1
|
Komori T, Fukuda M. Two roads diverged in a cell: insights from differential exosome regulation in polarized cells. Front Cell Dev Biol 2024; 12:1451988. [PMID: 39286483 PMCID: PMC11402822 DOI: 10.3389/fcell.2024.1451988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Exosomes are extracellular vesicles involved in intercellular signaling, carrying various cargo from microRNAs to metabolites and proteins. They are released by practically all cells and are highly heterogenous due to their origin and content. Several groups of exosomes are known to be involved in various pathological conditions including autoimmune, neurodegenerative, and infectious diseases as well as cancer, and therefore a substantial understanding of their biogenesis and release is crucial. Polarized cells display an array of specific functions originated from differentiated membrane trafficking systems and could lead to hints in untangling the complex process of exosomes. Indeed, recent advances have successfully revealed specific regulation pathways for releasing different subsets of exosomes from different sides of polarized epithelial cells, underscoring the importance of polarized cells in the field. Here we review current evidence on exosome biogenesis and release, especially in polarized cells, highlight the challenges that need to be combatted, and discuss potential applications related to exosomes of polarized-cell origin.
Collapse
Affiliation(s)
- Tadayuki Komori
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Menaceur C, Dusailly O, Gosselet F, Fenart L, Saint-Pol J. Vesicular Trafficking, a Mechanism Controlled by Cascade Activation of Rab Proteins: Focus on Rab27. BIOLOGY 2023; 12:1530. [PMID: 38132356 PMCID: PMC10740503 DOI: 10.3390/biology12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Vesicular trafficking is essential for the cell to internalize useful proteins and soluble substances, for cell signaling or for the degradation of pathogenic elements such as bacteria or viruses. This vesicular trafficking also enables the cell to engage in secretory processes for the elimination of waste products or for the emission of intercellular communication vectors such as cytokines, chemokines and extracellular vesicles. Ras-related proteins (Rab) and their effector(s) are of crucial importance in all of these processes, and mutations/alterations to them have serious pathophysiological consequences. This review presents a non-exhaustive overview of the role of the major Rab involved in vesicular trafficking, with particular emphasis on their involvement in the biogenesis and secretion of extracellular vesicles, and on the role of Rab27 in various pathophysiological processes. Therefore, Rab and their effector(s) are central therapeutic targets, given their involvement in vesicular trafficking and their importance for cell physiology.
Collapse
Affiliation(s)
| | | | | | | | - Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France; (C.M.); (O.D.); (F.G.); (L.F.)
| |
Collapse
|
3
|
Chen X, Li J, Zhang R, Zhang Y, Wang X, Leung EL, Ma L, Wong VKW, Liu L, Neher E, Yu H. Suppression of PD-L1 release from small extracellular vesicles promotes systemic anti-tumor immunity by targeting ORAI1 calcium channels. J Extracell Vesicles 2022; 11:e12279. [PMID: 36482876 PMCID: PMC9732629 DOI: 10.1002/jev2.12279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of immune checkpoints as a strategy of cancer cells to overcome the immune response has received ample attention in cancer research recently. In particular, expression of PD-L1 by various cancer cells has become a paradigm in this respect. Delivery of PD-L1 to its site of action occurs either by local diffusion, or else by transport via small extracellular vesicles (sEVs, commonly referred to as exosomes). Many steps of sEVs formation, their packaging with PD-L1 and their release into the extracellular space have been studied in detail. The likely dependence of release on Ca2+ -signaling, however, has received little attention. This is surprising, since the intracellular Ca2+ -concentration is known as a prominent regulator of many secretory processes. Here, we report on the roles of three Ca2+ -dependent proteins in regulating release of PD-L1-containing sEVs, as well as on the growth of tumors in mouse models. We show that sEVs release in cancer cell lines is Ca2+ -dependent and the knockdown of the gene coding the Ca2+ -channel protein ORAI1 reduces Ca2+ -signals and release of sEVs. Consequently, the T cell response is reinvigorated and tumor progression in mouse models is retarded. Furthermore, analysis of protein expression patterns in samples from human cancer tissue shows that the ORAI1 gene is significantly upregulated. Such upregulation is identified as an unfavorable prognostic factor for survival of patients with non-small-cell lung cancer. We show that reduced Ca2+ -signaling after knockdown of ORAI1 gene also compromises the activity of melanophilin and Synaptotagmin-like protein 2, two proteins, which are important for correct localization of secretory organelles within cancer cells and their transport to sites of exocytosis. Thus, the Ca2+ -channel ORAI1 and Ca2+ -dependent proteins of the secretion pathway emerge as important targets for understanding and manipulating immune checkpoint blockade by PD-L1.
Collapse
Affiliation(s)
- Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Elaine Lai‐Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina,Emeritus Laboratory of Membrane BiophysicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug DiscoveryState Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
4
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
5
|
Lien W, Chen Y, Li Y, Wu J, Huang K, Lin J, Lin S, Hou C, Wang H, Wu C, Huang S, Chan C. Lifespan regulation in α/β posterior neurons of the fly mushroom bodies by Rab27. Aging Cell 2020; 19:e13179. [PMID: 32627932 PMCID: PMC7431830 DOI: 10.1111/acel.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Brain function has been implicated to control the aging process and modulate lifespan. However, continuous efforts remain for the identification of the minimal sufficient brain region and the underlying mechanism for neuronal regulation of longevity. Here, we show that the Drosophila lifespan is modulated by rab27 functioning in a small subset of neurons of the mushroom bodies (MB), a brain structure that shares analogous functions with mammalian hippocampus and hypothalamus. Depleting rab27 in the α/βp neurons of the MB is sufficient to extend lifespan, enhance systemic stress responses, and alter energy homeostasis, all without trade‐offs in major life functions. Within the α/βp neurons, rab27KO causes the mislocalization of phosphorylated S6K thus attenuates TOR signaling, resulting in decreased protein synthesis and reduced neuronal activity. Consistently, expression of dominant‐negative S6K in the α/βp neurons increases lifespan. Furthermore, the expression of phospho‐mimetic S6 in α/βp neurons of rab27KO rescued local protein synthesis and reversed lifespan extension. These findings demonstrate that inhibiting TOR‐mediated protein synthesis in α/βp neurons is sufficient to promote longevity.
Collapse
Affiliation(s)
- Wen‐Yu Lien
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Ting Chen
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yi‐Jhan Li
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jie‐Kai Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Kuan‐Lin Huang
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jian‐Rong Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Shih‐Ching Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Chia‐Chun Hou
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Horng‐Dar Wang
- Institute of Biotechnology National Tsing Hua University Hsinchu Taiwan
| | - Chia‐Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Neurology Linkou Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Shu‐Yi Huang
- Department of Medical Research National Taiwan University Hospital Taipei Taiwan
| | - Chih‐Chiang Chan
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
6
|
Phatarpekar PV, Billadeau DD. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J Cell Sci 2020; 133:133/5/jcs240424. [PMID: 32086255 DOI: 10.1242/jcs.240424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells, cytolytic lymphocytes of the innate immune system, play a crucial role in the immune response against infection and cancer. NK cells kill target cells through exocytosis of lytic granules that contain cytotoxic proteins, such as perforin and granzymes. Formation of a functional immune synapse, i.e. the interface between the NK cell and its target cell enhances lysis through accumulation of polymerized F-actin at the NK cell synapse, leading to convergence of lytic granules to the microtubule organizing center (MTOC) and its subsequent polarization along microtubules to deliver the lytic granules to the synapse. In this review, we focus on the molecular mechanisms regulating the cellular processes that occur after the lytic granules are delivered to the cytotoxic synapse. We outline how - once near the synapse - the granules traverse the clearings created by F-actin remodeling to dock, tether and fuse with the plasma membrane in order to secrete their lytic content into the synaptic cleft through exocytosis. Further emphasis is given to the role of Ca2+ mobilization during degranulation and, whenever applicable, we compare these mechanisms in NK cells and cytotoxic T lymphocytes (CTLs) as adaptive immune system effectors.
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Zhu Q, Tian G, Gao J. Construction of prognostic risk prediction model of oral squamous cell carcinoma based on co-methylated genes. Int J Mol Med 2019; 44:787-796. [PMID: 31198983 PMCID: PMC6657967 DOI: 10.3892/ijmm.2019.4243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to identify DNA methylation markers in oral squamous cell carcinoma (OSCC) and to construct a prognostic prediction model of OSCC. For this purpose, the methylation data of patients with OSCC downloaded from The Cancer Genome Atlas were considered as a training dataset. The methylation profiles of GSE37745 for OSCC samples were downloaded from Gene Expression Omnibus and considered as validation dataset. Differentially methylated genes (DMGs) were screened from the TCGA training dataset, followed by co-methylation analysis using weighted correlation network analysis (WGCNA). Subsequently, the methylation and gene expression levels of DMGs involved in key modules were extracted for correlation analysis. Prognosis-related methylated genes were screened using the univariate Cox regression analysis. Finally, the risk prediction model was constructed and validated through GSE52793. The results revealed that a total of 948 DMGs with CpGs were screened out. Co-methylation gene analysis obtained 2 (brown and turquoise) modules involving 380 DMGs. Correlation analysis revealed that the methylation levels of 132 genes negatively correlated with the gene expression levels. By combining with the clinical survival prognosis of samples, 5 optimized prognostic genes [centromere protein V (CENPV), Tubby bipartite transcription factor (TUB), synaptotagmin like 2 (SYTL2), occludin (OCLN) and CAS1 domain containing 1 (CASD1)] were selected for constructing a risk prediction model. It was consistent in the training dataset and GSE52793 that low-risk samples had a better survival prognosis. On the whole, this study indicates that the constructed risk prediction model based on CENPV, SYTL2, OCLN, CASD1, and TUB may have the potential to be used for predicting the survival prognosis of patients with OSCC.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Stomatolgy, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Gang Tian
- Department of Stomatolgy, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianyong Gao
- Department of Stomatolgy, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
9
|
An HJ, Song DH, Koh HM, Ko GH, Lee JH, Kim DC, Yang JW, Kim MH, Seo DH, Jang SM, Lee JS. RAB27A is an independent prognostic factor in clear cell renal cell carcinoma. Biomark Med 2019; 13:239-247. [PMID: 30661368 DOI: 10.2217/bmm-2018-0336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To examine the expression of RAB27A and RAB27B in clear cell renal cell carcinoma (CCRCC). MATERIALS & METHODS The intensity and proportion of tumor cells staining positive for RAB27A and RAB27B in a total of 304 cores were evaluated. RESULTS The T stage showed a significant correlation with RAB27A intensity (p < 0.001). In multivariate analysis, CCRCC with negative intensity of RAB27A expression demonstrated poor disease-specific survival (hazard ratio: 6.821, 95% CI: 1.128-41.241; p-value = 0.036). CONCLUSION RAB27A is an independent prognostic factor in CCRCC.
Collapse
Affiliation(s)
- Hyo Jung An
- Department of Medicine, Gyeongsang National University College of Medicine, Jinju, Korea.,Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea
| | - Hyun Min Koh
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Gyung Hyuck Ko
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jeong-Hee Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Dong Chul Kim
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Min Hye Kim
- Department of Medicine, Gyeongsang National University College of Medicine, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Deok Ha Seo
- Department of Medicine, Gyeongsang National University College of Medicine, Jinju, Korea.,Department of Urology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Se Min Jang
- Department of Pathology, Konyang University Hospital, Daejeon, Korea
| | - Jong Sil Lee
- Gyeongsang National University School of Medicine, Jinju, Korea.,Gyeongsang Institute of Health Science, Jinju, Korea.,Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
10
|
Reinholz J, Diesler C, Schöttler S, Kokkinopoulou M, Ritz S, Landfester K, Mailänder V. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomater 2018. [PMID: 29530823 DOI: 10.1016/j.actbio.2018.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transport of nanocarriers through barriers like the gut in a living organism involves the transcytosis of these nanocarriers through the cell layer dividing two compartments. Understanding how this process works is not only essential to further developing strategies for a more effective nanocarrier transport system but also for providing fundamental insights into the barrier function as a means of protection against micro- and nanoplastics in the food chain. We therefore set out to investigate the different uptake mechanisms, intracellular trafficking and the routes for exocytosis for small polystyrene nanoparticles (PS-NPs ca. 100 nm) as mimicking nanocarriers in a Caco-2 cell model for gut-blood transition. We used label-free, quantitative mass spectrometry (MS) for determining the proteome that adhered to transversed nanoparticles. From this rich proteomics dataset, as well as previous studies, we generated stable-transfected Caco-2 cell lines carrying the green fluorescent protein (GFP) coupled to proteins of interest for uptake, early, late and exocytotic endosomes. We detected the spatial and temporal overlap of such marked endosomes with the nanocarrier signal in confocal laser scanning and super-resolution microscopy. There was a clear distinction in the time course of nanoparticle trafficking between groups of proteins for endocytosis, intracellular storage and putatively transcytosis and we identified several key transcytotic markers like Rab3 and Copine1. Moreover, we postulate the necessity of a certain protein composition on endosomes for successful transcytosis of nanocarriers. Finally, we define the two-sided impasse of the lysosome as a dead end for nano-plastic and the limit of nanocarriers in the 100 nm range. STATEMENT OF SIGNIFICANCE Here we focus on mechanisms of transcytosis and how we can follow these with methods not used before. First, we use mass spectrometry of transcytosed nanoparticles to pick proteins of the transcytosis machinery describing key proteins involved. We can detect the complex mixtures of proteins. As this is a dynamic process involving whole families of proteins interacting with each other and as this is an orchestrated process we coined the term protein machineries for this active interplay. By genetically modifying the proteins attaching GFP we are able to follow the transcytosis pathway. We evaluate the process in a quantitative manner over time. This reveals that the most obvious obstacle to transcytosis is a routing of the nanocarriers to the lysosomes.
Collapse
|
11
|
Bustos MA, Lucchesi O, Ruete MC, Tomes CN. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides. Cell Signal 2018; 44:72-81. [PMID: 29337043 DOI: 10.1016/j.cellsig.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27 is required for that of Rab3 and Rap1; and the connection between Epac and Rab27 and between Rab27 and the configuration of the SNARE complex. Moreover, we present direct evidence that Rab27A's lipid modification, and activation/inactivation status correlate with its stimulatory or inhibitory roles in exocytosis.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - María C Ruete
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina.
| |
Collapse
|
12
|
Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD. Evolution of Alternative Adaptive Immune Systems in Vertebrates. Annu Rev Immunol 2017; 36:19-42. [PMID: 29144837 DOI: 10.1146/annurev-immunol-042617-053028] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Masayuki Hirano
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| | - Stephen J Holland
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Sabyasachi Das
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Max D Cooper
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| |
Collapse
|
13
|
Raiborg C, Stenmark H. Plasma membrane repairs by small GTPase Rab3a. J Cell Biol 2017; 213:613-5. [PMID: 27325788 PMCID: PMC4915196 DOI: 10.1083/jcb.201606006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Lysosomes fuse with the plasma membrane to help repair membrane lesions, but how they are positioned close to these lesions is not fully understood. Now, Encarnação et al. (2016. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201511093) demonstrate that the lysosomal GTPase Rab3a and its effectors orchestrate lysosome positioning and plasma membrane repair.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
14
|
Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules. Nat Commun 2017; 8:14639. [PMID: 28256511 PMCID: PMC5338022 DOI: 10.1038/ncomms14639] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial exocytosis of Weibel-Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis.
Collapse
|
15
|
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2016; 62:141-150. [PMID: 27928162 DOI: 10.1038/jhg.2016.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/23/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tomoaki Tanaka
- Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Matsunaga K, Taoka M, Isobe T, Izumi T. Rab2a and Rab27a cooperatively regulate the transition from granule maturation to exocytosis through the dual effector Noc2. J Cell Sci 2016; 130:541-550. [PMID: 27927751 DOI: 10.1242/jcs.195479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Exocytosis of secretory granules entails budding from the trans-Golgi network, sorting and maturation of cargo proteins, and trafficking and fusion to the plasma membrane. Rab27a regulates the late steps in this process, such as granule recruitment to the fusion site, whereas Rab2a functions in the early steps, such as granule biogenesis and maturation. Here, we demonstrate that these two small GTPases simultaneously bind to Noc2 (also known as RPH3AL) in a GTP-dependent manner, although Rab2a binds only after Rab27a has bound. In pancreatic β-cells, the ternary Rab2a-Noc2-Rab27a complex specifically localizes on perinuclear immature granules, whereas the binary Noc2-Rab27a complex localizes on peripheral mature granules. In contrast to the wild type, Noc2 mutants defective in binding to Rab2a or Rab27a fail to promote glucose-stimulated insulin secretion. Although knockdown of any component of the ternary complex markedly inhibits insulin secretion, only knockdown of Rab2a or Noc2, and not that of Rab27a, impairs cargo processing from proinsulin to insulin. These results suggest that the dual effector, Noc2, regulates the transition from Rab2a-mediated granule biogenesis to Rab27a-mediated granule exocytosis.
Collapse
Affiliation(s)
- Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan .,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
17
|
Abstract
Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many recent insights into the mechanisms of platelet secretion, many questions remain: have we identified all the important regulators, does calcium directly control the process, and is platelet secretion polarized. In this review, we focus on the mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway leading to membrane fusion and cargo release.
Collapse
Affiliation(s)
- Smita Joshi
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Sidney W Whiteheart
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
18
|
Yoshimatsu G, Takita M, Kanak MA, Haque WZ, Chang C, Saravanan PB, Lawrence MC, Levy MF, Naziruddin B. MiR-375 and miR-200c as predictive biomarkers of islet isolation and transplantation in total pancreatectomy with islet autotransplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:585-94. [PMID: 27429015 DOI: 10.1002/jhbp.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Total pancreatectomy with islet autotransplantation (TPIAT) is a promising treatment for refractory chronic pancreatitis. Predictable biomarkers for the endocrine function after transplantation would be helpful in selecting patients for TPIAT. This study aims to identify novel biomarkers for predicting the outcome of islet isolation and transplantation in TPIAT patients. METHODS This paper studied microRNA of 31 TPIAT patients and 11 deceased donors from plasma samples before TPIAT. MiR-7, miR-200a, miR-200c, miR-320, and miR-375 were analyzed along with patient characteristics and the outcomes of islet isolation and transplantation via univariate and multivariate regression analysis. RESULTS MiR-375 before TPIAT showed a significant correlation with ∆C-peptide (r = -0.396, P = 0.03) and post-digestion islet count (r = -0.372, P = 0.04). And also miR-200c was significantly correlated with insulin requirement, C-peptide, and SUITO index at 1 year after transplantation. Moreover it was confirmed that miR-200c was a predictable factor of endocrine outcome in multi regression analysis (coefficient = -7.081, P = 0.001). CONCLUSIONS We concluded that miR-375 and miR-200c could potentially serve as novel biomarkers in predicting the islet yield in islet isolation and the metabolic function after transplantation for chronic pancreatitis patients.
Collapse
Affiliation(s)
- Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Mazhar A Kanak
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waqas Z Haque
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | | | - Marlon F Levy
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA. .,Islet Cell Laboratory, Baylor Simmons Transplant Institute, 3410 Worth Street, Suite 950, Dallas, TX, 75246, USA.
| |
Collapse
|
19
|
SUNG HYEYOUN, HAN JIHYE, JU WOONG, AHN JUNGHYUCK. Synaptotagmin-like protein 2 gene promotes the metastatic potential in ovarian cancer. Oncol Rep 2016; 36:535-41. [DOI: 10.3892/or.2016.4835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
20
|
Abstract
MicroRNAs are small noncoding ribonucleotides that regulate mRNA translation or degradation and have major roles in cellular function. MicroRNA (miRNA) levels are deregulated or altered in many diseases. There is overwhelming evidence that miRNAs also play an important role in the regulation of glucose homeostasis and thereby may contribute to the establishment of diabetes. MiRNAs have been shown to affect insulin levels by regulating insulin production, insulin exocytosis, and endocrine pancreas development. Although a large number of miRNAs have been identified from pancreatic β-cells using various screens, functional studies that link most of the identified miRNAs to regulation of pancreatic β-cell function are lacking. This review focuses on miRNAs with important roles in regulation of insulin production, insulin secretion, and β-cell development, and will discuss only miRNAs with established roles in β-cell function.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
21
|
Yasuda T, Homma Y, Fukuda M. Slp2-a inactivates ezrin by recruiting protein phosphatase 1 to the plasma membrane. Biochem Biophys Res Commun 2015; 460:896-902. [PMID: 25817786 DOI: 10.1016/j.bbrc.2015.03.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Synaptotagmin-like protein 2-a (Slp2-a) was originally described as a membrane trafficking protein that consists of a Slp homology domain (SHD), a linker domain, and tandem C2 domains (named the C2A domain and C2B domain). Slp2-a mediates docking of Rab27-bearing vesicles to the plasma membrane through simultaneous interaction with Rab27 and phospholipids in the plasma membrane. We have recently reported that Slp2-a regulates renal epithelial cell size through interaction with Rap1GAP2 via the C2B domain independently of Rab27 and demonstrated the presence of excess activation of ezrin, a membrane-cytoskeleton linker and signal transducer, in Slp2-a-knockdown Madin-Darby canine kidney II (MDCK II) cells. However, the precise mechanism of ezrin inactivation by Slp2-a in cell size control has remained largely unknown. In this study, we investigated the functional relationship between Slp2-a and ezrin in MDCK II cells. The results showed that activation of ezrin in control MDCK II cells either pharmacologically or by overexpression of a constitutively active ezrin mutant caused an increase in cell size, whereas inactivation of ezrin in Slp2-a-knockdown cells by a specific ezrin inhibitor restored them to their normal cell size. We also found that Slp2-a interacts via its previously uncharacterized linker domain with protein phosphatase 1β (PP1β), which inactivates ezrin, and that the interaction is required for the plasma membrane localization of PP1β. These results indicate that Slp2-a inactivates ezrin by recruiting PP1 to the plasma membrane.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
22
|
Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T. Quercetin derivatives regulate melanosome transportation via EPI64 inhibition and elongate the cell shape of B16 melanoma cells. Biomed Pharmacother 2015; 70:206-12. [PMID: 25776502 DOI: 10.1016/j.biopha.2015.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022] Open
Abstract
4'-O-β-D-glucopyranosyl-quercetin-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside (3C4'GQ), first isolated from Helminthostachys zeylanica root extract, was synthesized as a compound that stimulates intracellular melanogenesis. 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) were synthesized as compounds that enhance extracellular melanin formation. The formation of dendrites and the expression of EBP50-PDZ interactor of 64 kDa (EPI64) relating to melanin transportation were investigated using B16 melanoma cells treated with 3C4'GQ, 3MQ, or 34'7TMQ in order to understand the mechanism underlying the observed activities. The influence of 3C4'GQ on the increase of intracellular melanin contents enhanced the expression of EPI64, exhibited no dendrite elongation activity, and inhibited melanin transportation. On the other hand, the increase of extracellular melanin content by 3MQ and 34'7TMQ inhibited the expression of EPI64 and formed elongated cells to stimulate melanin transportation.
Collapse
Affiliation(s)
- Kosei Yamauchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Mitsunaga
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan.
| | - Mizuho Inagaki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| | - Tohru Suzuki
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, 501-1193 Gifu, Japan
| |
Collapse
|
23
|
Abstract
The β-cells within the pancreas are responsible for production and secretion of insulin. Insulin is released from pancreatic β-cells in response to increasing blood glucose levels and acts on insulin-sensitive tissues such as skeletal muscle and liver in order to maintain normal glucose homeostasis. Therefore, defects in pancreatic β-cell function lead to hyperglycemia and diabetes mellitus. A new class of molecules called microRNAs has been recently demonstrated to play a crucial role in regulation of pancreatic β-cell function under normal and pathophysiological conditions. miRNAs have been shown to regulate endocrine pancreas development, insulin biosynthesis, insulin exocytosis, and β-cell expansion. Many of the β-cell enriched miRNAs have multiple functions and regulate pancreas development as well as insulin biosynthesis and exocytosis. Furthermore, several of the β-cell specific miRNAs have been shown to accumulate in the circulation before the onset of diabetes and may serve as potential biomarkers for prediabetes. This chapter will focus on miRNAs that are enriched in pancreatic β-cells and play a critical role in modulation of β-cell physiology and may have clinical significance in the treatment of diabetes.
Collapse
|
24
|
Yasuda T, Mrozowska PS, Fukuda M. Functional analysis of Rab27A and its effector Slp2-a in renal epithelial cells. Methods Mol Biol 2015; 1298:127-139. [PMID: 25800838 DOI: 10.1007/978-1-4939-2569-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polarized epithelial cells have two distinct plasma membrane domains, i.e., an apical membrane domain and a basolateral membrane domain, that are the result of polarized trafficking of proteins and lipids. Several members of the Rab-type small GTPases, which are general regulators of membrane trafficking, have been reported to be involved in the regulation of polarized trafficking in epithelial cells, but their precise role in polarized trafficking is poorly understood. In a recent study we used Madin-Darby canine kidney (MDCK) II cells as a model of polarized cells and concluded from the results that Rab27A and its effector synaptotagmin-like protein 2-a (Slp2-a) regulate apical transport of Rab27-bearing vesicles in polarized epithelial cells. Both Rab27A and Slp2-a are uniformly localized at the plasma membrane in subconfluent, non-polarized MDCK II cells, but their expression increases as the cells become polarized, and they are specifically localized at the apical membrane in polarized MDCK II cells (i.e., two-dimensional cell culture). Slp2-a is also localized at the apical membrane of tubular MDCK II cysts (i.e., three-dimensional cell culture) and promotes the formation of a single apical domain in the cysts by regulating polarized trafficking of Rab27-bearing vesicles. In this chapter we describe the assay procedures for analyzing the expression and localization of Rab27A and Slp2-a in non-polarized and polarized renal epithelial cells.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | | | | |
Collapse
|
25
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
26
|
Casadio A, Longman D, Hug N, Delavaine L, Vallejos Baier R, Alonso CR, Cáceres JF. Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals. EMBO Rep 2014; 16:71-8. [PMID: 25452588 PMCID: PMC4304730 DOI: 10.15252/embr.201439183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process.
Collapse
Affiliation(s)
- Angela Casadio
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | - Laurent Delavaine
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| | | | | | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Wang Q, Ni Q, Wang X, Zhu H, Wang Z, Huang J. High expression of RAB27A and TP53 in pancreatic cancer predicts poor survival. Med Oncol 2014; 32:372. [PMID: 25428385 DOI: 10.1007/s12032-014-0372-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
RAB27A is a member of Rab family GTPases involved in cellular vesicle trafficking, and TP53 has recently been implicated in regulating the exosome secretion pathway. Because exosome secretion plays an important role in modulating tumor microenvironment and invasive growth, we hypothesized that RAB27A and TP53 expression might be associated with aggressive behavior in pancreatic ductal adenocarcinoma (PDAC), one of the most deadly human malignancies. We determined protein expression of RAB27A and TP53 in 265 pancreatic tissues (186 carcinomas and 79 normal or benign tissues) by immunohistochemistry analysis on tissue microarray and found their expression was correlated with patients' clinical parameters and overall survival. We found that RAB27A and TP53 protein expression was significantly higher in cancerous tissues compared to normal and benign tissues. High RAB27A protein expression (RAB27A+) was significantly associated with tumor stage and vascular invasion. No correlation between RAB27A and TP53 expression was observed. Patients with high RAB27A expression and high TP53 expression had a poor overall survival. Our data indicate that RAB27A expression is an independent prognostic marker for PDAC, and RAB27A-regulated exosome secretion pathway may represent a novel therapeutic target in pancreatic cancer .
Collapse
Affiliation(s)
- Qingqing Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
28
|
Cazares VA, Subramani A, Saldate JJ, Hoerauf W, Stuenkel EL. Distinct actions of Rab3 and Rab27 GTPases on late stages of exocytosis of insulin. Traffic 2014; 15:997-1015. [PMID: 24909540 DOI: 10.1111/tra.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.
Collapse
Affiliation(s)
- Victor A Cazares
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | |
Collapse
|
29
|
Honma M, Ikebuchi Y, Kariya Y, Suzuki H. Regulatory mechanisms of RANKL presentation to osteoclast precursors. Curr Osteoporos Rep 2014; 12:115-20. [PMID: 24477414 DOI: 10.1007/s11914-014-0189-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is important to understand the molecular mechanisms regulating osteoclast formation, as excess activation of osteoclasts is associated with various osteopenic disorders. Receptor activator of nuclear factor kappa B (RANKL) is a central player in osteoclastogenesis. Recent findings suggest that osteocytes are the major supplier of RANKL to osteoclast precursors. It has also been suggested that osteocyte cell death upregulates the RANKL/osteoprotegerin (OPG) ratio in viable osteocytes adjacent to apoptotic osteocytes in areas of bone microdamage, thus, contributing to localized osteoclast formation. Indeed, viable osteocytes can provide RANKL through direct interactions with osteoclast precursors at osteocyte dendritic processes. In addition, OPG tightly regulates RANKL cell surface presentation in osteocytes, which contributes to the inhibition of RANKL signaling, as well as the decoy receptor function of OPG. By contrast, the physiological role of RANKL in osteoblasts is yet to be clarified, although similar mechanisms of regulation are observed in both osteocytes and osteoblasts.
Collapse
Affiliation(s)
- Masashi Honma
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | |
Collapse
|
30
|
Tuli A, Thiery J, James AM, Michelet X, Sharma M, Garg S, Sanborn KB, Orange JS, Lieberman J, Brenner MB. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell 2013; 24:3721-35. [PMID: 24088571 PMCID: PMC3842998 DOI: 10.1091/mbc.e13-05-0259] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Amit Tuli
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Division of Cell Biology and Immunology, Institute of Microbial Technology, Chandigarh 160036, India
| | - Jerome Thiery
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Institut National de la Santé et de la Recherche Médicale, Unité 753, Institut Gustave Roussy, Villejuif 75654, France
| | - Ashley M. James
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Xavier Michelet
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahak Sharma
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali 140306, India
| | - Salil Garg
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Keri B. Sanborn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jordan S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael B. Brenner
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Lyakhova TA, Knight JD. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids. Chem Phys Lipids 2013; 182:29-37. [PMID: 24184645 DOI: 10.1016/j.chemphyslip.2013.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/19/2013] [Indexed: 11/30/2022]
Abstract
Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.
Collapse
Affiliation(s)
- Tatyana A Lyakhova
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217, USA.
| |
Collapse
|
32
|
Fukuda M. Rab27 effectors, pleiotropic regulators in secretory pathways. Traffic 2013; 14:949-63. [PMID: 23678941 DOI: 10.1111/tra.12083] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Rab27, a member of the small GTPase Rab family, is widely conserved in metazoan, and two Rab27 isoforms, Rab27A and Rab27B, are present in vertebrates. Rab27A was the first Rab protein whose dysfunction was found to cause a human hereditary disease, type 2 Griscelli syndrome, which is characterized by silvery hair and immunodeficiency. The discovery in the 21st century of three distinct types of mammalian Rab27A effectors [synaptotagmin-like protein (Slp), Slp homologue lacking C2 domains (Slac2), and Munc13-4] that specifically bind active Rab27A has greatly accelerated our understanding not only of the molecular mechanisms of Rab27A-mediated membrane traffic (e.g. melanosome transport and regulated secretion) but of the symptoms of Griscelli syndrome patients at the molecular level. Because Rab27B is widely expressed in various tissues together with Rab27A and has been found to have the ability to bind all of the Rab27A effectors that have been tested, Rab27A and Rab27B were initially thought to function redundantly by sharing common Rab27 effectors. However, recent evidence has indicated that by interacting with different Rab27 effectors Rab27A and Rab27B play different roles in special types of secretion (e.g. exosome secretion and mast cell secretion) even within the same cell type. In this review article, I describe the current state of our understanding of the functions of Rab27 effectors in secretory pathways.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
33
|
Hampson A, O'Connor A, Smolenski A. Synaptotagmin-like protein 4 and Rab8 interact and increase dense granule release in platelets. J Thromb Haemost 2013; 11:161-8. [PMID: 23140275 DOI: 10.1111/jth.12068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Platelets are highly specialized cells that regulate hemostasis and thrombosis in the vasculature. Upon activation, platelets release various granules that impact on platelets, the coagulation system, other blood cells and the vessel wall; however, the mechanisms controlling granule release are only partially known. We have shown previously that synaptotagmin-like protein (Slp)1 decreases dense granule release in platelets. OBJECTIVES To determine the role of other Slps and their binding partners on platelet dense granule release. METHODS RT-PCR and immunoblotting were used to identify Slps in human platelets. Interaction between Slp4 and Rab8 was investigated with pull-down assays, coimmunoprecipitation, and confocal microscopy. Secretion assays on permeabilized platelets were performed to investigate the effects of Slp4 and Rab8 on dense granule release. RESULTS Slp4 mRNA and protein are expressed in human platelets. Slp4 interacts with Rab8 in transfected cells and at endogenous protein levels in platelets. We mapped the Rab interaction site to the Slp-homology domain of Slp4, and showed preferential binding of Slp4 to the GTP-bound form of Rab8. Live microscopy showed colocalization of green fluorescent protein-Slp4 and mCherry-Rab8 at the plasma membrane of transfected cells. Endogenous platelet Slp4 and Rab8 colocalized in the center of activated platelets, where granule secretion takes place. Secretion assays revealed that Slp4 and Rab8 enhance dense granule release and that the Slp4 effect is dependent on Rab8 binding. CONCLUSIONS Slp4 and Rab8 are expressed and interact in human platelets, and might be involved in dense granule release.
Collapse
Affiliation(s)
- A Hampson
- UCD Conway Institute, UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
34
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
35
|
Yasuda T, Fukuda M. Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27. J Cell Sci 2013; 127:557-70. [DOI: 10.1242/jcs.134056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Slp2-a is a Rab27 effector protein that regulates transport of Rab27-bearing vesicles/organelles via its N-terminal Rab27-binding domain and a phospholipid-binding C2A domain. Here we demonstrate a Rab27-independent function of Slp2-a in the control of renal cell size via a previously uncharacterized C2B domain. We found that by recruiting Rap1GAPs to the plasma membrane of MDCK II cells via the C2B domain Slp2-a inactivates Rap signaling and modulates the size of the cells. Functional ablation of Slp2-a resulted in an increase in the size of MDCK II cells. Drosophila Slp bitesize was found to compensate for the function of Slp2-a in MDCK II cells, thereby indicating that the mechanism of the cell size control by Slps has been evolutionarily conserved. Interestingly, blockade of the activity of ezrin, a downstream target of Rap, with the glucosylceramide synthase inhibitor miglustat effectively inhibited cell spreading of Slp2-a-knockdown cells. We also discovered aberrant expression of Slp2-a and increased activity of ezrin in pcy mice, a model of polycystic kidney disease that is characterized by renal cell spreading. Our findings indicate that Slp2-a controls renal cell size through regulation of Rap–ezrin signaling independently of Rab27.
Collapse
|
36
|
Liu Y, Zhou Y, Zhu K. Inhibition of glioma cell lysosome exocytosis inhibits glioma invasion. PLoS One 2012; 7:e45910. [PMID: 23029308 PMCID: PMC3461042 DOI: 10.1371/journal.pone.0045910] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
Cancer cells invade by secreting enzymes that degrade the extracellular matrix and these are sequestered in lysosomal vesicles. In this study, the effects of the selective lysosome lysing drug GPN and the lysosome exocytosis inhibitor vacuolin-1 on lysosome exocytosis were studied to determine their effect on glioma cell migration and invasion. Both GPN and vacuolin-1 evidently inhibited migration and invasion in transwell experiments and scratch experiments. There are more lysosomes located on the cell membrane of glioma cells than of astrocytes. GPN decreased the lysosome number on the cell membrane. We found that rab27A was expressed in glioma cells, and colocalized with cathepsin D in lysosome. RNAi-Rab27A inhibited lysosome cathepsin D exocytosis and glioma cell invasion in an in vitro assay. Inhibition of cathepsin D inhibited glioma cell migration. The data suggest that the inhibition of lysosome exocytosis from glioma cells plays an important modulatory role in their migration and invasion.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijiang Zhou
- Department of Pathology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Keqing Zhu
- Department of Pathology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Yasuda T, Saegusa C, Kamakura S, Sumimoto H, Fukuda M. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Mol Biol Cell 2012; 23:3229-39. [PMID: 22767581 PMCID: PMC3418316 DOI: 10.1091/mbc.e12-02-0104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in MDCK II cells in a Rab27A-dependent manner. Apical membrane localization of podocalyxin is required for expression of the tight junction protein claudin-2 through modulation of intracellular signals, including MAPK signals. Most cells in tissues are polarized and usually have two distinct plasma membrane domains—an apical membrane and a basolateral membrane, which are the result of polarized trafficking of proteins and lipids. However, the mechanism underlying the cell polarization is not fully understood. In this study, we investigated the involvement of synaptotagmin-like protein 2-a (Slp2-a), an effector molecule for the small GTPase Rab27, in polarized trafficking by using Madin–Darby canine kidney II cells as a model of polarized cells. The results show that the level of Slp2-a expression in MDCK II cells increases greatly as the cells become polarized and that its expression is specifically localized at the apical membrane. The results also reveal that Slp2-a is required for targeting of the signaling molecule podocalyxin to the apical membrane in a Rab27A-dependent manner. In addition, ezrin, a downstream target of podocalyxin, and ERK1/2 are activated in Slp2-a–knockdown cells, and their activation results in a dramatic reduction in the amount of the tight junction protein claudin-2. Because both Slp2-a and claudin-2 are highly expressed in mouse renal proximal tubules, Slp2-a is likely to regulate claudin-2 expression through trafficking of podocalyxin to the apical surface in mouse renal tubule epithelial cells.
Collapse
Affiliation(s)
- Takao Yasuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
38
|
Feng W, Liang T, Yu J, Zhou W, Zhang Y, Wu Z, Xu T. RAB-27 and its effector RBF-1 regulate the tethering and docking steps of DCV exocytosis in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2012; 55:228-35. [PMID: 22527519 DOI: 10.1007/s11427-012-4296-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/18/2012] [Indexed: 10/28/2022]
Abstract
The molecular mechanisms by which dense core vesicles (DCVs) translocate, tether, dock and prime are poorly understood. In this study, Caenorhabditis elegans was used as a model organism to study the function of Rab proteins and their effectors in DCV exocytosis. RAB-27/AEX-6, but not RAB-3, was found to be required for peptide release from neurons. By analyzing the movement of DCVs approaching the plasma membrane using total internal reflection fluorescence microscopy, we demonstrated that RAB-27/AEX-6 is involved in the tethering of DCVs and that its effector rabphilin/RBF-1 is required for the initial tethering and subsequent stabilization by docking.
Collapse
Affiliation(s)
- WanJuan Feng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 2011; 6:e22931. [PMID: 21829560 PMCID: PMC3145781 DOI: 10.1371/journal.pone.0022931] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/06/2011] [Indexed: 02/03/2023] Open
Abstract
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.
Collapse
|
40
|
Kariya Y, Honma M, Hanamura A, Aoki S, Ninomiya T, Nakamichi Y, Udagawa N, Suzuki H. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 2011; 26:689-703. [PMID: 20939018 DOI: 10.1002/jbmr.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The quantity of the receptor activator of NF-κB ligand (RANKL) expressed at the cell surface of osteoblastic cells is an important factor regulating osteoclast activation. Previously, RANKL was found to be localized to secretory lysosomes in osteoblastic cells and to translocate to the cell surface in response to stimulation with RANK-Fc-conjugated beads. However, the in vivo significance of stimulation-dependent RANKL release has not been elucidated. In this study we show that small GTPases Rab27a and Rab27b are involved in the stimulation-dependent RANKL release pathway in osteoblastic cells. Suppression of either Rab27a or Rab27b resulted in a marked reduction in RANKL release after stimulation. Slp4-a, Slp5, and Munc13-4 acted as effector molecules that coordinated Rab27a/b activity in this pathway. Suppression of Rab27a/b or these effector molecules did not inhibit accumulation of RANKL in lysosomal vesicles around the stimulated sites but did inhibit the fusion of these vesicles to the plasma membrane. In osteoblastic cells, suppression of the effector molecules resulted in reduced osteoclastogenic ability. Furthermore, Jinx mice, which lack a functional Munc13-4 gene, exhibited a phenotype characterized by increased bone volume near the tibial metaphysis caused by low bone resorptive activity. In conclusion, stimulation-dependent RANKL release is mediated by Rab27a/b and their effector molecules, and this mechanism may be important for osteoclast activation in vivo.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu D, Meckel T, Long EO. Distinct role of rab27a in granule movement at the plasma membrane and in the cytosol of NK cells. PLoS One 2010; 5:e12870. [PMID: 20877725 PMCID: PMC2943471 DOI: 10.1371/journal.pone.0012870] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Protocols were developed to automate image analysis and to track the movement of thousands of vesicular compartments in live cells. Algorithms were used to discriminate among different types of movement (e.g. random, caged, and directed). We applied these tools to investigate the steady-state distribution and movement of lytic granules (LG) in live natural killer (NK) cells by high-speed 3-dimensional (3D) spinning disc confocal and 2-dimensional total internal reflection fluorescence microscopy. Both mouse NK cells and a human NK cell line deficient in the small GTPase Rab27a were examined. The unbiased analysis of large datasets led to the following observations and conclusions. The majority of LG in the cytosol and at the plasma membrane of unstimulated NK cells are mobile. The use of inhibitors indicated that movement in the cytosol required microtubules but not actin, whereas movement at the plasma membrane required both. Rab27a deficiency resulted in fewer LG, and in a reduced fraction of mobile LG, at the plasma membrane. In contrast, loss of Rab27a increased the fraction of mobile LG and the extent of their movement in the cytosol. Therefore, in addition to its documented role in LG delivery to the plasma membrane, Rab27a may restrict LG movement in the cytosol.
Collapse
Affiliation(s)
- Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tobias Meckel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Strunnikova NV, Barb J, Sergeev YV, Thiagarajasubramanian A, Silvin C, Munson PJ, Macdonald IM. Loss-of-function mutations in Rab escort protein 1 (REP-1) affect intracellular transport in fibroblasts and monocytes of choroideremia patients. PLoS One 2009; 4:e8402. [PMID: 20027300 PMCID: PMC2793004 DOI: 10.1371/journal.pone.0008402] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Choroideremia (CHM) is a progressive X-linked retinopathy caused by mutations in the CHM gene, which encodes Rab escort protein-1 (REP-1), an escort protein involved in the prenylation of Rabs. Under-prenylation of certain Rabs, as a result of loss of function mutations in REP-1, could affect vesicular trafficking, exocytosis and secretion in peripheral cells of CHM patients. Methodology/Principal Findings To evaluate this hypothesis, intracellular vesicle transport, lysosomal acidification and rates of proteolytic degradation were studied in monocytes (CD14+ fraction) and primary skin fibroblasts from the nine age-matched controls and thirteen CHM patients carrying 10 different loss-of-function mutations. With the use of pHrodo™ BioParticles® conjugated with E. coli, collagen I coated FluoSpheres beads and fluorescent DQ™ ovalbumin with BODYPY FL dye, we demonstrated for the first time that lysosomal pH was increased in monocytes of CHM patients and, as a consequence, the rates of proteolytic degradation were slowed. Microarray analysis of gene expression revealed that some genes involved in the immune response, small GTPase regulation, transcription, cell adhesion and the regulation of exocytosis were significantly up and down regulated in cells from CHM patients compared to controls. Finally, CHM fibroblasts secreted significantly lower levels of cytokine/growth factors such as macrophage chemoattractant protein-1 (MCP-1), pigment epithelial derived factor (PEDF), tumor necrosis factor (TNF) alpha, fibroblast growth factor (FGF) beta and interleukin (lL)-8. Conclusions/Significance We demonstrated for the first time that peripheral cells of CHM patients had increased pH levels in lysosomes, reduced rates of proteolytic degradation and altered secretion of cytokines. Peripheral cells from CHM patients expose characteristics that were not previously recognized and could used as an alternative models to study the effects of different mutations in the REP-1 gene on mechanism of CHM development in human population.
Collapse
Affiliation(s)
- Natalia V Strunnikova
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
de Wit H, Walter AM, Milosevic I, Gulyás-Kovács A, Riedel D, Sørensen JB, Verhage M. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 2009; 138:935-46. [PMID: 19716167 DOI: 10.1016/j.cell.2009.07.027] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 06/02/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Docking, the initial association of secretory vesicles with the plasma membrane, precedes formation of the SNARE complex, which drives membrane fusion. For many years, the molecular identity of the docked state, and especially the vesicular docking protein, has been unknown, as has the link to SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that vesicles dock when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes, whereas Munc18-1 is required for the downstream association of synaptobrevin to form fusogenic SNARE complexes.
Collapse
Affiliation(s)
- Heidi de Wit
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam and VU Medical Center, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Basel-Vanagaite L, Sarig O, Hershkovitz D, Fuchs-Telem D, Rapaport D, Gat A, Isman G, Shirazi I, Shohat M, Enk CD, Birk E, Kohlhase J, Matysiak-Scholze U, Maya I, Knopf C, Peffekoven A, Hennies HC, Bergman R, Horowitz M, Ishida-Yamamoto A, Sprecher E. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am J Hum Genet 2009; 85:254-63. [PMID: 19631308 DOI: 10.1016/j.ajhg.2009.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022] Open
Abstract
Inherited disorders of elastic tissue represent a complex and heterogeneous group of diseases, characterized often by sagging skin and occasionally by life-threatening visceral complications. In the present study, we report on an autosomal-recessive disorder that we have termed MACS syndrome (macrocephaly, alopecia, cutis laxa, and scoliosis). The disorder was mapped to chromosome 20p11.21-p11.23, and a homozygous frameshift mutation in RIN2 was found to segregate with the disease phenotype in a large consanguineous kindred. The mutation identified results in decreased expression of RIN2, a ubiquitously expressed protein that interacts with Rab5 and is involved in the regulation of endocytic trafficking. RIN2 deficiency was found to be associated with paucity of dermal microfibrils and deficiency of fibulin-5, which may underlie the abnormal skin phenotype displayed by the patients.
Collapse
|
45
|
Synaptotagmin-like protein 1 interacts with the GTPase-activating protein Rap1GAP2 and regulates dense granule secretion in platelets. Blood 2009; 114:1396-404. [PMID: 19528539 DOI: 10.1182/blood-2008-05-155234] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The small guanine-nucleotide-binding protein Rap1 plays a key role in platelet aggregation and hemostasis, and we recently identified Rap1GAP2 as the only GTPase-activating protein of Rap1 in platelets. In search of Rap1GAP2-associated proteins, we performed yeast-2-hybrid screening and found synaptotagmin-like protein 1 (Slp1) as a new binding partner. We confirmed the interaction of Rap1GAP2 and Slp1 in transfected COS-1 and HeLa cells and at endogenous level in human platelets. Mapping studies showed that Rap1GAP2 binds through amino acids T524-K525-X-T527 within its C-terminus to the C2A domain of Slp1. Slp1 contains a Rab27-binding domain, and we demonstrate that Rap1GAP2, Slp1, and Rab27 form a trimeric complex in transfected cells and in platelets. Purified Slp1 dose-dependently decreased dense granule secretion in streptolysin-O-permeabilized platelets stimulated with calcium or guanosine 5'-O-[gamma-thio] triphosphate. The isolated C2A domain of Slp1 had a stimulatory effect on granule secretion and reversed the inhibitory effect of full-length Slp1. Purified Rap1GAP2 augmented dense granule secretion of permeabilized platelets, whereas deletion of the Slp1-binding TKXT motif abolished the effect of Rap1GAP2. We conclude that Slp1 inhibits dense granule secretion in platelets and that Rap1GAP2 modulates secretion by binding to Slp1.
Collapse
|
46
|
Recacha R, Boulet A, Jollivet F, Monier S, Houdusse A, Goud B, Khan AR. Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure 2009; 17:21-30. [PMID: 19141279 DOI: 10.1016/j.str.2008.10.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/12/2008] [Accepted: 10/15/2008] [Indexed: 12/31/2022]
Abstract
Small GTPase Rab6 regulates vesicle trafficking at the level of Golgi via recruitment of numerous and unrelated effectors. The crystal structure of Rab6a(GTP) in complex with a 378-residue internal fragment of the effector Rab6IP1 was solved at 3.2 angstroms resolution. This Rab6IP1 region encompasses an all alpha-helical RUN domain followed in tandem by a PLAT domain that adopts a beta sandwich fold. The structure reveals that the first and last alpha helices of the RUN domain mediate binding to switch I, switch II, and the interswitch region of Rab6. It represents the largest Rab-effector complex determined to date. Comparisons with the recent structure of Rab6 in complex with an unrelated effector, human golgin GCC185, reveals significant conformational changes in the conserved hydrophobic triad of Rab6. Flexibility in the switch and interswitch regions of Rab6 mediates recognition of compositionally distinct alpha-helical coiled coils, thereby contributing to Rab6 promiscuity in effector recruitment.
Collapse
Affiliation(s)
- Rosario Recacha
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
47
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
48
|
Herrero-Turrión MJ, Calafat J, Janssen H, Fukuda M, Mollinedo F. Rab27a regulates exocytosis of tertiary and specific granules in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 181:3793-803. [PMID: 18768832 DOI: 10.4049/jimmunol.181.6.3793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.
Collapse
Affiliation(s)
- M Javier Herrero-Turrión
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|
49
|
Abstract
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca(2+) current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca(2+)-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Collapse
|
50
|
Chavas LM, Ihara K, Kawasaki M, Torii S, Uejima T, Kato R, Izumi T, Wakatsuki S. Elucidation of Rab27 Recruitment by Its Effectors: Structure of Rab27a Bound to Exophilin4/Slp2-a. Structure 2008; 16:1468-77. [DOI: 10.1016/j.str.2008.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 01/03/2023]
|