA, Charlton SJ. Efficacy is a contributing factor to the clinical onset of bronchodilation of inhaled beta(2)-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:255-63. [PMID: 20694793 DOI: 10.1007/s00210-010-0533-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/16/2010] [Indexed: 11/29/2022]
Abstract
Inhaled beta(2) adrenoceptor (beta(2) AR) agonists are widely used as bronchodilator therapies for asthma and COPD. Different agonists have varying rates of onset of action, e.g. indacaterol and salbutamol are effective bronchodilators within 5 min whereas salmeterol takes 15 min to achieve significant bronchodilation over baseline (Brookman et al., Curr Med Res Opin 23:3113-3122, 2007). This has been attributed to differences in the lipophilicity of the agonists such that hydrophobic ligands take longer to diffuse into tissue and may even access the receptor via the membrane compartment (Anderson et al., Eur Respir J 7:569-578, 1994). While this holds true for salmeterol and salbutamol, the relatively high lipophilicity of indacaterol should result in a slower onset of action. Here we have explored the possibility that the efficacy of these ligands may also contribute to their onset of action. We have characterised efficacy and rate of cyclic adenosine monophosphate (cAMP) accumulation in primary human bronchial smooth muscle cells using a competition assay (AlphaScreen, Perkin Elmer) and in HEK 293-GloSensor cells endogenously expressing the beta(2) AR using a luminescence readout. For all agonists tested, cAMP was generated in a concentration-dependent manner. For both assay formats, the relative efficacies were unchanged, with isoprenaline > formoterol > indacaterol > salbutamol > salmeterol. The rate of cAMP generation varied for each agonist and correlated well with intrinsic efficacy in that the high-efficacy agonists promoted the most rapid rise in cAMP levels. We have demonstrated that the rate of cAMP accumulation is influenced by agonist efficacy and that this, in combination with lipophilicity, may explain why beta(2) AR agonists demonstrate differences in their onset of action.
Collapse
Affiliation(s)
- Elizabeth M Rosethorne
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, RH12 5AB, UK
| | | | | | | |
Collapse
|
13
|
Luo J, Li W, Zhao Y, Fu H, Ma DL, Tang J, Li C, Peoples RW, Li F, Wang Q, Huang P, Xia J, Pang Y, Han Y. Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin. J Biol Chem 2010; 285:19947-58. [PMID: 20404346 PMCID: PMC2888406 DOI: 10.1074/jbc.m110.111286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/12/2010] [Indexed: 01/06/2023] Open
Abstract
Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and gamma-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [(3)H]MK-801 with a K(i) value of 0.27 mum, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation.
Collapse
Affiliation(s)
- Jialie Luo
- From the Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
- the Departments of Biochemistry and
| | - Wenming Li
- From the Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Hongjun Fu
- From the Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
| | - Dik-Lung Ma
- the Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Jing Tang
- the Mayo Foundation for Medical Education and Research, Rochester, Minnesota 55905
| | - Chaoying Li
- the Wuhan Institute of Neuroscience and Drug Research, Jianghan University, Wuhan 430056, China
| | - Robert W. Peoples
- the Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53201, and
| | - Fushun Li
- the Department of Physiology, Medical School, Ningbo University, Ningbo 315211, China
| | - Qinwen Wang
- the Department of Physiology, Medical School, Ningbo University, Ningbo 315211, China
| | - Pingbo Huang
- Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jun Xia
- the Departments of Biochemistry and
| | - Yuanping Pang
- the Mayo Foundation for Medical Education and Research, Rochester, Minnesota 55905
| | - Yifan Han
- From the Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
- the Departments of Biochemistry and
| |
Collapse
|
14
|
Nguyen QT, Schroeder LF, Mank M, Muller A, Taylor P, Griesbeck O, Kleinfeld D. An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci 2010; 13:127-132. [PMID: 20010818 PMCID: PMC3992257 DOI: 10.1038/nn.2469] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/17/2009] [Indexed: 11/09/2022]
Abstract
Tools from molecular biology, combined with in vivo optical imaging techniques, provide new mechanisms for noninvasively observing brain processes. Current approaches primarily probe cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell signaling. We devised cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) to address this challenge and monitor in situ neurotransmitter receptor activation. CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, use the G(q) protein-coupled receptor cascade to transform receptor activity into a rise in cytosolic [Ca(2+)] and report [Ca(2+)] with a genetically encoded fluorescent Ca(2+) sensor. The initial realization of CNiFERs detected acetylcholine release via activation of M1 muscarinic receptors. We used chronic implantation of M1-CNiFERs in frontal cortex of the adult rat to elucidate the muscarinic action of the atypical neuroleptics clozapine and olanzapine. We found that these drugs potently inhibited in situ muscarinic receptor activity.
Collapse
Affiliation(s)
| | - Lee F. Schroeder
- Medical Scientist Training Program, UCSD, La Jolla, CA
- Graduate Program in Neurosciences, UCSD, La Jolla, CA
| | - Marco Mank
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | | | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA
| | | | - David Kleinfeld
- Physics Department, UCSD, La Jolla, CA
- Graduate Program in Neurosciences, UCSD, La Jolla, CA
- Center for Neural Circuits and Behavior, UCSD, La Jolla, CA
| |
Collapse
|
15
|
Sieben A, Prenner L, Sorkalla T, Wolf A, Jakobs D, Runkel F, Häberlein H. α-Hederin, but Not Hederacoside C and Hederagenin from Hedera helix, Affects the Binding Behavior, Dynamics, and Regulation of β2-Adrenergic Receptors. Biochemistry 2009; 48:3477-82. [DOI: 10.1021/bi802036b] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne Sieben
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Lars Prenner
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Thomas Sorkalla
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Anne Wolf
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Daniel Jakobs
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Frank Runkel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany, and University of Applied Science, Giessen, Germany
| |
Collapse
|
16
|
Xin W, Tran TM, Richter W, Clark RB, Rich TC. Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling. ACTA ACUST UNITED AC 2008; 131:349-64. [PMID: 18347080 PMCID: PMC2279169 DOI: 10.1085/jgp.200709881] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An important focus in cell biology is understanding how different feedback mechanisms regulate G protein-coupled receptor systems. Toward this end we investigated the regulation of endogenous beta(2) adrenergic receptors (beta2ARs) and phosphodiesterases (PDEs) by measuring cAMP signals in single HEK-293 cells. We monitored cAMP signals using genetically encoded cyclic nucleotide-gated (CNG) channels. This high resolution approach allowed us to make several observations. (a) Exposure of cells to 1 muM isoproterenol triggered transient increases in cAMP levels near the plasma membrane. Pretreatment of cells with 10 muM rolipram, a PDE4 inhibitor, prevented the decline in the isoproterenol-induced cAMP signals. (b) 1 muM isoproterenol triggered a sustained, twofold increase in phosphodiesterase type 4 (PDE4) activity. (c) The decline in isoproterenol-dependent cAMP levels was not significantly altered by including 20 nM PKI, a PKA inhibitor, or 3 muM 59-74E, a GRK inhibitor, in the pipette solution; however, the decline in the cAMP levels was prevented when both PKI and 59-74E were included in the pipette solution. (d) After an initial 5-min stimulation with isoproterenol and a 5-min washout, little or no recovery of the signal was observed during a second 5-min stimulation with isoproterenol. (e) The amplitude of the signal in response to the second isoproterenol stimulation was not altered when PKI was included in the pipette solution, but was significantly increased when 59-74E was included. Taken together, these data indicate that either GRK-mediated desensitization of beta2ARs or PKA-mediated stimulation of PDE4 activity is sufficient to cause declines in cAMP signals. In addition, the data indicate that GRK-mediated desensitization is primarily responsible for a sustained suppression of beta2AR signaling. To better understand the interplay between receptor desensitization and PDE4 activity in controlling cAMP signals, we developed a mathematical model of this system. Simulations of cAMP signals using this model are consistent with the experimental data and demonstrate the importance of receptor levels, receptor desensitization, basal adenylyl cyclase activity, and regulation of PDE activity in controlling cAMP signals, and hence, on the overall sensitivity of the system.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
17
|
Lohse MJ, Hein P, Hoffmann C, Nikolaev VO, Vilardaga JP, Bünemann M. Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 2008; 153 Suppl 1:S125-32. [PMID: 18193071 DOI: 10.1038/sj.bjp.0707656] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest group of cell surface receptors. They are stimulated by a variety of stimuli and signal to different classes of effectors, including several types of ion channels and second messenger-generating enzymes. Recent technical advances, most importantly in the optical recording with energy transfer techniques--fluorescence and bioluminescence resonance energy transfer, FRET and BRET--, have permitted a detailed kinetic analysis of the individual steps of the signalling chain, ranging from ligand binding to the production of second messengers in intact cells. The transfer of information, which is initiated by ligand binding, triggers a signalling cascade that displays various rate-controlling steps at different levels. This review summarizes recent findings illustrating the speed and the complexity of this signalling system.
Collapse
Affiliation(s)
- M J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Kita JM, Parker LE, Phillips PEM, Garris PA, Wightman RM. Paradoxical modulation of short-term facilitation of dopamine release by dopamine autoreceptors. J Neurochem 2007; 102:1115-24. [PMID: 17663751 DOI: 10.1111/j.1471-4159.2007.04621.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrophysiological studies have demonstrated that dopaminergic neurons burst fire during certain aspects of reward-related behavior; however, the correlation between dopamine release and cell firing is unclear. When complex stimulation patterns that mimic intracranial self-stimulation were employed, dopamine release was shown to exhibit facilitated as well as depressive components (Montague et al. 2004). Understanding the biological mechanisms underlying these variations in dopamine release is necessary to unravel the correlation between unit activity and neurotransmitter release. The dopamine autoreceptor provides negative feedback to dopamine release, inhibiting release on the time scale of a few seconds. Therefore, we investigated this D(2) receptor to see whether it is one of the biological mechanisms responsible for the history-dependent modulation of dopamine release. Striatal dopamine release in anesthetized rats was evoked with stimulus trains that were designed to promote the variability of dopamine release. Consistent with the well established D(2)-mediated autoinhibition, the short-term depressive component of dopamine release was blocked by raclopride, a D(2) antagonist, and enhanced by quinpirole, a D(2)-receptor agonist. Surprisingly, these same drugs exerted a similar effect on the short-term facilitated component: a decrease with raclopride and an increase with quinpirole. These data demonstrate that the commanding control exerted by dopamine autoreceptors over short-term neuroadaptation of dopamine release involves both inhibitory and paradoxically, facilitatory components.
Collapse
Affiliation(s)
- Justin M Kita
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
19
|
Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293:R209-22. [PMID: 17363685 PMCID: PMC3102763 DOI: 10.1152/ajpregu.00099.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary goal was to test the hypothesis that agonist-induced corticotropin-releasing factor type 1 (CRF(1)) receptor phosphorylation is required for beta-arrestins to translocate from cytosol to the cell membrane. We also sought to determine the relative importance to beta-arrestin recruitment of motifs in the CRF(1) receptor carboxyl terminus and third intracellular loop. beta-Arrestin-2 translocated significantly more rapidly than beta-arrestin-1 to agonist-activated membrane CRF(1) receptors in multiple cell lines. Although CRF(1) receptors internalized with agonist treatment, neither arrestin isoform trafficked with the receptor inside the cell, indicating that CRF(1) receptor-arrestin complexes dissociate at or near the cell membrane. Both arrestin and clathrin-dependent mechanisms were involved in CRF(1) receptor internalization. To investigate molecular determinants mediating the robust beta-arrestin-2-CRF(1) receptor interaction, mutagenesis was performed to remove potential G protein-coupled receptor kinase phosphorylation sites. Truncating the CRF(1) receptor carboxyl terminus at serine-386 greatly reduced agonist-dependent phosphorylation but only partially impaired beta-arrestin-2 recruitment. Removal of a serine/threonine cluster in the third intracellular loop also significantly reduced CRF(1) receptor phosphorylation but did not alter beta-arrestin-2 recruitment. Phosphorylation was abolished in a CRF(1) receptor possessing both mutations. Surprisingly, this mutant still recruited beta-arrestin-2. These mutations did not alter membrane expression or cAMP signaling of CRF(1) receptors. Our data reveal the involvement of at least the following two distinct receptor regions in beta-arrestin-2 recruitment: 1) a carboxyl-terminal motif in which serine/threonine residues must be phosphorylated and 2) an intracellular loop motif configured by agonist-induced changes in CRF(1) receptor conformation. Deficient beta-arrestin-2-CRF(1) receptor interactions could contribute to the pathophysiology of affective disorders by inducing excessive CRF(1) receptor signaling.
Collapse
Affiliation(s)
- Robert H Oakley
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA
| | | | | | | | | | | |
Collapse
|
20
|
Navratilova E, Waite S, Stropova D, Eaton MC, Alves ID, Hruby VJ, Roeske WR, Yamamura HI, Varga EV. Quantitative evaluation of human delta opioid receptor desensitization using the operational model of drug action. Mol Pharmacol 2007; 71:1416-26. [PMID: 17322005 DOI: 10.1124/mol.106.030023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist-mediated desensitization of the opioid receptors is thought to function as a protective mechanism against sustained opioid signaling and therefore may prevent the development of opioid tolerance. However, the exact molecular mechanism of opioid receptor desensitization remains unresolved because of difficulties in measuring and interpreting receptor desensitization. In the present study, we investigated deltorphin II-mediated rapid desensitization of the human delta opioid receptors (hDOR) by measuring guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding and inhibition of cAMP accumulation. We developed a mathematical analysis based on the operational model of agonist action (Black et al., 1985) to calculate the proportion of desensitized receptors. This approach permits a correct analysis of the complex process of functional desensitization by taking into account receptor-effector coupling and the time dependence of agonist pretreatment. Finally, we compared hDOR desensitization with receptor phosphorylation at Ser363, the translocation of beta-arrestin2, and hDOR internalization. We found that in Chinese hamster ovary cells expressing the hDOR, deltorphin II treatment leads to phosphorylation of Ser363, translocation of beta-arrestin2 to the plasma membrane, receptor internalization, and uncoupling from G proteins. It is noteworthy that mutation of the primary phosphorylation site Ser363 to alanine had virtually no effect on agonist-induced beta-arrestin2 translocation and receptor internalization yet significantly attenuated receptor desensitization. These results strongly indicate that phosphorylation of Ser363 is the primary mechanism of hDOR desensitization.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Medical Pharmacology, The University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schwarz DA, Allen MM, Petroski RE, Pomeroy JE, Heise CE, Mistry MS, Selkirk JV, Nottebaum LM, Grey J, Zhang M, Goodfellow VS, Maki RA. Manipulation of small-molecule inhibitory kinetics modulates MCH-R1 function. Mol Cell Endocrinol 2006; 259:1-9. [PMID: 16987592 DOI: 10.1016/j.mce.2006.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/25/2006] [Accepted: 07/24/2006] [Indexed: 11/29/2022]
Abstract
The capacity of novel benzopyridazinone-based antagonists to inhibit MCH-R1 function, relative to their affinity for the receptor, has been investigated. Three compounds that differ by the addition of either a chlorine atom, or trifluoromethyl group, have nearly identical receptor affinities; however their abilities to inhibit receptor elicited signaling events, measured as a function of time, are dramatically altered. Both the chlorinated and trifluoromethyl modified compounds have a very slow on-rate to maximal functional inhibition relative to the unmodified base compound. A similar impact on inhibitory capacity can be achieved by modifying the side-chain composition at position 2.53 of the receptor; replacement of the native phenylalanine with alanine significantly reduces the amount of time required by the chlorinated compound to attain maximal functional inhibition. The primary attribute responsible for this alteration in inhibitory capacity appears to be the overall bulk of the amino acid at this position-substitution of the similarly sized amino acids leucine and tyrosine results in phenotypes that are indistinguishable from the wild type receptor. Finally, the impact of these differential inhibitory kinetics has been examined in cultured rat neurons by measuring the ability of the compounds to reverse MCH mediated inhibition of calcium currents. As observed using the cell expression models, the chlorinated compound has a diminished capacity to interfere with receptor function. Collectively, these data suggest that differential inhibitory on rates between a small-molecule antagonist and its target receptor can impact the ability of the compound to modify the biological response(s) elicited by the receptor.
Collapse
Affiliation(s)
- David A Schwarz
- Neurocrine Biosciences, Inc., Department of Molecular Biology, 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H. Water channels and zymogen granules in salivary glands. J Pharmacol Sci 2006; 100:495-512. [PMID: 16799262 DOI: 10.1254/jphs.crj06007x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. The molecular mechanisms underlying the secretion of water, a main component of saliva, from salivary glands are not known; the plasma membrane is a major barrier to water transport. A 28-kDa integral membrane protein, distributed in highly water-permeable tissues, was identified as a water channel protein, aquaporin (AQP). Thirteen AQPs (AQP0 - AQP12) have been identified in mammals. AQP5 is localized in lipid rafts under unstimulated conditions and translocates to the apical plasma membrane in rat parotid glands upon stimulation by muscarinic agonists. The importance of increases in intracellular calcium concentration [Ca(2+)](i) and the nitric oxide synthase and protein kinase G signaling pathway in the translocation of AQP5 is reviewed in section I. Signals generated by the activation of Ca(2+) mobilizing receptors simultaneously trigger and regulate exocytosis. Zymogen granule exocytosis occurs under the control of essential process, stimulus-secretion coupling, in salivary glands. Ca(2+) signaling is a principal signal in both protein and water secretion from salivary glands induced by cholinergic stimulation. On the other hand, the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase system has a major role in zymogen granule exocytosis without significant increases in [Ca(2+)](i). In section II, the mechanisms underlying the control of salivary protein secretion and its dysfunction are reviewed.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, The University of Tokushima School of Dentistry, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Cui C, Xu M, Atzori M. Voltage-Dependent Block ofN-Methyl-D-aspartate Receptors by Dopamine D1 Receptor Ligands. Mol Pharmacol 2006; 70:1761-70. [PMID: 16921022 DOI: 10.1124/mol.106.028332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence indicates that dopamine and D1 receptor ligands modulate N-methyl D-aspartate (NMDA) receptors through a variety of D1 receptor-dependent mechanisms. In this study, we reveal a distinct D1 receptor-independent mechanism by which NMDA receptors are modulated. Using the human embryonic kidney (HEK) cell recombinant system and dissociated neurons, we have discovered that dopamine and several D1 ligands act as voltage-dependent, open-channel blockers for NMDA receptors, regardless of whether they are agonists or antagonists for D1 receptors. Analysis of structural and functional relationships of D1 ligands revealed the elements that are critical for their binding to NMDA receptors. Furthermore, using D1 receptor knockout mice, we verified that this channel-blocking effect was independent of D1 receptors. Finally, we demonstrated that D1 ligands functionally interact with Mg(2+) block through multiple sites, implying a possible role of the direct channel block under physiological conditions. Our results suggest that the direct inhibition of NMDA receptors by dopamine D1 receptor ligands is due to the channel pore block rather than receptor-receptor interactions.
Collapse
Affiliation(s)
- Changhai Cui
- Blanchette Rockefeller Neurosciences Institute, A and R Building, 3rd Floor, 9601 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | |
Collapse
|