1
|
Gomes A, Narciso R, Regalado L, Pinheiro MC, Barros F, Sario S, Santos C, Mendes RJ. Disclosing the native blueberry rhizosphere community in Portugal-an integrated metagenomic and isolation approach. PeerJ 2023; 11:e15525. [PMID: 37397024 PMCID: PMC10312161 DOI: 10.7717/peerj.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Backgorund The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.
Collapse
Affiliation(s)
- Anicia Gomes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Narciso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Laura Regalado
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Margarida Cardeano Pinheiro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filipa Barros
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sara Sario
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rafael J. Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Pan WS, Zou Q, Hu M, Li WC, Xiong XR, Qi YT, Wu C. Microbial community composition and cooccurrence patterns driven by co-contamination of arsenic and antimony in antimony-mining area. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131535. [PMID: 37148793 DOI: 10.1016/j.jhazmat.2023.131535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
In the current study, a typical Sb mine was selected to explore the microbial community composition and assembly driven by the cocontamination of As/Sb with geographic distance. Our results showed that environmental parameters, especially pH, TOC, nitrate, total and bioavailable As/Sb contents largely affected the microbial community diversity and composition. The total and bioavailable As/Sb levels were significantly positively correlated with the relative abundance of Zavarzinella, Thermosporothrix and Holophaga, while the pH presented a significant negative correlation with the three genera, potentially implying they are important taxonomic groups in acid-mining soils. The cooccurrence network analysis indicated the environmental stress dominated by pH and As/Sb co-contamination affected the microbial modularity and interaction. Meanwhile, Homogeneous selection (HoS, 26.4-49.3%), and drift and others (DR, 27.1∼40.2%) were the most important assembly processes for soil bacterial, and the importance of HoS decreased and the DR increased with geographic distance to the contamination source respectively. Soil pH, nutrient availability, total and bioavailable As/Sb contents significantly affected the HoS and DR processes. This study provides theoretical support for microbial remediation in metal(loid)-contaminated soils.
Collapse
Affiliation(s)
- Wei-Song Pan
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Qi Zou
- South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510520, China
| | - Wai-Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, China
| | - Xiao-Ran Xiong
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Yan-Ting Qi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Denitrification by Bradyrhizobia under Feast and Famine and the Role of the bc1 Complex in Securing Electrons for N 2O Reduction. Appl Environ Microbiol 2023; 89:e0174522. [PMID: 36662572 PMCID: PMC9972998 DOI: 10.1128/aem.01745-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also must survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3- reduction in bradyrhizobia is retained under carbon limitation. Here, we show that starved cultures of a Bradyrhizobium strain with respiration rates 1 to 18% of well-fed cultures reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers. IMPORTANCE Legume cropped farmlands account for substantial N2O emissions globally. Legumes are commonly inoculated with N2-fixing bacteria, rhizobia, to improve crop yields. Rhizobia belonging to Bradyrhizobium, the microsymbionts of several economically important legumes, are generally capable of denitrification but many lack genes encoding N2O reductase and will be N2O sources. Bradyrhizobia with complete denitrification will instead act as sinks since N2O-reduction efficiently competes for electrons over nitrate reduction in these organisms. This phenomenon has only been demonstrated under optimal conditions and it is not known how carbon substrate limitation, which is the common situation in most soils, affects the denitrification phenotype. Here, we demonstrate that bradyrhizobia retain their strong preference for N2O under carbon starvation. The findings add basic knowledge about mechanisms controlling denitrification and support the potential for developing novel methods for greenhouse gas mitigation based on legume inoculants with the dual capacity to optimize N2 fixation and minimize N2O emission.
Collapse
|
4
|
Wu Y, Xu L, Wang Z, Cheng J, Lu J, You H, Zhang X. Microbially mediated Fe-N coupled cycling at different hydrological regimes in riparian wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158237. [PMID: 36007641 DOI: 10.1016/j.scitotenv.2022.158237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although the significance of the coupled Fe- and N- cycling processes on biogeochemical transformation in riparian wetlands is well-known, the regulation associated with the changes on the microbiotas during different hydrological regimes remains unclear. This study performed field investigations on the bacterial community compositions (BCC) and specific genera associated to Fe- and N- cycling in the rhizosphere soil and sediments in a riparian wetland in Poyang lake, China. The predominant phyla Proteobacteria, Acidobacteria, and Nitrospirae from all the samples remarkably decreased after long-term continuous flooding, while Actinobacteria, Firmicutes and Bacteroidetes were enriched. For the family level, the relative abundances of iron-oxidizing bacteria (FeOB) Gallionellaceae, and N fixing bacteria Nitrospiraceae and Bradyrhizobiaceae significantly declined upon the long-term flooding and then increased with dewatering, which were consistent with the functional genes sequencing analysis. In which, the Bradyrhizobiaceae (RA 2.0 %-34.6 %) was the dominant nirS denitrifier and potential iron-reducing bacteria (FeRB), Sideroxydans lithotrophicus was one of the dominant FeOB (RA 1.7 %-23 %), which was also identified to be the nirS dentrifier (RA 0.2 %-4.3 %). The absolute quantification of the functional genes levels including nirS, nirK, FeRB (Geobacter spp.) showed their significant increases by 3-7 times upon desiccation compared to that under post-CF. The PCA and RDA results indicated the linkage between redox changes of N and Fe during inundation mediated by FeRB, NOB, and FeOB, which were closely related to hydrochemical indices NO3-, Fe2+ and SO42-. These evidences all implied the likely occurrence of nitrate reduction coupled to Fe(II) oxidation (NRFeOx) under oligotrophic conditions, which was potentially facilitated by metabolizers consisting of highly correlated Bradyrhizobiaceae and Sideroxydans (rho = 0.86, p < 0.01). These findings provide an interpretation of the biological reactions in the microbially mediated NRFeOx processes driven by hydrological change, which could assist the mechanistic understanding of the global biogeochemical cycles of iron and nitrogen in riparian wetlands.
Collapse
Affiliation(s)
- Yuexia Wu
- School of Business Administration, Nanjing University of Finance & Economics, Nanjing 210023, PR China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ligang Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Junxiang Cheng
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jilai Lu
- College of Food Science & Engineering, Nanjing University of Finance & Economics, Nanjing 210023, PR China
| | - Hailin You
- Institute of Watershed Ecology, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, PR China
| | - Xiaodong Zhang
- School of Business Administration, Nanjing University of Finance & Economics, Nanjing 210023, PR China
| |
Collapse
|
5
|
Li H, Sun R, Zhang X, Lin H, Xie Y, Han Y, Pan Y, Wang D, Dong K. Characteristics of denitrification and microbial community in respect to various H 2 pressures and distances to the gas supply end in H 2-based MBfR. Front Microbiol 2022; 13:1023402. [PMID: 36212855 PMCID: PMC9542790 DOI: 10.3389/fmicb.2022.1023402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
The hydrogen-based hollow fiber membrane biofilm reactor (H2-based MBfR) has shown to be a promising technology for nitrate (NO3 --N) reduction. Hollow fiber membranes (HFM) operating in a closed mode in an H2-based MBfR often suffer from reverse gas diffusion, taking up space for the effective gas substrate and resulting in a reduction in the HFM diffusion efficiency, which in turn affects denitrification performance. In this work, we developed a laboratory-scale H2-based MBfR, which operated in a closed mode to investigate the dynamics of denitrification performance and biofilm microbial community analysis at different H2 supply pressures. A faster formation of biofilm on the HFM and a shorter start-up period were found for a higher H2 supply pressure. An increase in the H2 pressure under 0.08 MPa could significantly promote denitrification, while a minor increase in denitrification was observed once the H2 pressure was over 0.08 MPa. Sequencing analysis of the biofilm concluded that (i) the dominant phylum-level bacteria in the reactor during the regulated hydrogen pressure phase were Gammaproteobacteria and Alphaproteobacteria; (ii) when the hydrogen pressure was 0.04-0.06 MPa, the dominant bacteria in the MBfR were mainly enriched on the hollow fiber membrane near the upper location (Gas inlet). With a gradual increase in the hydrogen pressure, the enrichment area of the dominant bacteria in MBfR gradually changed from the upper location to the distal end of the inlet. When the hydrogen pressure was 0.10 MPa, the dominant bacteria were mainly enriched on the hollow fiber membrane in the down location of the MBfR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
6
|
Yan J, Han X, Lu X, Chen X, Zou W. Land use indirectly affects the cycling of multiple nutrients by altering the diazotrophic community in black soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3788-3795. [PMID: 34921680 DOI: 10.1002/jsfa.11727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diazotrophic bacteria, as one of most important group of soil microorganisms, play critical roles in multiple ecosystem functions (i.e., multifunctionality). However, little information is available about the diazotrophic community in driving soil nutrient cycling and multifunctionality at different depths with distinct vegetation in the black soil region of northeastern China. To learn the interactions among land use, cycling of multiple nutrients and the diazotrophic community, we performed this study in grassland (GL), forested land and a cropland (CL) in soils at depths of 0-15 cm and 15-35 cm. RESULTS The highest nifH gene abundances were found in the CL treatment, while the highest diazotrophic species richness and diversity were detected in the GL in both soil layers. The nifH gene abundance was directly/positively correlated with soil bulk density and negatively correlated with land use and soil depth. The index of multiple nutrient cycling was directly/negatively affected by soil depth and indirectly/positively affected by land use. Land use directly/negatively affected soil pH and thus indirectly affected the diazotrophic community composition and the nutrient cycling index. The diversity and community composition of the diazotrophs together accounted for 95% of the differences in the multiple nutrient cycling index. CONCLUSION Soil diazotrophic communities undertake important roles in maintaining nutrient cycling and soil multifunctionality at depths of 0-15 cm and 15-35 cm layers with different land uses of the black soil region of China. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaozeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xinchun Lu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xu Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Wenxiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
7
|
Parejo S, Cabrera JJ, Jiménez-Leiva A, Tomás-Gallardo L, Bedmar EJ, Gates AJ, Mesa S. Fine-Tuning Modulation of Oxidation-Mediated Posttranslational Control of Bradyrhizobium diazoefficiens FixK 2 Transcription Factor. Int J Mol Sci 2022; 23:5117. [PMID: 35563511 PMCID: PMC9104804 DOI: 10.3390/ijms23095117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
FixK2 is a CRP/FNR-type transcription factor that plays a central role in a sophisticated regulatory network for the anoxic, microoxic and symbiotic lifestyles of the soybean endosymbiont Bradyrhizobium diazoefficiens. Aside from the balanced expression of the fixK2 gene under microoxic conditions (induced by the two-component regulatory system FixLJ and negatively auto-repressed), FixK2 activity is posttranslationally controlled by proteolysis, and by the oxidation of a singular cysteine residue (C183) near its DNA-binding domain. To simulate the permanent oxidation of FixK2, we replaced C183 for aspartic acid. Purified C183D FixK2 protein showed both low DNA binding and in vitro transcriptional activation from the promoter of the fixNOQP operon, required for respiration under symbiosis. However, in a B. diazoefficiens strain coding for C183D FixK2, expression of a fixNOQP'-'lacZ fusion was similar to that in the wild type, when both strains were grown microoxically. The C183D FixK2 encoding strain also showed a wild-type phenotype in symbiosis with soybeans, and increased fixK2 gene expression levels and FixK2 protein abundance in cells. These two latter observations, together with the global transcriptional profile of the microoxically cultured C183D FixK2 encoding strain, suggest the existence of a finely tuned regulatory strategy to counterbalance the oxidation-mediated inactivation of FixK2 in vivo.
Collapse
Affiliation(s)
- Sergio Parejo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Juan J. Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Pablo de Olavide University, 41013 Seville, Spain;
| | - Eulogio J. Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| | - Andrew J. Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (S.P.); (J.J.C.); (A.J.-L.); (E.J.B.)
| |
Collapse
|
8
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
9
|
Bueno E, Mania D, Mesa S, Bedmar EJ, Frostegård Å, Bakken LR, Delgado MJ. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Int J Mol Sci 2022; 23:1486. [PMID: 35163408 PMCID: PMC8836242 DOI: 10.3390/ijms23031486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Socorro Mesa
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - María J. Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| |
Collapse
|
10
|
Guerra VA, Beule L, Mackowiak CL, Dubeux JCB, Blount ARS, Wang XB, Rowland DL, Liao HL. Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:55-65. [PMID: 34978336 DOI: 10.1002/jeq2.20307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Incorporating legumes is one option for improving pasture fertility, sustainability, and biodiversity. Diazotrophic microorganisms, including rhizobia that form symbioses with legumes, represent a small fraction of the total soil microbial community. Yet, they can offset nitrogen (N) fertilizer inputs through their ability to convert atmospheric N2 into plant-usable N via biological N2 fixation (BNF). This study used amplicon sequencing of 16S rRNA genes to investigate soil bacterial community composition and diversity in grazed 'Argentine' bahiagrass (Paspalum notatum Flügge) pastures where N fertilizer was supplanted with legume-derived N from BNF in some treatments. Treatments consisted of bahiagrass fertilized with (a) mineral N (224 kg N ha-1 yr-1 ), (b) combination mineral N (34 kg N ha-1 yr-1 ) and legume-derived N via cool-season clover (CSC) (Trifolium spp.) mix, or (c) combination mineral N (34 kg N ha-1 yr-1 ) and legume-derived N via CSC mix and strips of Ecoturf rhizoma peanut (Arachis glabrata Benth.). Bradyrhizobium spp. relative abundance was 44% greater in the mixed pasture. Other bacterial genera with BNF or denitrification potentials were greater in pastures with legumes, whereas sequences assigned to genera associated with high litter turnover were greater in bahiagrass pastures receiving only mineral N. Soil bacteria alpha diversity was greater in pastures receiving 34 kg ha-1 yr-1 N fertilizer application and the CSC mix than in pastures with the CSC mix and rhizoma peanut strips. Our results demonstrate soil microbial community shifts that may affect soil C and N cycling in pastures common to the southeastern United States.
Collapse
Affiliation(s)
- Victor A Guerra
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Lukas Beule
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, Berlin, 14195, Germany
| | - Cheryl L Mackowiak
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Jose C B Dubeux
- North Florida Research and Education Center, Univ. of Florida, 3925 Highway 71, Marianna, FL, 32446, USA
| | - Ann R S Blount
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Xiao-Bo Wang
- State Key Laboratory of Grassland Agroecosystems, Center for Grassland Microbiome, and College of Pastoral, Agriculture Science and Technology, Lanzhou Univ., Lanzhou, 730020, PR China
| | - Diane L Rowland
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
- Current address: College of Natural Sciences Forestry, and Agriculture, Univ. of Maine, Orono, ME, 04469, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, Univ. of Florida, 155 Research Road, Quincy, FL, 32351, USA
| |
Collapse
|
11
|
Su X, Wen T, Wang Y, Xu J, Cui L, Zhang J, Xue X, Ding K, Tang Y, Zhu YG. Stimulation of N 2 O emission via bacterial denitrification driven by acidification in estuarine sediments. GLOBAL CHANGE BIOLOGY 2021; 27:5564-5579. [PMID: 34453365 DOI: 10.1111/gcb.15863] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 05/02/2023]
Abstract
Ocean acidification in nitrogen-enriched estuaries has raised global concerns. For decades, biotic and abiotic denitrification in estuarine sediments has been regarded as the major ways to remove reactive nitrogen, but they occur at the expense of releasing greenhouse gas nitrous oxide (N2 O). However, how these pathways respond to acidification remains poorly understood. Here we performed a N2 O isotopocules analysis coupled with respiration inhibition and molecular approaches to investigate the impacts of acidification on bacterial, fungal, and chemo-denitrification, as well as N2 O emission, in estuarine sediments through a series of anoxic incubations. Results showed that acidification stimulated N2 O release from sediments, which was mainly mediated by the activity of bacterial denitrifiers, whereas in neutral environments, N2 O production was dominated by fungi. We also found that the contribution of chemo-denitrification to N2 O production cannot be ignored, but was not significantly affected by acidification. The mechanistic investigation further demonstrated that acidification changed the keystone taxa of sedimentary denitrifiers from N2 O-reducing to N2 O-producing ones and reduced microbial electron-transfer efficiency during denitrification. These findings provide novel insights into how acidification stimulates N2 O emission and modulates its pathways in estuarine sediments, and how it may contribute to the acceleration of global climate change in the Anthropocene.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| | - Junshi Xu
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
| | - Ximei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kai Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yijia Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Agriculture, Sydney, New South Wales, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Hu J, Richwine JD, Keyser PD, Li L, Yao F, Jagadamma S, DeBruyn JM. Nitrogen Fertilization and Native C 4 Grass Species Alter Abundance, Activity, and Diversity of Soil Diazotrophic Communities. Front Microbiol 2021; 12:675693. [PMID: 34305840 PMCID: PMC8297707 DOI: 10.3389/fmicb.2021.675693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023] Open
Abstract
Native C4 grasses have become the preferred species for native perennial pastures and bioenergy production due to their high productivity under low soil nitrogen (N) status. One reason for their low N requirement is that C4 grasses may benefit from soil diazotrophs and promote biological N fixation. Our objective was to evaluate the impact of N fertilization rates (0, 67, and 202 kg N ha-1) and grass species (switchgrass [Panicum virgatum] and big bluestem [Andropogon gerardii]) on the abundance, activity, diversity, and community composition of soil diazotrophs over three agricultural seasons (grass green-up, initial harvest, and second harvest) in a field experiment in East Tennessee, United States. Nitrogen fertilization rate had a stronger influence on diazotroph population size and activity (determined by nifH gene and transcript abundances) and community composition (determined by nifH gene amplicon sequencing) than agricultural season or grass species. Excessive fertilization (202 kg N ha-1) resulted in fewer nifH transcripts compared to moderate fertilization (67 kg N ha-1) and decreased both richness and evenness of diazotrophic community, reflecting an inhibitory effect of high N application rates on soil diazotrophic community. Overall, cluster I and cluster III diazotrophs were dominant in this native C4 grass system. Diazotroph population size and activity were directly related to soil water content (SWC) based on structural equation modeling. Soil pH, SWC, and C and N availability were related to the variability of diazotrophic community composition. Our results revealed relationships between soil diazotrophic community and associated soil properties, adding to our understanding of the response of soil diazotrophs to N fertilization and grass species in native C4 grass systems.
Collapse
Affiliation(s)
- Jialin Hu
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jonathan D. Richwine
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - Patrick D. Keyser
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, United States
| | - Lidong Li
- United States Department of Agriculture—Agricultural Research Service, Agroecosystem Management Research Unit, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fei Yao
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sindhu Jagadamma
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
13
|
Cabrera JJ, Jiménez-Leiva A, Tomás-Gallardo L, Parejo S, Casado S, Torres MJ, Bedmar EJ, Delgado MJ, Mesa S. Dissection of FixK 2 protein-DNA interaction unveils new insights into Bradyrhizobium diazoefficiens lifestyles control. Environ Microbiol 2021; 23:6194-6209. [PMID: 34227211 DOI: 10.1111/1462-2920.15661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
The FixK2 protein plays a pivotal role in a complex regulatory network, which controls genes for microoxic, denitrifying, and symbiotic nitrogen-fixing lifestyles in Bradyrhizobium diazoefficiens. Among the microoxic-responsive FixK2 -activated genes are the fixNOQP operon, indispensable for respiration in symbiosis, and the nnrR regulatory gene needed for the nitric-oxide dependent induction of the norCBQD genes encoding the denitrifying nitric oxide reductase. FixK2 is a CRP/FNR-type transcription factor, which recognizes a 14 bp-palindrome (FixK2 box) at the regulated promoters through three residues (L195, E196, and R200) within a C-terminal helix-turn-helix motif. Here, we mapped the determinants for discriminatory FixK2 -mediated regulation. While R200 was essential for DNA binding and activity of FixK2 , L195 was involved in protein-DNA complex stability. Mutation at positions 1, 3, or 11 in the genuine FixK2 box at the fixNOQP promoter impaired transcription activation by FixK2 , which was residual when a second mutation affecting the box palindromy was introduced. The substitution of nucleotide 11 within the NnrR box at the norCBQD promoter allowed FixK2 -mediated activation in response to microoxia. Thus, position 11 within the FixK2 /NnrR boxes constitutes a key element that changes FixK2 targets specificity, and consequently, it might modulate B. diazoefficiens lifestyle as nitrogen fixer or as denitrifier.
Collapse
Affiliation(s)
- Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Laura Tomás-Gallardo
- Proteomics and Biochemistry Unit, Andalusian Centre for Developmental Biology, CSIC-Junta de Andalucía-Pablo de Olavide University, Seville, 41013, Spain
| | - Sergio Parejo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Sara Casado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| |
Collapse
|
14
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
15
|
Shan J, Sanford RA, Chee-Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, Yang WH. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. GLOBAL CHANGE BIOLOGY 2021; 27:2669-2683. [PMID: 33547715 DOI: 10.1111/gcb.15545] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
Many biotic and abiotic processes contribute to nitrous oxide (N2 O) production in the biosphere, but N2 O consumption in the environment has heretofore been attributed primarily to canonical denitrifying microorganisms. The nosZ genes encoding the N2 O reductase enzyme, NosZ, responsible for N2 O reduction to dinitrogen are now known to include two distinct groups: the well-studied Clade I which denitrifiers typically possess, and the novel Clade II possessed by diverse groups of microorganisms, most of which are non-denitrifiers. Clade II N2 O reducers could play an important, previously unrecognized role in controlling N2 O emissions for several reasons, including: (1) the consumption of N2 O produced by processes other than denitrification, (2) hypothesized non-respiratory functions of NosZ as an electron sink or for N2 O detoxification, (3) possible differing enzyme kinetics of Clade II NosZ compared to Clade I NosZ, and (4) greater nosZ gene abundance for Clade II compared to Clade I in soils of many ecosystems. Despite the potential ecological significance of Clade II NosZ, a census of 800 peer-reviewed original research articles discussing nosZ and published from 2013 to 2019 showed that the percentage of articles evaluating or mentioning Clade II nosZ increased from 5% in 2013 to only 22% in 2019. The census revealed that the slowly spreading awareness of Clade II nosZ may result in part from disciplinary silos, with the percentage of nosZ articles mentioning Clade II nosZ ranging from 0% in Agriculture and Agronomy journals to 32% in Multidisciplinary Sciences journals. In addition, inconsistent nomenclature for Clade I nosZ and Clade II nosZ, with 17 different terminologies used in the literature, may have created confusion about the two distinct groups of N2 O reducers. We provide recommendations to accelerate advances in understanding the role of the diversity of N2 O reducers in regulating soil N2 O emissions.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Robert A Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Chee-Sanford
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture - Agricultural Research Station,, Urbana, IL, USA
| | - Sean K Ooi
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wendy H Yang
- Departments of Plant Biology and Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
16
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
17
|
Lecomte S, Nesme X, Franzino T, Villard C, Pivard M, Vial L, Doré J, Hommais F, Haichar FEZ. Agrobacterium fabrum C58 involved nitrate reductase NapA and antisense RNA NorR to denitrify. FEMS Microbiol Ecol 2021; 97:5989693. [PMID: 33206969 DOI: 10.1093/femsec/fiaa233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023] Open
Abstract
Agrobacterium fabrum C58 is a plant-associated bacterium that is able to denitrify under anoxic conditions. The cluster of denitrification genes harbored by this strain has been well characterized. It includes nir and nor operons encoding nitrite and nitric oxide reductases, respectively. However, the reductase involved in nitrate reduction has not yet been studied and little information is available on denitrification regulators in A. fabrum C58. In this study, we aimed to (i) characterize the nitrate reductase, (ii) determine its role in A. fabrum C58 fitness and root colonization and (ii) reveal the contribution of small RNA on denitrification regulation. By constructing a mutant strain defective for napA, we demonstrated that the reduction of nitrate to nitrite was catalyzed by the periplasmic nitrate reductase, NapA. We evidenced a positive role of NapA in A. fabrum C58 fitness and suggested that A. fabrum C58 is able to use components exuded by plant roots to respire anaerobically. Here, we showed that NorR small RNA increased the level of norCBQ mRNA and a decrease of NorR is correlated with a decrease in N2O emission. Together, our results underscore the importance of understanding the denitrification pathway at the strain level in order to develop strategies to mitigate N2O production at the microbial community level.
Collapse
Affiliation(s)
- Solène Lecomte
- Univ Lyon, UCBL, CNRS, INRA, VetAgro Sup, UMR5557 Laboratoire d'Ecologie Microbienne (LEM), F-69622 Villeurbanne Cedex, France
| | - Xavier Nesme
- Univ Lyon, UCBL, CNRS, INRA, VetAgro Sup, UMR5557 Laboratoire d'Ecologie Microbienne (LEM), F-69622 Villeurbanne Cedex, France
| | - Théophile Franzino
- Univ Lyon, UCBL, CNRS, INSA, UMR5240 Laboratoire de Microbiologie Adaptation Pathogénie (MAP), F-69622 Villeurbanne Cedex, France
| | - Camille Villard
- Univ Lyon, UCBL, CNRS, INSA, UMR5240 Laboratoire de Microbiologie Adaptation Pathogénie (MAP), F-69622 Villeurbanne Cedex, France
| | - Mariane Pivard
- Univ Lyon, UCBL, CNRS, INSERM, Centre International de Recherche en Infectiologie (CIRI), Lyon, France
| | - Ludovic Vial
- Univ Lyon, UCBL, CNRS, INRA, VetAgro Sup, UMR5557 Laboratoire d'Ecologie Microbienne (LEM), F-69622 Villeurbanne Cedex, France
| | - Jeanne Doré
- Univ Lyon, UCBL, CNRS, INRA, VetAgro Sup, UMR5557 Laboratoire d'Ecologie Microbienne (LEM), F-69622 Villeurbanne Cedex, France
| | - Florence Hommais
- Univ Lyon, UCBL, CNRS, INSA, UMR5240 Laboratoire de Microbiologie Adaptation Pathogénie (MAP), F-69622 Villeurbanne Cedex, France
| | - Feth El Zahar Haichar
- Univ Lyon, UCBL, CNRS, INRA, VetAgro Sup, UMR5557 Laboratoire d'Ecologie Microbienne (LEM), F-69622 Villeurbanne Cedex, France.,Univ Lyon, UCBL, CNRS, INSA, UMR5240 Laboratoire de Microbiologie Adaptation Pathogénie (MAP), F-69622 Villeurbanne Cedex, France
| |
Collapse
|
18
|
Qian J, Bai L, Zhang M, Chen L, Yan X, Sun R, Zhang M, Chen GH, Wu D. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system. WATER RESEARCH 2021; 190:116716. [PMID: 33290906 DOI: 10.1016/j.watres.2020.116716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) can drive a high level of autotrophic denitrification (AD) activity with thiosulfate (S2O32-) as the electron donor. However, the slow growth of SOB results in a low biomass concentration in the AD reactor and unsatisfactory biological nitrogen removal (BNR). In this study, our goal was to establish a high-rate thiosulfate-driven denitrification (TDD) system via sludge granulation. Granular sludge was successfully cultivated by increasing the nitrogen loading rate stepwise in thiosulfate-oxidizing/nitrate-reducing conditions in an upflow anaerobic blanket reactor. In the mature-granular-sludge reactor, a nitrate removal rate of 280 mg N/L/h was achieved with a nitrate removal efficiency of 97.7%±1.0% at a hydraulic retention time of only 15 minutes, with no nitrite detected in the effluent. Extracellular polymeric substance (EPS) analysis indicated that the proteins in loosely bound and tightly bound EPS were responsible for maintaining the compact structure of the TDD granular sludge. The dynamics of the microbial-community shift were identified by 16S rRNA high-throughput pyrosequencing analysis. The Sulfurimonas genus was found to be enriched at 74.1% of total community and may play the most critical role in the high-rate BNR. The batch assay results reveal that no nitrite accumulation occurred during nitrate reduction because the nitrate reduction rate (75.90±0.67 mg N/g MLVSS/h) was almost equal to the nitrite reduction rate (66.06±1.28 mg N/g MLVSS/h) in the thiosulfate-driven granular sludge reactor. The results of this study provide support for the establishment of a high-rate BNR system that maintains its stability with a low sludge yield.
Collapse
Affiliation(s)
- Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mingkuan Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xueqian Yan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Meiting Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
19
|
Rhizobia: highways to NO. Biochem Soc Trans 2021; 49:495-505. [PMID: 33544133 DOI: 10.1042/bst20200989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/02/2023]
Abstract
The interaction between rhizobia and their legume host plants conduces to the formation of specialized root organs called nodules where rhizobia differentiate into bacteroids which fix atmospheric nitrogen to the benefit of the plant. This beneficial symbiosis is of importance in the context of sustainable agriculture as legumes do not require the addition of nitrogen fertilizer to grow. Interestingly, nitric oxide (NO) has been detected at various steps of the rhizobium-legume symbiosis where it has been shown to play multifaceted roles. Both bacterial and plant partners are involved in NO synthesis in nodules. To better understand the role of NO, and in particular the role of bacterial NO, at all steps of rhizobia-legumes interaction, the enzymatic sources of NO have to be elucidated. In this review, we discuss different enzymatic reactions by which rhizobia may potentially produce NO. We argue that there is most probably no NO synthase activity in rhizobia, and that instead the NO2- reductase nirK, which is part of the denitrification pathway, is the main bacterial source of NO. The nitrate assimilation pathway might contribute to NO production but only when denitrification is active. The different approaches to measure NO in rhizobia are also addressed.
Collapse
|
20
|
Gao Y, Mania D, Mousavi SA, Lycus P, Arntzen MØ, Woliy K, Lindström K, Shapleigh JP, Bakken LR, Frostegård Å. Competition for electrons favours N 2 O reduction in denitrifying Bradyrhizobium isolates. Environ Microbiol 2021; 23:2244-2259. [PMID: 33463871 DOI: 10.1111/1462-2920.15404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Bradyrhizobia are common members of soil microbiomes and known as N2 -fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2 O. Inoculation with compatible rhizobia is often needed for optimal N2 -fixation, but the choice of inoculant may have consequences for N2 O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2 O. The N2 O-reducing isolates had strong preference for N2 O- over NO3 - -reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3 - reductase) and Nos (N2 O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3 - reductase (Nar), reduced N2 O and NO3 - simultaneously. We propose that the control at the metabolic level, favouring N2 O reduction over NO3 - reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.
Collapse
Affiliation(s)
- Yuan Gao
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Seyed Abdollah Mousavi
- Ecosystems and Environment Research programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Pawel Lycus
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Kristina Lindström
- Ecosystems and Environment Research programme, Faculty of Biological and Environmental Sciences, and Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | | | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
21
|
Li B, Xu R, Sun X, Han F, Xiao E, Chen L, Qiu L, Sun W. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination. CHEMOSPHERE 2021; 263:128227. [PMID: 33297183 DOI: 10.1016/j.chemosphere.2020.128227] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/20/2020] [Accepted: 08/31/2020] [Indexed: 05/21/2023]
Abstract
Mining activities of antimony (Sb) and arsenic (As) typically result in severe environmental contamination. These contaminants accumulate in rice and thus threaten the health of local residents, who consume Sb- and As-enriched rice grains. Microorganisms play a critical role in the transformation and transportation of Sb and As in paddy soil. Thus, an understanding of the microbiology of contaminated sites would promote the production of safe agricultural products. In this study, six Sb- and As-contaminated rice fields near an active Sb-mining area were investigated. The Sb and As concentrations of all samples were elevated compared to the background level in China. Nitrate, total As, total Sb, and Fe(III) were the major determinants of the microbial community structure. Seven bacterial taxa (i.e. Bradyrhizobium, Bryobacter, Candidatus Solibacter, Geobacter, Gemmatimonas, Halingium, and Sphingomonas) were identified as the core microbiome. These taxa were strongly correlated with the As and Sb contaminant fractions and likely to metabolize As and Sb. Results imply that many soil microbes can survival in the Sb/As contaminated sites.
Collapse
Affiliation(s)
- Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Lang Qiu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Cristaldi JC, Ferroni FM, Duré AB, Ramírez CS, Dalosto SD, Rizzi AC, González PJ, Rivas MG, Brondino CD. Heterologous production and functional characterization of Bradyrhizobium japonicum copper-containing nitrite reductase and its physiological redox partner cytochrome c550. Metallomics 2020; 12:2084-2097. [PMID: 33226040 DOI: 10.1039/d0mt00177e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two domain copper-nitrite reductases (NirK) contain two types of copper centers, one electron transfer (ET) center of type 1 (T1) and a catalytic site of type 2 (T2). NirK activity is pH-dependent, which has been suggested to be produced by structural modifications at high pH of some catalytically relevant residues. To characterize the pH-dependent kinetics of NirK and the relevance of T1 covalency in intraprotein ET, we studied the biochemical, electrochemical, and spectroscopic properties complemented with QM/MM calculations of Bradyrhizobium japonicum NirK (BjNirK) and of its electron donor cytochrome c550 (BjCycA). BjNirK presents absorption spectra determined mainly by a S(Cys)3pπ → Cu2+ ligand-to-metal charge-transfer (LMCT) transition. The enzyme shows low activity likely due to the higher flexibility of a protein loop associated with BjNirK/BjCycA interaction. Nitrite is reduced at high pH in a T1-decoupled way without T1 → T2 ET in which proton delivery for nitrite reduction at T2 is maintained. Our results are analyzed in comparison with previous results found by us in Sinorhizobium meliloti NirK, whose main UV-vis absorption features are determined by S(Cys)3pσ/π → Cu2+ LMCT transitions.
Collapse
Affiliation(s)
- Julio C Cristaldi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Toniutti MA, Albicoro FJ, Castellani LG, López García SL, Fornasero LV, Zuber NE, Vera LM, Vacca C, Cafiero JH, Winkler A, Kalinowski J, Lagares A, Torres Tejerizo GA, Del Papa MF. Genome sequence of Bradyrhizobium yuanmingense strain P10 130, a highly efficient nitrogen-fixing bacterium that could be used for Desmodium incanum inoculation. Gene 2020; 768:145267. [PMID: 33122079 DOI: 10.1016/j.gene.2020.145267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/08/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Strain P10 130, an isolated Bradyrhizobium strain from Argentina which promotes the growth of the leguminous plant Desmodium incanum by different mechanisms was previously selected as the best candidate for D. incanum inoculation based on broader selective criteria. A close relationship between this strain and B. yuanmingense was determined by MALDI BioTyper identification and 16S rRNA gene phylogenetic analysis. This study aimed to analyse the genome sequence of B. yuanmingense P10 130 in order to deepen our knowledge regarding its plant growth-promoting traits and to establish its phylogenetic relationship with other species of Bradyrhizobium genus. The genome size of strain P10 130 was estimated to be 7.54 Mb that consisted of 65 contigs. Genome Average Nucleotide Identity (ANI) analysis revealed that B. yuanmingense CCBAU 10071 T was the closest strain to P10 130 with ca. 96% identity. Further analysis of the genome of B. yuanmingense P10 130 identified 20 nod/nol/NOE, 14 nif/18 fix, 5 nap/5 nor genes, which may be potentially involved in nodulation, nitrogen fixation, and denitrification process respectively. Genome sequence of B. yuanmingense P10 130 is a valuable source of information to continue the research of its potential industrial production as a biofertilizer of D. incanum.
Collapse
Affiliation(s)
| | - Francisco Javier Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Lucas Gabriel Castellani
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Silvina Laura López García
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | | | - Nicolás Emilio Zuber
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Leda Mailén Vera
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Carolina Vacca
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Juan Hilario Cafiero
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Anika Winkler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - Antonio Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Gonzalo Arturo Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina.
| | - María Florencia Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina.
| |
Collapse
|
24
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
25
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 72:873-884. [PMID: 32240305 DOI: 10.1093/jxb/eraa403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
26
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
27
|
Metagenomic Insights in Activated Biomass Treating Industrial Wastewater at Different DO Levels. Appl Biochem Biotechnol 2020; 192:544-556. [PMID: 32418020 DOI: 10.1007/s12010-020-03340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Dissolved oxygen (DO) is an imperative parameter of the activated sludge process (ASP) for wastewater bioremediation. The effect of DO on microbial communities and corresponding metabolic functions in wastewater bioremediation was investigated using next-generation analysis techniques in this study. Illumina-based whole genome sequencing was applied to analyze the composition of the microbial community along with their functional diversity in activated sludge systems operating at three different DO levels. Activated biomass was collected from lab-scale reactors maintained at 1, 2, and 4 mg/L DO levels. Metagenomes were sequenced on an Illumina platform and analyzed using various tools. Results revealed that Proteobacteria phylum and Pseudomonas, Nitrobacter, Thauera, and Alicyclipilus genera were abundant in all reactor samples. Despite distinct DO levels, the microbial communities were conserved and consisted of a common population forming the core group governing the metabolic functions. However, higher diversity was observed at functional level indicating that microbes evolve and adapt to serve their role in a typical ASP. Metabolic pathway related to benzoate dominated at 1 mg/L DO level, while pathways for degradation of aromatic compounds like phenol, toluene, and biphenyl via central metabolic pathway were found dominating at 4 mg/L DO level. Pathways corresponding to homogentisate, naphthalene, cresol, and salicylate degradation enriched at 2 mg/L DO level.
Collapse
|
28
|
Salas A, Tortosa G, Hidalgo-García A, Delgado A, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. The Hemoglobin Bjgb From Bradyrhizobium diazoefficiens Controls NO Homeostasis in Soybean Nodules to Protect Symbiotic Nitrogen Fixation. Front Microbiol 2020; 10:2915. [PMID: 31998252 PMCID: PMC6965051 DOI: 10.3389/fmicb.2019.02915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Legume-rhizobia symbiotic associations have beneficial effects on food security and nutrition, health and climate change. Hypoxia induced by flooding produces nitric oxide (NO) in nodules from soybean plants cultivated in nitrate-containing soils. As NO is a strong inhibitor of nitrogenase expression and activity, this negatively impacts symbiotic nitrogen fixation in soybean and limits crop production. In Bradyrhizobium diazoefficiens, denitrification is the main process involved in NO formation by soybean flooded nodules. In addition to denitrification, nitrate assimilation is another source of NO in free-living B. diazoefficiens cells and a single domain hemoglobin (Bjgb) has been shown to have a role in NO detoxification during nitrate-dependent growth. However, the involvement of Bjgb in protecting nitrogenase against NO in soybean nodules remains unclear. In this work, we have investigated the effect of inoculation of soybean plants with a bjgb mutant on biological nitrogen fixation. By analyzing the proportion of N in shoots derived from N2-fixation using the 15N isotope dilution technique, we found that plants inoculated with the bjgb mutant strain had higher tolerance to flooding than those inoculated with the parental strain. Similarly, reduction of nitrogenase activity and nifH expression by flooding was less pronounced in bjgb than in WT nodules. These beneficial effects are probably due to the reduction of NO accumulation in bjgb flooded nodules compared to the wild-type nodules. This decrease is caused by an induction of expression and activity of the denitrifying NO reductase enzyme in bjgb bacteroids. As bjgb deficiency promotes NO-tolerance, the negative effect of NO on nitrogenase is partially prevented and thus demonstrates that inoculation of soybean plants with the B. diazoefficiens bjgb mutant confers protection of symbiotic nitrogen fixation during flooding.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Alba Hidalgo-García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio Delgado
- Laboratory of Stable Isotopes Biogeochemistry, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
29
|
Woliy K, Degefu T, Frostegård Å. Host Range and Symbiotic Effectiveness of N 2O Reducing Bradyrhizobium Strains. Front Microbiol 2019; 10:2746. [PMID: 31849890 PMCID: PMC6896821 DOI: 10.3389/fmicb.2019.02746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Emissions of the potent greenhouse gas N2O is one of the environmental problems associated with intensive use of synthetic N fertilizers, and novel N2O mitigation strategies are needed to minimize fertilizer applications and N2O release without affecting agricultural efficiencies. Increased incorporation of legume crops in agricultural practices offers a sustainable alternative. Legumes, in their symbiosis with nitrogen fixing bacteria, rhizobia, reduce the need for fertilizers and also respond to the need for increased production of plant-based proteins. Not all combinations of rhizobia and legumes result in efficient nitrogen fixation, and legume crops therefore often need to be inoculated with compatible rhizobial strains. Recent research has demonstrated that some rhizobia are also very efficient N2O reducers. Several nutritionally and economically important legumes form root nodules in symbiosis with bacteria belonging to Bradyrhizobium. Here, the host-ranges of fourteen N2O reducing Bradyrhizobium strains were tested on six legume hosts; cowpea, groundnut, mung bean, haricot bean, soybean, and alfalfa. The plants were grown for 35 days in pots in sterile sand supplemented with N-free nutrient solution. Cowpea was the most promiscuous host nodulated by all test strains, followed by groundnut (11 strains) and mungbean (4 strains). Three test strains were able to nodulate all these three legumes, while none nodulated the other three hosts. For cowpea, five strains increased the shoot dry weight and ten strains the shoot nitrogen content (pairwise comparison; p < 0.05). For groundnut the corresponding results were three and nine strains. The symbiotic effectiveness for the different strains ranged from 45 to 98% in cowpea and 34 to 95% in groundnut, relative to fertilized controls. The N2O reduction capacity of detached nodules from cowpea plants inoculated with one of these strains confirmed active N2O reduction inside the nodules. When released from senescent nodules such strains are expected to also act as sinks for N2O produced by denitrifying organisms in the soil microbial community. Our strategy to search among known N2O-reducing Bradyrhizobium strains for their N2-fixation effectiveness successfully identified several strains which can potentially be used for the production of legume inoculants with the dual capacities of efficacious N2-fixation and N2O reduction.
Collapse
Affiliation(s)
- Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Tulu Degefu
- International Crops Research Institute for the Semi-Arid Tropics, Addis Ababa, Ethiopia
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
30
|
Gupta VVSR, Zhang B, Penton CR, Yu J, Tiedje JM. Diazotroph Diversity and Nitrogen Fixation in Summer Active Perennial Grasses in a Mediterranean Region Agricultural Soil. Front Mol Biosci 2019; 6:115. [PMID: 31750314 PMCID: PMC6848460 DOI: 10.3389/fmolb.2019.00115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
Summer-growing perennial grasses such as Panicum coloratum L. cv. Bambatsi (Bambatsi panic), Chloris gayana Kunth cv. Katambora (Rhodes grass) and Digitaria eriantha Steud. cv. Premier (Premier digit grass) growing in the poor fertility sandy soils in the Mediterranean regions of southern Australia and western Australia mainly depend upon soil N and biological N inputs through diazotrophic (free living or associative) N fixation. We investigated the community composition and diversity (nifH-amplicon sequencing), abundance (qPCR) and functional capacity (15N incubation assay) of the endophytic diazotrophic community in the below and above ground plant parts of field grown and unfertilized grasses. Results showed a diverse and abundant diazotrophic community inside plant both above and below-ground and there was a distinct diazotrophic assemblage in the different plant parts in all the three grasses. There was a limited difference in the diversity between leaves, stems and roots except that Panicum grass roots harbored greater species richness. Nitrogen fixation potentials ranged between 0.24 and 5.9 mg N kg-1 day-1 and N fixation capacity was found in both the above and below ground plant parts. Results confirmed previous reports of plant species-based variation and that Alpha-Proteobacteria were the dominant group of nifH-harboring taxa both in the belowground and aboveground parts of the three grass species. Results also showed a well-structured nifH-harboring community in all plant parts, an example for a functional endophytic community. Overall, the variation in the number and identity of module hubs and connectors among the different plant parts suggests that co-occurrence patterns within the nifH-harboring community specific to individual compartments and local environments of the niches within each plant part may dictate the overall composition of diazotrophs within a plant.
Collapse
Affiliation(s)
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Christopher Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Julian Yu
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Gaimster H, Alston M, Richardson DJ, Gates AJ, Rowley G. Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol Lett 2019; 365:4768087. [PMID: 29272423 DOI: 10.1093/femsle/fnx277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
In oxygen-limited environments, denitrifying bacteria can switch from oxygen-dependent respiration to nitrate (NO3-) respiration in which the NO3- is sequentially reduced via nitrite (NO2-), nitric oxide (NO) and nitrous oxide (N2O) to dinitrogen (N2). However, atmospheric N2O continues to rise, a significant proportion of which is microbial in origin. This implies that the enzyme responsible for N2O reduction, nitrous oxide reductase (NosZ), does not always carry out the final step of denitrification either efficiently or in synchrony with the rest of the pathway. Despite a solid understanding of the biochemistry underpinning denitrification, there is a relatively poor understanding of how environmental signals and respective transcriptional regulators control expression of the denitrification apparatus. This minireview describes the current picture for transcriptional regulation of denitrification in the model bacterium, Paracoccus denitrificans, highlighting differences in other denitrifying bacteria where appropriate, as well as gaps in our understanding. Alongside this, the emerging role of small regulatory RNAs in regulation of denitrification is discussed. We conclude by speculating how this information, aside from providing a better understanding of the denitrification process, can be translated into development of novel greenhouse gas mitigation strategies.
Collapse
Affiliation(s)
- Hannah Gaimster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Mark Alston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
32
|
Obando M, Correa-Galeote D, Castellano-Hinojosa A, Gualpa J, Hidalgo A, Alché JD, Bedmar E, Cassán F. Analysis of the denitrification pathway and greenhouse gases emissions in Bradyrhizobium sp. strains used as biofertilizers in South America. J Appl Microbiol 2019; 127:739-749. [PMID: 30803109 DOI: 10.1111/jam.14233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
AIMS Greenhouse gases are considered as potential atmospheric pollutants, with agriculture being one of the main emission sources. The practice of inoculating soybean seeds with Bradyrhizobium sp. might contribute to nitrous oxide (N2 O) emissions. We analysed this capacity in five of the most used strains of Bradyrhizobium sp. in South America. METHODS AND RESULTS We analysed the denitrification pathway and N2 O production by Bradyrhizobium japonicum E109 and CPAC15, Bradyrhizobium diazoefficiens CPAC7 and B. elkanii SEMIA 587 and SEMIA 5019, both in free-living conditions and in symbiosis with soybean. The in silico analysis indicated the absence of nosZ genes in B. japonicum and the presence of all denitrification genes in B. diazoefficiens strains, as well as the absence of nirK, norC and nosZ genes in B. elkanii. The in planta analysis confirmed N2 O production under saprophytic conditions or symbiosis with soybean root nodules. In the case of symbiosis, up to 26.1 and 18.4 times higher in plants inoculated with SEMIA5019 and E109, respectively, than in those inoculated with USDA110. CONCLUSIONS The strains E109, SEMIA 5019, CPAC15 and SEMIA 587 showed the highest N2 O production both as free-living cells and in symbiotic conditions in comparison with USDA110 and CPAC7, which do have the nosZ gene. Although norC and nosZ could not be identified in silico or in vitro in SEMIA 587 and SEMIA 5019, these strains showed the capacity to produce N2 O in our experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to analyse and confirm the incomplete denitrification capacity and N2 O production in four of the five most used strains of Bradyrhizobium sp. for soybean inoculation in South America.
Collapse
Affiliation(s)
- M Obando
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - D Correa-Galeote
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - A Castellano-Hinojosa
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - J Gualpa
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Hidalgo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - J D Alché
- Departamento de Protection Vegetal, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - E Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - F Cassán
- Laboratorio de Fisiología Vegetal e Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
33
|
Jiménez-Leiva A, Cabrera JJ, Bueno E, Torres MJ, Salazar S, Bedmar EJ, Delgado MJ, Mesa S. Expanding the Regulon of the Bradyrhizobium diazoefficiens NnrR Transcription Factor: New Insights Into the Denitrification Pathway. Front Microbiol 2019; 10:1926. [PMID: 31481951 PMCID: PMC6710368 DOI: 10.3389/fmicb.2019.01926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Denitrification in the soybean endosymbiont Bradyrhizobium diazoefficiens is controlled by a complex regulatory network composed of two hierarchical cascades, FixLJ-FixK2-NnrR and RegSR-NifA. In the former cascade, the CRP/FNR-type transcription factors FixK2 and NnrR exert disparate control on expression of core denitrifying systems encoded by napEDABC, nirK, norCBQD, and nosRZDFYLX genes in response to microoxia and nitrogen oxides, respectively. To identify additional genes controlled by NnrR and involved in the denitrification process in B. diazoefficiens, we compared the transcriptional profile of an nnrR mutant with that of the wild type, both grown under anoxic denitrifying conditions. This approach revealed more than 170 genes were simultaneously induced in the wild type and under the positive control of NnrR. Among them, we found the cycA gene which codes for the c550 soluble cytochrome (CycA), previously identified as an intermediate electron donor between the bc1 complex and the denitrifying nitrite reductase NirK. Here, we demonstrated that CycA is also required for nitrous oxide reductase activity. However, mutation in cycA neither affected nosZ gene expression nor NosZ protein steady-state levels. Furthermore, cycA, nnrR and its proximal divergently oriented nnrS gene, are direct targets for FixK2 as determined by in vitro transcription activation assays. The dependence of cycA expression on FixK2 and NnrR in anoxic denitrifying conditions was validated at transcriptional level, determined by quantitative reverse transcription PCR, and at the level of protein by performing heme c-staining of soluble cytochromes. Thus, this study expands the regulon of NnrR and demonstrates the role of CycA in the activity of the nitrous oxide reductase, the key enzyme for nitrous oxide mitigation.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Salazar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
34
|
Mania D, Woliy K, Degefu T, Frostegård Å. A common mechanism for efficient N2O reduction in diverse isolates of nodule‐forming bradyrhizobia. Environ Microbiol 2019; 22:17-31. [DOI: 10.1111/1462-2920.14731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Mania
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Kedir Woliy
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| | - Tulu Degefu
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
- International Crops Research Institute for the Semi‐Arid Tropics Addis Ababa Ethiopia
| | - åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Science ås Norway
| |
Collapse
|
35
|
Beule L, Chen KH, Hsu CM, Mackowiak C, Dubeux Jr. JC, Blount A, Liao HL. Soil bacterial and fungal communities of six bahiagrass cultivars. PeerJ 2019; 7:e7014. [PMID: 31179193 PMCID: PMC6545100 DOI: 10.7717/peerj.7014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cultivars of bahiagrass (Paspalum notatum Flüggé) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance. OBJECTIVES This study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities. METHODS Six bahiagrass cultivars ('Argentine', 'Pensacola', 'Sand Mountain', 'Tifton 9', 'TifQuik', and 'UF-Riata') were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano. RESULTS The soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizing Nitrospira was greater under 'Sand Mountain' than 'UF-Riata'. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists. CONCLUSIONS Our results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance of Nitrospira members in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation.
Collapse
Affiliation(s)
- Lukas Beule
- Molecular Phytopathology and Mycotoxin Research, Georg-August Universität Göttingen, Goettingen, Germany
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Chih-Ming Hsu
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Cheryl Mackowiak
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Jose C.B. Dubeux Jr.
- North Florida Research and Education Center, University of Florida, Marianna, FL, United States of America
| | - Ann Blount
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
36
|
Hidalgo-García A, Torres MJ, Salas A, Bedmar EJ, Girard L, Delgado MJ. Rhizobium etli Produces Nitrous Oxide by Coupling the Assimilatory and Denitrification Pathways. Front Microbiol 2019; 10:980. [PMID: 31134023 PMCID: PMC6514139 DOI: 10.3389/fmicb.2019.00980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
More than two-thirds of the powerful greenhouse gas nitrous oxide (N2O) emissions from soils can be attributed to microbial denitrification and nitrification processes. Bacterial denitrification reactions are catalyzed by the periplasmic (Nap) or membrane-bound (Nar) nitrate reductases, nitrite reductases (NirK/cd 1Nir), nitric oxide reductases (cNor, qNor/ CuANor), and nitrous oxide reductase (Nos) encoded by nap/nar, nir, nor and nos genes, respectively. Rhizobium etli CFN42, the microsymbiont of common bean, is unable to respire nitrate under anoxic conditions and to perform a complete denitrification pathway. This bacterium lacks the nap, nar and nos genes but contains genes encoding NirK and cNor. In this work, we demonstrated that R. etli is able to grow with nitrate as the sole nitrogen source under aerobic and microoxic conditions. Genetic and functional characterization of a gene located in the R. etli chromosome and annotated as narB demonstrated that growth under aerobic or microoxic conditions with nitrate as nitrogen source as well as nitrate reductase activity requires NarB. In addition to be involved in nitrate assimilation, NarB is also required for NO and N2O production by NirK and cNor, respectively, in cells grown microoxically with nitrate as the only N source. Furthermore, β-glucuronidase activity from nirK::uidA and norC::uidA fusions, as well as NorC expression and Nir and Nor activities revealed that expression of nor genes under microoxic conditions also depends on nitrate reduction by NarB. Our results suggest that nitrite produced by NarB from assimilatory nitrate reduction is detoxified by NirK and cNor denitrifying enzymes that convert nitrite into NO which in turn is reduced to N2O, respectively.
Collapse
Affiliation(s)
- Alba Hidalgo-García
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J Torres
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ana Salas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - María J Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
37
|
Meng H, Zhou Z, Wu R, Wang Y, Gu JD. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl Microbiol Biotechnol 2018; 103:995-1005. [PMID: 30474727 DOI: 10.1007/s00253-018-9466-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.
Collapse
Affiliation(s)
- Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
38
|
Nishihata S, Kondo T, Tanaka K, Ishikawa S, Takenaka S, Kang CM, Yoshida KI. Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiol 2018; 18:156. [PMID: 30355296 PMCID: PMC6201568 DOI: 10.1186/s12866-018-1317-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Background Bradyrhizobium diazoefficiens USDA110 nodulates soybeans for nitrogen fixation. It accumulates poly-3-hydroxybutyrate (PHB), which is of physiological importance as a carbon/energy source for survival during starvation, infection, and nitrogen fixation conditions. PHB accumulation is orchestrated by not only the enzymes for PHB synthesis but also PHB-binding phasin proteins (PhaPs) stabilizing the PHB granules. The transcription factor PhaR controls the phaP genes. Results Inactivation of phaR led to decreases in PHB accumulation, less cell yield, increases in exopolysaccharide (EPS) production, some improvement in heat stress tolerance, and slightly better growth under microaerobic conditions. Changes in the transcriptome upon phaR inactivation were analyzed. PhaR appeared to be involved in the repression of various target genes, including some PHB-degrading enzymes and others involved in EPS production. Furthermore, in vitro gel shift analysis demonstrated that PhaR bound to the promoter regions of representative targets. For the phaP1 and phaP4 promoter regions, PhaR-binding sites were determined by DNase I footprinting, allowing us to deduce a consensus sequence for PhaR-binding as TGCRNYGCASMA (R: A or G, Y: C or T, S: C or G, M: A or C). We searched for additional genes associated with a PhaR-binding sequence and found that some genes involved in central carbon metabolism, such as pdhA for pyruvate dehydrogenase and pckA for phosphoenolpyruvate carboxykinase, may be regulated positively and directly by PhaR. Conclusions These results suggest that PhaR could regulate various genes not only negatively but also positively to coordinate metabolism holistically in response to PHB accumulation. Electronic supplementary material The online version of this article (10.1186/s12866-018-1317-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shogo Nishihata
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Takahiko Kondo
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Kosei Tanaka
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan
| | - Choong-Min Kang
- Department of Biological Science, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501, Japan.
| |
Collapse
|
39
|
Jang J, Ashida N, Kai A, Isobe K, Nishizawa T, Otsuka S, Yokota A, Senoo K, Ishii S. Presence of Cu-Type (NirK) and cd 1-Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium Bradyrhizobium nitroreducens sp. nov. Microbes Environ 2018; 33:326-331. [PMID: 30158366 PMCID: PMC6167111 DOI: 10.1264/jsme2.me18039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitrite reductase is a key enzyme for denitrification. There are two types of nitrite reductases: copper-containing NirK and cytochrome cd1-containing NirS. Most denitrifiers possess either nirK or nirS, although a few strains been reported to possess both genes. We herein report the presence of nirK and nirS in the soil-denitrifying bacterium Bradyrhizobium sp. strain TSA1T. Both nirK and nirS were identified and actively transcribed under denitrification conditions. Based on physiological, chemotaxonomic, and genomic properties, strain TSA1T (=JCM 18858T=KCTC 62391T) represents a novel species within the genus Bradyrhizobium, for which we propose the name Bradyrhizobium nitroreducens sp. nov.
Collapse
Affiliation(s)
| | - Naoaki Ashida
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Ayaaki Kai
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Kazuo Isobe
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Tomoyasu Nishizawa
- Department of Food and Life Sciences, Ibaraki University College of Agriculture
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Akira Yokota
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo.,Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University
| | - Keishi Senoo
- Department of Applied Biological Chemistry, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Satoshi Ishii
- Biotechnology Institute, University of Minnesota.,Department of Soil, Water, and Climate, University of Minnesota
| |
Collapse
|
40
|
Gerrity D, Arnold M, Dickenson E, Moser D, Sackett JD, Wert EC. Microbial community characterization of ozone-biofiltration systems in drinking water and potable reuse applications. WATER RESEARCH 2018; 135:207-219. [PMID: 29477059 DOI: 10.1016/j.watres.2018.02.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/16/2023]
Abstract
Microbial community structure in the ozone-biofiltration systems of two drinking water and two wastewater treatment facilities was characterized using 16S rRNA gene sequencing. Collectively, these datasets enabled comparisons by facility, water type (drinking water, wastewater), pre-oxidation (ozonation, chlorination), media type (anthracite, activated carbon), media depth, and backwash dynamics. Proteobacteria was the most abundant phylum in drinking water filters, whereas Bacteroidetes, Chloroflexi, Firmicutes, and Planctomycetes were differentially abundant in wastewater filters. A positive correlation was observed between media depth and relative abundance of Cyanobacteria in drinking water filters, but there was only a slight increase in one alpha diversity metric with depth in the wastewater filters. Media type had a significant effect on beta but not alpha diversity in drinking water and wastewater filters. Pre-ozonation caused a significant decrease in alpha diversity in the wastewater filters, but the effect on beta diversity was not statistically significant. An evaluation of backwash dynamics resulted in two notable observations: (1) endosymbionts such as Neochlamydia and Legionella increased in relative abundance following backwashing and (2) nitrogen-fixing Bradyrhizobium dominated the microbial community in wastewater filters operated with infrequent backwashing. Bradyrhizobium is known to generate extracellular polymeric substances (EPS), which may adversely impact biofilter performance and effluent water quality. These findings have important implications for public health and the operation and resiliency of biofiltration systems.
Collapse
Affiliation(s)
- Daniel Gerrity
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States.
| | - Mayara Arnold
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Duane Moser
- Desert Research Institute, 755 E. Flamingo Rd. Las Vegas, NV 89119, United States
| | - Joshua D Sackett
- Desert Research Institute, 755 E. Flamingo Rd. Las Vegas, NV 89119, United States; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Eric C Wert
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
41
|
Torres MJ, Avila S, Bedmar EJ, Delgado MJ. Overexpression of the periplasmic nitrate reductase supports anaerobic growth by Ensifer meliloti. FEMS Microbiol Lett 2018; 365:4867969. [DOI: 10.1093/femsle/fny041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- María J Torres
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - Sergio Avila
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - Eulogio J Bedmar
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| | - María J Delgado
- Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
42
|
Sánchez C, Minamisawa K. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiol Lett 2018; 365:4817536. [DOI: 10.1093/femsle/fny015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
43
|
Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11 T and Bradyrhizobium yuanmingense CCBAU 10071 T. Stand Genomic Sci 2017; 12:74. [PMID: 29225730 PMCID: PMC5717998 DOI: 10.1186/s40793-017-0283-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
The type strain of the prospective 10.1601/nm.30737 sp. nov. ERR11T, was isolated from a nodule of the leguminous tree Erythrina brucei native to Ethiopia. The type strain 10.1601/nm.1463 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T, was isolated from the nodules of Lespedeza cuneata in Beijing, China. The genomes of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T were sequenced by DOE-JGI and deposited at the DOE-JGI genome portal as well as at the European Nucleotide Archive. The genome of ERR11T is 9,163,226 bp in length and has 102 scaffolds, containing 8548 protein-coding and 86 RNA genes. The 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T genome is arranged in 108 scaffolds and consists of 8,201,522 bp long and 7776 protein-coding and 85 RNA genes. Both genomes contain symbiotic genes, which are homologous to the genes found in the complete genome sequence of 10.1601/nm.24498 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T. The genes encoding for nodulation and nitrogen fixation in ERR11T showed high sequence similarity with homologous genes found in the draft genome of peanut-nodulating 10.1601/nm.27386 10.1601/strainfinder?urlappend=%3Fid%3DLMG+26795 T. The nodulation genes nolYA-nodD2D1YABCSUIJ-nolO-nodZ of ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+10071 T are organized in a similar way to the homologous genes identified in the genomes of 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+110 T, 10.1601/nm.25806 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/nm.1462 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+05525. The genomes harbor hupSLCFHK and hypBFDE genes that code the expression of hydrogenase, an enzyme that helps rhizobia to uptake hydrogen released by the N2-fixation process and genes encoding denitrification functions napEDABC and norCBQD for nitrate and nitric oxide reduction, respectively. The genome of ERR11T also contains nosRZDFYLX genes encoding nitrous oxide reductase. Based on multilocus sequence analysis of housekeeping genes, the novel species, which contains eight strains formed a unique group close to the 10.1601/nm.25806 branch. Genome Average Nucleotide Identity (ANI) calculated between the genome sequences of ERR11T and closely related sequences revealed that strains belonging to 10.1601/nm.25806 branch (10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615), were the closest strains to the strain ERR11T with 95.2% ANI. Type strain ERR11T showed the highest DDH predicted value with 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 (58.5%), followed by 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 (53.1%). Nevertheless, the ANI and DDH values obtained between ERR11T and 10.1601/strainfinder?urlappend=%3Fid%3DCCBAU+15615 or 10.1601/strainfinder?urlappend=%3Fid%3DUSDA+4 were below the cutoff values (ANI ≥ 96.5%; DDH ≥ 70%) for strains belonging to the same species, suggesting that ERR11T is a new species. Therefore, based on the phylogenetic analysis, ANI and DDH values, we formally propose the creation of 10.1601/nm.30737 sp. nov. with strain ERR11T (10.1601/strainfinder?urlappend=%3Fid%3DHAMBI+3532 T=10.1601/strainfinder?urlappend=%3Fid%3DLMG+30162 T) as the type strain.
Collapse
Affiliation(s)
- Aregu Amsalu Aserse
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - William B Whitman
- Department of Microbiology, Biological Sciences, University of Georgia, Athens, USA
| | - Kristina Lindström
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Deng YL, Ruan YJ, Zhu SM, Guo XS, Han ZY, Ye ZY, Liu G, Shi MM. The impact of DO and salinity on microbial community in poly(butylene succinate) denitrification reactors for recirculating aquaculture system wastewater treatment. AMB Express 2017; 7:113. [PMID: 28582972 PMCID: PMC5457379 DOI: 10.1186/s13568-017-0412-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
The interactions between environmental factors and bacterial community shift in solid-phase denitrification are crucial for optimum operation of a reactor and to achieve maximum treatment efficiency. In this study, Illumina high-throughput sequencing was applied to reveal the effects of different operational conditions on bacterial community distribution of three continuous operated poly(butylene succinate) biological denitrification reactors used for recirculating aquaculture system (RAS) wastewater treatment. The results indicated that salinity decreased OTU numbers and diversity while dissolved oxygen (DO) had no obvious influence on OTU numbers. Significant microbial community composition differences were observed among and between three denitrification reactors under varied operation conditions. This result was also demonstrated by cluster analysis (CA) and detrended correspondence analysis (DCA). Hierarchical clustering and redundancy analysis (RDA) was performed to test the relationship between environmental factors and bacterial community compositions and result indicated that salinity, DO and hydraulic retention time (HRT) were the three key factors in microbial community formation. Besides, Simplicispira was detected under all operational conditions, which worth drawing more attention for nitrate removal. Moreover, the abundance of nosZ gene and 16S rRNA were analyzed by real-time PCR, which suggested that salinity decreased the proportion of denitrifiers among whole bacterial community while DO had little influence on marine reactors. This study provides an overview of microbial community shift dynamics in solid-phase denitrification reactors when operation parameters changed and proved the feasibility to apply interval aeration for denitrification process based on microbial level, which may shed light on improving the performance of RAS treatment units.
Collapse
|
45
|
Siqueira AF, Minamisawa K, Sánchez C. Anaerobic Reduction of Nitrate to Nitrous Oxide Is Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes Environ 2017; 32:398-401. [PMID: 29109361 PMCID: PMC5745027 DOI: 10.1264/jsme2.me17081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When soil oxygen levels decrease, some bradyrhizobia use denitrification as an alternative form of respiration. Bradyrhizobium diazoefficiens (nos+) completely denitrifies nitrate (NO3-) to dinitrogen, whereas B. japonicum (nos-) is unable to reduce nitrous oxide to dinitrogen. We found that anaerobic growth with NO3- as the electron acceptor was significantly lower in B. japonicum than in B. diazoefficiens, and this was not explained by the absence of nos in B. japonicum. Our results indicate that the reason for the limited growth of B. japonicum is weak NO3- reduction due to impaired periplasmic nitrate reductase activity, which may rely on posttranscriptional events.
Collapse
|
46
|
Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation. Appl Environ Microbiol 2017; 83:AEM.01488-17. [PMID: 28916558 DOI: 10.1128/aem.01488-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions.IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system.
Collapse
|
47
|
Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, Müller C, Braker G. Soil Conditions Rather Than Long-Term Exposure to Elevated CO 2 Affect Soil Microbial Communities Associated with N-Cycling. Front Microbiol 2017; 8:1976. [PMID: 29093701 PMCID: PMC5651278 DOI: 10.3389/fmicb.2017.01976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the soil but that spatial heterogeneity over extended periods had shaped microbial communities at particular sites in the field. Hence, microbial community composition and abundance alone cannot explain the functional differences leading to higher N2O emissions under eCO2 and future studies should aim at exploring the active members of the soil microbial community.
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Gerald Moser
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Cécile Guillet
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Claudia Kammann
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,Climate Change Research for Special Crops, Department of Soil Science and Plant Nutrition, Geisenheim University, Geisenheim, Germany
| | - Christoph Müller
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gesche Braker
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,University of Kiel, Kiel, Germany
| |
Collapse
|
48
|
Torres MJ, Bueno E, Jiménez-Leiva A, Cabrera JJ, Bedmar EJ, Mesa S, Delgado MJ. FixK 2 Is the Main Transcriptional Activator of Bradyrhizobium diazoefficiens nosRZDYFLX Genes in Response to Low Oxygen. Front Microbiol 2017; 8:1621. [PMID: 28912756 PMCID: PMC5582078 DOI: 10.3389/fmicb.2017.01621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
The powerful greenhouse gas, nitrous oxide (N2O) has a strong potential to drive climate change. Soils are the major source of N2O and microbial nitrification and denitrification the main processes involved. The soybean endosymbiont Bradyrhizobium diazoefficiens is considered a model to study rhizobial denitrification, which depends on the napEDABC, nirK, norCBQD, and nosRZDYFLX genes. In this bacterium, the role of the regulatory cascade FixLJ-FixK2-NnrR in the expression of napEDABC, nirK, and norCBQD genes involved in N2O synthesis has been previously unraveled. However, much remains to be discovered regarding the regulation of the respiratory N2O reductase (N2OR), the key enzyme that mitigates N2O emissions. In this work, we have demonstrated that nosRZDYFLX genes constitute an operon which is transcribed from a major promoter located upstream of the nosR gene. Low oxygen was shown to be the main inducer of expression of nosRZDYFLX genes and N2OR activity, FixK2 being the regulatory protein involved in such control. Further, by using an in vitro transcription assay with purified FixK2 protein and B. diazoefficiens RNA polymerase we were able to show that the nosRZDYFLX genes are direct targets of FixK2.
Collapse
Affiliation(s)
- María J Torres
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Emilio Bueno
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|
49
|
Bueno E, Robles EF, Torres MJ, Krell T, Bedmar EJ, Delgado MJ, Mesa S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide 2017; 68:137-149. [DOI: 10.1016/j.niox.2017.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023]
|
50
|
Saeki Y, Nakamura M, Mason MLT, Yano T, Shiro S, Sameshima-Saito R, Itakura M, Minamisawa K, Yamamoto A. Effect of Flooding and the nosZ Gene in Bradyrhizobia on Bradyrhizobial Community Structure in the Soil. Microbes Environ 2017; 32:154-163. [PMID: 28592720 PMCID: PMC5478539 DOI: 10.1264/jsme2.me16132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6T, B. japonicum USDA123, and B. elkanii USDA76T, which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110Twt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110Twt possesses the nosZ gene, which encodes N2O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6T and 76T strains slightly increased in non-flooded soil regardless of which USDA110T strain was present. In flooded microcosms with the USDA110Twt strain, USDA110Twt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110Twt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.
Collapse
Affiliation(s)
- Yuichi Saeki
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Misato Nakamura
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Maria Luisa T. Mason
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
- College of Agriculture, Central Luzon State UniversityScience City of Muñoz, 3120 Nueva EcijaPhilippines
| | - Tsubasa Yano
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| | - Sokichi Shiro
- Faculty of Life and Environmental Science, Shimane UniversityShimane 690–8504Japan
| | - Reiko Sameshima-Saito
- College of Agriculture, Academic Institute, Shizuoka UniversityShizuoka 422–8529Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku UniversitySendai, Miyagi 980–8577Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo UniversityKyoto 603–8555Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku UniversitySendai, Miyagi 980–8577Japan
| | - Akihiro Yamamoto
- Faculty of Agriculture, University of MiyazakiMiyazaki 889–2192Japan
| |
Collapse
|