1
|
Mariño Pérez L, Ielasi FS, Lee A, Delaforge E, Juyoux P, Tengo M, Davis RJ, Palencia A, Jensen MR. Structural basis of homodimerization of the JNK scaffold protein JIP2 and its heterodimerization with JIP1. Structure 2024; 32:1394-1403.e5. [PMID: 39013462 DOI: 10.1016/j.str.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The scaffold proteins JIP1 and JIP2 intervene in the c-Jun N-terminal kinase (JNK) pathway to mediate signaling specificity by coordinating the simultaneous assembly of multiple kinases. Using NMR, we demonstrate that JIP1 and JIP2 heterodimerize via their SH3 domains with the affinity of heterodimerization being comparable to homodimerization. We present the high-resolution crystal structure of the JIP2-SH3 homodimer and the JIP1-JIP2-SH3 heterodimeric complex. The JIP2-SH3 structure reveals how charge differences in residues at its dimer interface lead to formation of compensatory hydrogen bonds and salt bridges, distinguishing it from JIP1-SH3. In the JIP1-JIP2-SH3 complex, structural features of each homodimer are employed to stabilize the heterodimer. Building on these insights, we identify key residues crucial for stabilizing the dimer of both JIP1 and JIP2. Through targeted mutations in cellulo, we demonstrate a functional role for the dimerization of the JIP1 and JIP2 scaffold proteins in activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- Laura Mariño Pérez
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France; Departament de Química, Universitat de les Illes Balears, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Palma, Spain
| | - Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandra Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Pauline Juyoux
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Maud Tengo
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | | |
Collapse
|
2
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
4
|
Huang S, Zhang Y, Shu H, Liu W, Zhou X, Zhou X. Advances of the MAPK pathway in the treatment of spinal cord injury. CNS Neurosci Ther 2024; 30:e14807. [PMID: 38887853 PMCID: PMC11183187 DOI: 10.1111/cns.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) represents a complex pathology within the central nervous system (CNS), leading to severe sensory and motor impairments. It activates various signaling pathways, notably the mitogen-activated protein kinase (MAPK) pathway. Present treatment approaches primarily focus on symptomatic relief, lacking efficacy in addressing the underlying pathophysiological mechanisms. Emerging research underscores the significance of the MAPK pathway in neuronal differentiation, growth, survival, axonal regeneration, and inflammatory responses post-SCI. Modulating this pathway post-injury has shown promise in attenuating inflammation, minimizing apoptosis, alleviating neuropathic pain, and fostering neural regeneration. Given its pivotal role, the MAPK pathway emerges as a potential therapeutic target in SCI management. This review synthesizes current knowledge on SCI pathology, delineates the MAPK pathway's characteristics, and explores its dual roles in SCI pathology and therapeutic interventions. Furthermore, it addresses the existing challenges in MAPK research in the context of SCI, proposing solutions to overcome these hurdles. Our aim is to offer a comprehensive reference for future research on the MAPK pathway and SCI, laying the groundwork for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shixue Huang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Yinuo Zhang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Haoming Shu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Liu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xin Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Translational Research Centre of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling. Int J Mol Sci 2023; 24:13527. [PMID: 37686335 PMCID: PMC10487481 DOI: 10.3390/ijms241713527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The response of cells to extracellular signals is mediated by a variety of intracellular signaling pathways that determine stimulus-dependent cell fates. One such pathway is the cJun-N-terminal Kinase (JNK) cascade, which is mainly involved in stress-related processes. The cascade transmits its signals via a sequential activation of protein kinases, organized into three to five tiers. Proper regulation is essential for securing a proper cell fate after stimulation, and the mechanisms that regulate this cascade may involve the following: (1) Activatory or inhibitory phosphorylations, which induce or abolish signal transmission. (2) Regulatory dephosphorylation by various phosphatases. (3) Scaffold proteins that bring distinct components of the cascade in close proximity to each other. (4) Dynamic change of subcellular localization of the cascade's components. (5) Degradation of some of the components. In this review, we cover these regulatory mechanisms and emphasize the mechanism by which the JNK cascade transmits apoptotic signals. We also describe the newly discovered PP2A switch, which is an important mechanism for JNK activation that induces apoptosis downstream of the Gq protein coupled receptors. Since the JNK cascade is involved in many cellular processes that determine cell fate, addressing its regulatory mechanisms might reveal new ways to treat JNK-dependent pathologies.
Collapse
Affiliation(s)
| | | | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (G.N.); (G.M.-R.)
| |
Collapse
|
6
|
Itakura M, Kubo T, Kaneshige A, Nakajima H. Glyceraldehyde-3-phosphate dehydrogenase regulates activation of c-Jun N-terminal kinase under oxidative stress. Biochem Biophys Res Commun 2023; 657:1-7. [PMID: 36963174 DOI: 10.1016/j.bbrc.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (H2O2)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH. Co-immunoprecipitation with a GAPDH antibody further revealed protein-protein interactions between GAPDH and JNK in H2O2-stmulated cells. Notably, both JNK activation and these interactions depend on oxidation of the active-site cysteine (Cys152) in GAPDH, as demonstrated by rescue experiments with either exogenous wild-type GAPDH or the cysteine-substituted mutant (C152A) in endogenous GAPDH-knockdown HEK293 cells. Moreover, H2O2-induced translocation of Bcl-2-associated X protein (Bax) into mitochondria, which occurs downstream of JNK activation, is attenuated by endogenous GAPDH knockdown in HEK293 cells. These results suggest a novel role for GAPDH in the JNK signaling pathway under oxidative stress.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Akihiro Kaneshige
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan.
| |
Collapse
|
7
|
Non-kinase targeting of oncogenic c-Jun N-terminal kinase (JNK) signaling: the future of clinically viable cancer treatments. Biochem Soc Trans 2022; 50:1823-1836. [PMID: 36454622 PMCID: PMC9788565 DOI: 10.1042/bst20220808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023]
Abstract
c-Jun N-terminal Kinases (JNKs) have been identified as key disease drivers in a number of pathophysiological settings and central oncogenic signaling nodes in various cancers. Their roles in driving primary tumor growth, positively regulating cancer stem cell populations, promoting invasion and facilitating metastatic outgrowth have led JNKs to be considered attractive targets for anti-cancer therapies. However, the homeostatic, apoptotic and tumor-suppressive activities of JNK proteins limit the use of direct JNK inhibitors in a clinical setting. In this review, we will provide an overview of the different JNK targeting strategies developed to date, which include various ATP-competitive, non-kinase and substrate-competitive inhibitors. We aim to summarize their distinct mechanisms of action, review some of the insights they have provided regarding JNK-targeting in cancer, and outline the limitations as well as challenges of all strategies that target JNKs directly. Furthermore, we will highlight alternate drug targets within JNK signaling complexes, including recently identified scaffold proteins, and discuss how these findings may open up novel therapeutic options for targeting discrete oncogenic JNK signaling complexes in specific cancer settings.
Collapse
|
8
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
9
|
Lie PPY, Yoo L, Goulbourne CN, Berg MJ, Stavrides P, Huo C, Lee JH, Nixon RA. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca 2+ efflux and disrupted by PSEN1 loss of function. SCIENCE ADVANCES 2022; 8:eabj5716. [PMID: 35486730 PMCID: PMC9054012 DOI: 10.1126/sciadv.abj5716] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Dysfunction and mistrafficking of organelles in autophagy- and endosomal-lysosomal pathways are implicated in neurodegenerative diseases. Here, we reveal selective vulnerability of maturing degradative organelles (late endosomes/amphisomes) to disease-relevant local calcium dysregulation. These organelles undergo exclusive retrograde transport in axons, with occasional pauses triggered by regulated calcium efflux from agonist-evoked transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) channels-an effect greatly exaggerated by exogenous agonist mucolipin synthetic agonist 1 (ML-SA1). Deacidification of degradative organelles, as seen after Presenilin 1 (PSEN1) loss of function, induced pathological constitutive "inside-out" TRPML1 hyperactivation, slowing their transport comparably to ML-SA1 and causing accumulation in dystrophic axons. The mechanism involved calcium-mediated c-Jun N-terminal kinase (JNK) activation, which hyperphosphorylated dynein intermediate chain (DIC), reducing dynein activity. Blocking TRPML1 activation, JNK activity, or DIC1B serine-80 phosphorylation reversed transport deficits in PSEN1 knockout neurons. Our results, including features demonstrated in Alzheimer-mutant PSEN1 knockin mice, define a mechanism linking dysfunction and mistrafficking in lysosomal pathways to neuritic dystrophy under neurodegenerative conditions.
Collapse
Affiliation(s)
- Pearl P. Y. Lie
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lang Yoo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Chris N. Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Martin J. Berg
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
10
|
Hoerndli FJ, Brockie PJ, Wang R, Mellem JE, Kallarackal A, Doser RL, Pierce DM, Madsen DM, Maricq AV. MAPK signaling and a mobile scaffold complex regulate AMPA receptor transport to modulate synaptic strength. Cell Rep 2022; 38:110577. [PMID: 35354038 PMCID: PMC9965202 DOI: 10.1016/j.celrep.2022.110577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
Collapse
Affiliation(s)
- Frédéric J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Penelope J Brockie
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Rui Wang
- Pathology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jerry E Mellem
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Angy Kallarackal
- Department of Psychology, Mount Saint Mary's University, Emmitsburg, MD 21727, USA
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dayton M Pierce
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David M Madsen
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Andres V Maricq
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA.
| |
Collapse
|
11
|
Gehi BR, Gadhave K, Uversky VN, Giri R. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Cell Mol Life Sci 2022; 79:202. [PMID: 35325330 PMCID: PMC11073203 DOI: 10.1007/s00018-022-04230-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.
Collapse
Affiliation(s)
- Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, 560012, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
12
|
Identification of key biomarkers and immune infiltration in sporadic vestibular schwannoma basing transcriptome-wide profiling. World Neurosurg 2022; 160:e591-e600. [PMID: 35092815 DOI: 10.1016/j.wneu.2022.01.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vestibular schwannoma (VS) is a common intracranial tumor, with 95% of the cases being sporadic vestibular schwannoma (SVS). The purposed of this study was identifying genes responsible for inflammation in SVS and clarifying its underlying immune mechanisms. METHODS Transcriptional sequencing datasets (GSE141801 and GSE108237) from the Gene Expression Omnibus (GEO) database were used in this study. The candidate modules closely related to SVS and hub genes were screened out by weighted gene co-expression network analysis. Τhe sensitivity and specificity of the hub genes for SVS prediction were evaluated by ROC curve analysis. The CIBERSORT algorithm was subsequently applied to analyze the immune infiltration between SVS and controls. Finally, biological signaling pathways involved in the hub genes were identified via gene set enrichment analysis. RESULTS A total of 39 significantly enriched in myelination and collagen-containing extracellular matrix DEGs were identified at the screening step. Three hub genes (MAPK8IP1, SLC36A2, and OR2AT4) were identified, which mainly enriched in pathways of melanogenesis, GnRH, and calcium signaling pathways. Compared with normal nerves, SVS tissue contained a higher proportion of T cells, monocytes and activated dendritic cells, whereas proportions of M2 macrophages were lower. CONCLUSIONS The intergrated analysis revealed the pattern of immune cell infiltration in SVS and provided a crucial molecular foundation to enhance understanding of SVS. Hub genes MAPK8IP1, SLC36A2 and OR2AT4 are potential biomarkers and therapeutic targets to facilitate the accurate diagnosis, prognosis and therapy of SVS.
Collapse
|
13
|
Caliz AD, Vertii A, Fisch V, Yoon S, Yoo HJ, Keaney JF, Kant S. Mitogen-activated protein kinase kinase 7 in inflammatory, cancer, and neurological diseases. Front Cell Dev Biol 2022; 10:979673. [PMID: 36340039 PMCID: PMC9630596 DOI: 10.3389/fcell.2022.979673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated mitogen-activated protein kinase kinase 7 (MKK7) is a member of the dual-specificity mitogen-activated protein kinase family. In the human body, MKK7 controls essential physiological processes, including but not limited to proliferation and differentiation in multiple tissues and organs. MKK7, along with the MKK4 pathway, has been implicated in stress-activated activities and biological events that are mediated by c-Jun N-terminal kinase (JNK) signaling. Although numerous studies have been performed to identify the role of JNK in multiple biological processes, there are limited publications that focus on dissecting the independent role of MKK7. Recent research findings have spurred testing via in vivo genetically deficient models, uncovering previously undocumented JNK-independent functions of MKK7. Here we discuss both JNK-dependent and-independent functions of MKK7 in vivo. This review summarizes the role of MKK7 in inflammation, cytokine production, cancer, and neurological diseases.
Collapse
Affiliation(s)
- Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anastassiia Vertii
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Vijay Fisch
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Soonsang Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Kulkarni SS, Sabharwal V, Sheoran S, Basu A, Matsumoto K, Hisamoto N, Ghosh-Roy A, Koushika SP. UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in Caenorhabditis elegans regenerating neurons. Genetics 2021; 219:6359182. [PMID: 34740241 DOI: 10.1093/genetics/iyab139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal regeneration after injury depends on the intrinsic growth potential of neurons. Our study shows that UNC-16, a Caenorhabditis elegans JIP3 homolog, inhibits axonal regeneration by regulating initiation and rate of regrowth. This occurs through the inhibition of the regeneration-promoting activity of the long isoform of DLK-1 and independently of the inhibitory short isoform of DLK-1. We show that UNC-16 promotes DLK-1 punctate localization in a concentration-dependent manner limiting the availability of the long isoform of DLK-1 at the cut site, minutes after injury. UNC-16 negatively regulates actin dynamics through DLK-1 and microtubule dynamics partially via DLK-1. We show that post-injury cytoskeletal dynamics in unc-16 mutants are also partially dependent on CEBP-1. The faster regeneration seen in unc-16 mutants does not lead to functional recovery. Our data suggest that the inhibitory control by UNC-16 and the short isoform of DLK-1 balances the intrinsic growth-promoting function of the long isoform of DLK-1 in vivo. We propose a model where UNC-16's inhibitory role in regeneration occurs through both a tight temporal and spatial control of DLK-1 and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Sucheta S Kulkarni
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Vidur Sabharwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Seema Sheoran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Atrayee Basu
- Department of Biotechnology National Brain Research Centre, Manesar 122052, India
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Nagoya University, Nagoya 4648601, Japan
| | - Naoki Hisamoto
- Department of Molecular Biology, Nagoya University, Nagoya 4648601, Japan
| | - Anindya Ghosh-Roy
- Department of Biotechnology National Brain Research Centre, Manesar 122052, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
15
|
JNK signaling as a target for anticancer therapy. Pharmacol Rep 2021; 73:405-434. [PMID: 33710509 DOI: 10.1007/s43440-021-00238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors. Studies showed that the two major JNK proteins JNK1 and JNK2 have opposite functions in different types of cancers, which need more specification in the design of JNK inhibitors. Some of ATP- competitive and ATP non-competitive inhibitors have been developed and widely used in vitro, but this type of inhibitors lack selectivity and inhibits phosphorylation of all JNK substrates and may lead to cellular toxicity. In this review, we summarized and discussed the strategies of JNK binding inhibitors and the role of JNK signaling in the pathogenesis of different solid and hematological malignancies.
Collapse
|
16
|
Hepp Rehfeldt SC, Majolo F, Goettert MI, Laufer S. c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer's Diseases. Int J Mol Sci 2020; 21:E9677. [PMID: 33352989 PMCID: PMC7765872 DOI: 10.3390/ijms21249677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's Disease (AD) is becoming more prevalent as the population lives longer. For individuals over 60 years of age, the prevalence of AD is estimated at 40.19% across the world. Regarding the cognitive decline caused by the disease, mitogen-activated protein kinases (MAPK) pathways such as the c-Jun N-terminal kinase (JNK) pathway are involved in the progressive loss of neurons and synapses, brain atrophy, and augmentation of the brain ventricles, being activated by synaptic dysfunction, oxidative stress, and excitotoxicity. Nowadays, AD symptoms are manageable, but the disease itself remains incurable, thus the inhibition of JNK3 has been explored as a possible therapeutic target, considering that JNK is best known for its involvement in propagating pro-apoptotic signals. This review aims to present biological aspects of JNK, focusing on JNK3 and how it relates to AD. It was also explored the recent development of inhibitors that could be used in AD treatment since several drugs/compounds in phase III clinical trials failed. General aspects of the MAPK family, therapeutic targets, and experimental treatment in models are described and discussed throughout this review.
Collapse
Affiliation(s)
- Stephanie Cristine Hepp Rehfeldt
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Fernanda Majolo
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90619-900, Rio Grande do Sul, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
17
|
Kinnun JJ, Bolmatov D, Lavrentovich MO, Katsaras J. Lateral heterogeneity and domain formation in cellular membranes. Chem Phys Lipids 2020; 232:104976. [PMID: 32946808 PMCID: PMC7491465 DOI: 10.1016/j.chemphyslip.2020.104976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
As early as the development of the fluid mosaic model for cellular membranes, researchers began observing the telltale signs of lateral heterogeneity. Over the decades this has led to the development of the lipid raft hypothesis and the ensuing controversy that has unfolded, as a result. Here, we review the physical concepts behind domain formation in lipid membranes, both of their structural and dynamic origins. This, then leads into a discussion of coarse-grained, phenomenological approaches that describe the wide range of phases associated with lipid lateral heterogeneity. We use these physical concepts to describe the interaction between raft-lipid species, such as long-chain saturated lipids, sphingomyelin, and cholesterol, and non-raft forming lipids, such as those with short acyl chains or unsaturated fatty acids. While debate has persisted on the biological relevance of lipid domains, recent research, described here, continues to identify biological roles for rafts and new experimental approaches have revealed the existence of lipid domains in living systems. Given the recent progress on both the biological and structural aspects of raft formation, the research area of membrane lateral heterogeneity will not only expand, but will continue to produce exciting results.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | - Dima Bolmatov
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - Maxim O Lavrentovich
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States.
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States; Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
18
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|
19
|
Goodwani S, Fernandez C, Acton PJ, Buggia-Prevot V, McReynolds ML, Ma J, Hu CH, Hamby ME, Jiang Y, Le K, Soth MJ, Jones P, Ray WJ. Dual Leucine Zipper Kinase Is Constitutively Active in the Adult Mouse Brain and Has Both Stress-Induced and Homeostatic Functions. Int J Mol Sci 2020; 21:ijms21144849. [PMID: 32659913 PMCID: PMC7402291 DOI: 10.3390/ijms21144849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Celia Fernandez
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Morgan L. McReynolds
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Cheng Hui Hu
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Mary E. Hamby
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (Y.J.); (K.L.); (M.J.S.); (P.J.)
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (S.G.); (C.F.); (P.J.A.); (V.B.-P.); (M.L.M.); (J.M.); (C.H.H.); (M.E.H.)
- Correspondence: ; Tel.: +1-713-794-4558
| |
Collapse
|
20
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
21
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|
22
|
The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother 2020; 121:109679. [DOI: 10.1016/j.biopha.2019.109679] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/10/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
|
23
|
Gallo KA, Ellsworth E, Stoub H, Conrad SE. Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacol Ther 2019; 207:107457. [PMID: 31863814 DOI: 10.1016/j.pharmthera.2019.107457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hayden Stoub
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Hao Y, Waller TJ, Nye DM, Li J, Zhang Y, Hume RI, Rolls MM, Collins CA. Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw. J Neurosci 2019; 39:8457-8470. [PMID: 31492772 PMCID: PMC6807270 DOI: 10.1523/jneurosci.0016-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
The degeneration of injured axons involves a self-destruction pathway whose components and mechanism are not fully understood. Here, we report a new regulator of axonal resilience. The transmembrane protein Raw is cell autonomously required for the degeneration of injured axons, dendrites, and synapses in Drosophila melanogaster In both male and female raw hypomorphic mutant or knock-down larvae, the degeneration of injured axons, dendrites, and synapses from motoneurons and sensory neurons is strongly inhibited. This protection is insensitive to reduction in the levels of the NAD+ synthesis enzyme Nmnat (nicotinamide mononucleotide adenylyl transferase), but requires the c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinase and the transcription factors Fos and Jun (AP-1). Although these factors were previously known to function in axonal injury signaling and regeneration, Raw's function can be genetically separated from other axonal injury responses: Raw does not modulate JNK-dependent axonal injury signaling and regenerative responses, but instead restrains a protective pathway that inhibits the degeneration of axons, dendrites, and synapses. Although protection in raw mutants requires JNK, Fos, and Jun, JNK also promotes axonal degeneration. These findings suggest the existence of multiple independent pathways that share modulation by JNK, Fos, and Jun that influence how axons respond to stress and injury.SIGNIFICANCE STATEMENT Axonal degeneration is a major feature of neuropathies and nerve injuries and occurs via a cell autonomous self-destruction pathway whose mechanism is poorly understood. This study reports the identification of a new regulator of axonal degeneration: the transmembrane protein Raw. Raw regulates a cell autonomous nuclear signaling pathway whose yet unknown downstream effectors protect injured axons, dendrites, and synapses from degenerating. These findings imply that the susceptibility of axons to degeneration is strongly regulated in neurons. Future understanding of the cellular pathway regulated by Raw, which engages the c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinase and Fos and Jun transcription factors, may suggest new strategies to increase the resiliency of axons in debilitating neuropathies.
Collapse
Affiliation(s)
- Yan Hao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Thomas J Waller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Derek M Nye
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Melissa M Rolls
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085,
| |
Collapse
|
25
|
Justino PFC, Franco AX, Pontier-Bres R, Monteiro CES, Barbosa ALR, Souza MHLP, Czerucka D, Soares PMG. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-κB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic. Cytokine 2019; 125:154791. [PMID: 31401369 DOI: 10.1016/j.cyto.2019.154791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Chemotherapy drugs that act via Toll-like receptors (TLRs) can exacerbate mucosal injury through the production of cytokines. Intestinal mucositis can activate TLR2 and TLR4, resulting in the activation of NF-κB. Intestinal mucositis characterized by intense inflammation is the main side effect associated with 5-fluorouracil (5-FU) treatment. Saccharomyces boulardii CNCM I-745 (S.b) is a probiotic yeast used in the treatment of gastrointestinal disorders. The main objective of the study was to evaluate the effect of S.b treatment on the Toll-like/MyD88/NF-κB/MAPK pathway activated during intestinal mucositis and in Caco-2 cells treated with 5-FU. METHODS The mice were divided into three groups: saline (control), saline + 5-FU, and 5-FU + S.b (1.6 × 1010 colony forming units/kg). After 3 days of S.b administration by gavage, the mice were euthanized and the jejunum and ileum were removed. In vitro, Caco2 cells were treated with 5-FU (1 mM) alone or in the presence of lipopolysaccharide (1 ng/ml). When indicated, cells were exposed to S.b. The jejunum/ileum samples and Caco2 cells were examined for the expression or concentration of the inflammatory components. RESULTS Treatment with S.b modulated the expressions of TLR2, TLR4, MyD88, NF-κB, ERK1/2, phospho-p38, phospho-JNK, TNF-α, IL-1β, and CXCL-1 in the jejunum/ileum and Caco2 cells following treatment with 5-FU. CONCLUSION Toll-like/MyD88/NF-κB/MAPK pathway are activated during intestinal mucositis and their modulation by S.b suggests a novel and valuable therapeutic strategy for intestinal inflammation.
Collapse
Affiliation(s)
- Priscilla F C Justino
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alvaro X Franco
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Carlos E S Monteiro
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André L R Barbosa
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research, Federal University of Piauí, Parnaíba, Brazil
| | - Marcellus H L P Souza
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Dorota Czerucka
- Centre Scientifique de Monaco, 8 quai Antoine 1er, MC98000, Monaco
| | - Pedro M G Soares
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Morphology, Medical School, Federal University of Ceara, Rua Delmiro de Farias s/n, Rodolfo Teofilo, Fortaleza, Ceara, Brazil.
| |
Collapse
|
26
|
Abstract
Cytoplasmic dynein-1 (hereafter dynein) is an essential cellular motor that drives the movement of diverse cargos along the microtubule cytoskeleton, including organelles, vesicles and RNAs. A long-standing question is how a single form of dynein can be adapted to a wide range of cellular functions in both interphase and mitosis. Recent progress has provided new insights - dynein interacts with a group of activating adaptors that provide cargo-specific and/or function-specific regulation of the motor complex. Activating adaptors such as BICD2 and Hook1 enhance the stability of the complex that dynein forms with its required activator dynactin, leading to highly processive motility toward the microtubule minus end. Furthermore, activating adaptors mediate specific interactions of the motor complex with cargos such as Rab6-positive vesicles or ribonucleoprotein particles for BICD2, and signaling endosomes for Hook1. In this Cell Science at a Glance article and accompanying poster, we highlight the conserved structural features found in dynein activators, the effects of these activators on biophysical parameters, such as motor velocity and stall force, and the specific intracellular functions they mediate.
Collapse
Affiliation(s)
- Mara A Olenick
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Roskoski R. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res 2019; 142:151-168. [PMID: 30794926 DOI: 10.1016/j.phrs.2019.01.039] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
ERK1 and ERK2 are key protein kinases that contribute to the Ras-Raf-MEK-ERK MAP kinase signalling module. This pathway participates in the control of numerous processes including apoptosis, cell proliferation, the immune response, nervous system function, and RNA synthesis and processing. MEK1/2 activate human ERK1/2 by first catalyzing the phosphorylation of Y204/187 and then T202/185, both residues of which occur within the activation segment. The phosphorylation of both residues is required for enzyme activation. The only Raf substrates are MEK1/2 and the only MEK1/2 substrates are ERK1/2. In contrast, ERK1/2 catalyze the phosphorylation of many cytoplasmic and nuclear substrates including transcription factors and regulatory molecules. The linear MAP kinase pathway branches extensively at the ERK1/2 node. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a PxS/TP sequence. The dephosphorylation and inactivation of ERK1/2 is catalyzed by dual specificity phosphatases, protein-tyrosine specific phosphatases, and protein-serine/threonine phosphatases. The combined functions of kinases and phosphatases make the overall process reversible. To provide an idea of the complexities involved in these reactions, somatic cell cycle progression involves the strict timing of more than 32,000 phosphorylation and dephosphorylation events as determined by mass spectrometry. The MAP kinase cascade is perhaps the most important oncogenic driver of human cancers and the blockade of this signalling module by targeted inhibitors is an important anti-tumor strategy. Although numerous cancers are driven by MAP kinase pathway activation, thus far the only orally effective approved drugs that target this signaling module are used for the treatment of BRAF-mutant melanomas. The best treatments include the combination of B-Raf and MEK inhibitors (dabrafenib and trametinib, encorafenib and binimetinib, vemurafenib and cobimetanib). However, resistance to these antagonists occurs within one year and additional treatment options are necessary. Owing to the large variety of malignancies that are driven by dysregulation of the MAP kinase pathway, additional tumor types should be amenable to MAP kinase pathway inhibitor therapy. In addition to new B-Raf and MEK inhibitors, the addition of ERK inhibitors should prove helpful. Ulixertinib, MK-8353, and GDC-0994 are orally effective, potent, and specific inhibitors of ERK1/2 that are in early clinical trials for the treatment of various advanced/metastatic solid tumors. These agents are effective against cell lines that are resistant to B-Raf and MEK1/2 inhibitor therapy. Although MK-8353 does not directly inhibit MEK1/2, it decreases the phosphorylation of ERK1/2 as well as the phosphorylation of RSK, an ERK1/2 substrate. The decrease in RSK phosphorylation appears to be a result of ERK inhibition and the decrease in ERK1/2 phosphorylation is related to the inability of MEK to catalyze the phosphorylation of the ERK-MK-8353 complex; these decreases characterize the ERK dual mechanism inhibition paradigm. Additional work will be required to determine whether ERK inhibitors will be successful in the clinic and are able to forestall the development of drug resistance of the MAP kinase pathway.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC, 28742-8814, United States.
| |
Collapse
|
28
|
Li Z, Yan M, Yu Y, Wang Y, Lei G, Pan Y, Li N, Gobin R, Yu J. LncRNA H19 promotes the committed differentiation of stem cells from apical papilla via miR-141/SPAG9 pathway. Cell Death Dis 2019; 10:130. [PMID: 30755596 PMCID: PMC6372621 DOI: 10.1038/s41419-019-1337-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) exert significant roles at transcriptional and post-transcriptional levels. Stem cells from apical papilla (SCAPs) differentiate into dentin/bone-like tissues under certain conditions. So far, whether lncRNA-H19 can affect the proliferative behaviors and osteo/odontogenesis of SCAPs, as well as its specific mechanism remain to be elucidated. Here, SCAPs were isolated and transfected with the lentiviruses or packaging vectors. Our results showed that lncRNA-H19 had no significant effect on the proliferative behaviors of SCAPs, as presented by CCK-8 assay, EdU assay and flow cytometry (FCM). Furthermore, alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and in vivo bone formation assay were conducted to verify the biological influences of H19 on SCAPs. Overexpression of H19 led to the enhanced osteo/odontogenesis of SCAPs, whereas knockdown of H19 inhibited these effects. Mechanistically, H19 competitively bound to miR-141 and prevented SPAG9 from miRNA-mediated degradation, thus significantly elevating phosphorylated levels of p38 and JNK and facilitating the committed differentiation of SCAPs. Taken together, the osteo/odontogenesis of SCAPs was upregulated by overexpression of H19 via miR-141/SPAG9 pathway.
Collapse
Affiliation(s)
- Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yan Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gang Lei
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yin Pan
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Na Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Romila Gobin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
29
|
Pernigo S, Chegkazi MS, Yip YY, Treacy C, Glorani G, Hansen K, Politis A, Bui S, Dodding MP, Steiner RA. Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors. eLife 2018; 7:38362. [PMID: 30320553 PMCID: PMC6214655 DOI: 10.7554/elife.38362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022] Open
Abstract
The light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLCTPR). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call ‘Y-acidic’ (tyrosine flanked by acidic residues), in a KLC-isoform specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1TPR are distinct from those utilized for the recognition of W-acidic motifs found in adaptors that are KLC- isoform non-selective. However, a partial overlap on their receptor binding sites implies that adaptors relying on Y-acidic and W-acidic motifs must act independently. We propose a model to explain why these two classes of motifs that bind to the concave surface of KLCTPR with similar low micromolar affinity can exhibit different capacities to promote kinesin-1 activity.
Collapse
Affiliation(s)
- Stefano Pernigo
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Magda S Chegkazi
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Yan Y Yip
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Conor Treacy
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Giulia Glorani
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kjetil Hansen
- Department of Chemistry, King's College London, London, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, London, United Kingdom
| | - Soi Bui
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mark P Dodding
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Roberto A Steiner
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Prinz E, Aviram S, Aronheim A. WDR62 mediates TNFα-dependent JNK activation via TRAF2-MLK3 axis. Mol Biol Cell 2018; 29:2470-2480. [PMID: 30091641 PMCID: PMC6233063 DOI: 10.1091/mbc.e17-08-0504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/11/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes. The three main MAPK cascades are the extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 kinases. A typical MAPK cascade is composed of MAP3K-MAP2K-MAPK kinases that are held by scaffold proteins. Scaffolds function to assemble the protein tier and contribute to the specificity and efficacy of signal transmission. WD repeat domain 62 (WDR62) is a JNK scaffold protein, interacting with JNK, MKK7, and several MAP3Ks. The loss of WDR62 in human leads to microcephaly and pachygyria. Yet the role of WDR62 in cellular function is not fully studied. We used the CRISPR/Cas9 and short hairpin RNA approaches to establish a human breast cancer cell line MDA-MB-231 with WDR62 loss of function and studied the consequence to JNK signaling. In growing cells, WDR62 is responsible for the basal expression of c-Jun. In stressed cells, WDR62 specifically mediates TNFα-dependent JNK activation through the association with both the adaptor protein, TNF receptor-associated factor 2 (TRAF2), and the MAP3K protein, mixed lineage kinase 3. TNFα-dependent JNK activation is mediated by WDR62 in HCT116 and HeLa cell lines as well. MDA-MB-231 WDR62-knockout cells display increased resistance to TNFα-induced cell death. Collectively, WDR62 coordinates the TNFα receptor signaling pathway to JNK activation through association with multiple kinases and the adaptor protein TRAF2.
Collapse
Affiliation(s)
- Elad Prinz
- Department of Cell Biology and Cancer Science, B. Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel
| | - Sharon Aviram
- Department of Cell Biology and Cancer Science, B. Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, B. Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
31
|
Lombard CK, Davis AL, Inukai T, Maly DJ. Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 2018; 57:5897-5909. [PMID: 30211540 DOI: 10.1021/acs.biochem.8b00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) play a wide variety of roles in cellular signaling processes, dictating important, and even divergent, cellular fates. These essential kinases possess docking surfaces distal to their active sites that interact with diverse binding partners, including upstream activators, downstream substrates, and protein scaffolds. Prior studies have suggested that the interactions of certain protein-binding partners with one such JNK docking surface, termed the D-recruitment site (DRS), can allosterically influence the conformational state of the ATP-binding pocket of JNKs. To further explore the allosteric relationship between the ATP-binding pockets and DRSs of JNKs, we investigated how the interactions of the scaffolding protein JIP1, as well as the upstream activators MKK4 and MKK7, are allosterically influenced by the ATP-binding site occupancy of the JNKs. We show that the affinity of the JNKs for JIP1 can be divergently modulated with ATP-competitive inhibitors, with a >50-fold difference in dissociation constant observed between the lowest- and highest-affinity JNK1-inhibitor complexes. Furthermore, we found that we could promote or attenuate phosphorylation of JNK1's activation loop by MKK4 and MKK7, by varying the ATP-binding site occupancy. Given that JIP1, MKK4, and MKK7 all interact with JNK DRSs, these results demonstrate that there is functional allostery between the ATP-binding sites and DRSs of these kinases. Furthermore, our studies suggest that ATP-competitive inhibitors can allosterically influence the intracellular binding partners of the JNKs.
Collapse
Affiliation(s)
- Chloe K Lombard
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Audrey L Davis
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories , Ono Pharmaceutical Company, Ltd. , 3-1-1 Sakurai , Shimamoto, Mishima, Osaka 618-8585 , Japan
| | - Dustin J Maly
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States.,Department of Biochemistry , University of Washington , Seattle , Washington 98117 , United States
| |
Collapse
|
32
|
Nguyen TQ, Aumont-Nicaise M, Andreani J, Velours C, Chenon M, Vilela F, Geneste C, Varela PF, Llinas P, Ménétrey J. Characterization of the binding mode of JNK-interacting protein 1 (JIP1) to kinesin-light chain 1 (KLC1). J Biol Chem 2018; 293:13946-13960. [PMID: 30026235 PMCID: PMC6130945 DOI: 10.1074/jbc.ra118.003916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Indexed: 01/05/2023] Open
Abstract
JIP1 was first identified as scaffold protein for the MAP kinase JNK and is a cargo protein for the kinesin1 molecular motor. JIP1 plays significant and broad roles in neurons, mainly as a regulator of kinesin1-dependent transport, and is associated with human pathologies such as cancer and Alzheimer disease. JIP1 is specifically recruited by the kinesin-light chain 1 (KLC1) of kinesin1, but the details of this interaction are not yet fully elucidated. Here, using calorimetry, we extensively biochemically characterized the interaction between KLC1 and JIP1. Using various truncated fragments of the tetratricopeptide repeat (TPR) domain of KLC1, we narrowed down its JIP1-binding region and identified seven KLC1 residues critical for JIP1 binding. These isothermal titration calorimetry (ITC)-based binding data enabled us to footprint the JIP1-binding site on KLC1-TPR. This footprint was used to uncover the structural basis for the marginal inhibition of JIP1 binding by the autoinhibitory LFP-acidic motif of KLC1, as well as for the competition between JIP1 and another cargo protein of kinesin1, the W-acidic motif-containing alcadein-α. Also, we examined the role of each of these critical residues of KLC1 for JIP1 binding in light of the previously reported crystal structure of the KLC1-TPR:JIP1 complex. Finally, sequence search in eukaryotic genomes identified several proteins, among which is SH2D6, that exhibit a motif similar to the KLC1-binding motif of JIP1. Overall, our extensive biochemical characterization of the KLC:JIP1 interaction, as well as identification of potential KLC1-binding partners, improves the understanding of how this growing family of cargos is recruited to kinesin1 by KLC1.
Collapse
Affiliation(s)
- T Quyen Nguyen
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Magali Aumont-Nicaise
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jessica Andreani
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Christophe Velours
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Chenon
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Fernando Vilela
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Clémentine Geneste
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Paloma F Varela
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Paola Llinas
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Julie Ménétrey
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, Université Paris-Sud, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France and
- the Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
33
|
Roessler R, Goldmann J, Shivalila C, Jaenisch R. JIP2 haploinsufficiency contributes to neurodevelopmental abnormalities in human pluripotent stem cell-derived neural progenitors and cortical neurons. Life Sci Alliance 2018; 1:e201800094. [PMID: 30456368 PMCID: PMC6238622 DOI: 10.26508/lsa.201800094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
Molecular and cellular profiling of patient-specific neural cell types provides suggestions for the involvement of JIP2 in the neurodevelopmental disorder Phelan–McDermid syndrome. Phelan–McDermid syndrome (also known as 22q13.3 deletion syndrome) is a syndromic form of autism spectrum disorder and currently thought to be caused by heterozygous loss of SHANK3. However, patients most frequently present with large chromosomal deletions affecting several additional genes. We used human pluripotent stem cell technology and genome editing to further dissect molecular and cellular mechanisms. We found that loss of JIP2 (MAPK8IP2) may contribute to a distinct neurodevelopmental phenotype in neural progenitor cells (NPCs) affecting neuronal maturation. This is most likely due to a simultaneous down-regulation of c-Jun N-terminal kinase (JNK) proteins, leading to impaired generation of mature neurons. Furthermore, semaphorin signaling appears to be impaired in patient NPCs and neurons. Pharmacological activation of neuropilin receptor 1 (NRP1) rescued impaired semaphorin pathway activity and JNK expression in patient neurons. Our results suggest a novel disease-specific mechanism involving the JIP/JNK complex and identify NRP1 as a potential new therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Haidar M, Rchiad Z, Ansari HR, Ben-Rached F, Tajeri S, Latre De Late P, Langsley G, Pain A. miR-126-5p by direct targeting of JNK-interacting protein-2 (JIP-2) plays a key role in Theileria-infected macrophage virulence. PLoS Pathog 2018; 14:e1006942. [PMID: 29570727 PMCID: PMC5892942 DOI: 10.1371/journal.ppat.1006942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Theileria annulata is an apicomplexan parasite that infects and transforms bovine macrophages that disseminate throughout the animal causing a leukaemia-like disease called tropical theileriosis. Using deep RNAseq of T. annulata-infected B cells and macrophages we identify a set of microRNAs induced by infection, whose expression diminishes upon loss of the hyper-disseminating phenotype of virulent transformed macrophages. We describe how infection-induced upregulation of miR-126-5p ablates JIP-2 expression to release cytosolic JNK to translocate to the nucleus and trans-activate AP-1-driven transcription of mmp9 to promote tumour dissemination. In non-disseminating attenuated macrophages miR-126-5p levels drop, JIP-2 levels increase, JNK1 is retained in the cytosol leading to decreased c-Jun phosphorylation and dampened AP-1-driven mmp9 transcription. We show that variation in miR-126-5p levels depends on the tyrosine phosphorylation status of AGO2 that is regulated by Grb2-recruitment of PTP1B. In attenuated macrophages Grb2 levels drop resulting in less PTP1B recruitment, greater AGO2 phosphorylation, less miR-126-5p associated with AGO2 and a consequent rise in JIP-2 levels. Changes in miR-126-5p levels therefore, underpin both the virulent hyper-dissemination and the attenuated dissemination of T. annulata-infected macrophages.
Collapse
Affiliation(s)
- Malak Haidar
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Hifzur Rahman Ansari
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Shahin Tajeri
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Perle Latre De Late
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Gordon Langsley
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, Japan
| |
Collapse
|
35
|
Bequette CJ, Hind SR, Pulliam S, Higgins R, Stratmann JW. MAP kinases associate with high molecular weight multiprotein complexes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:643-654. [PMID: 29240956 PMCID: PMC5853780 DOI: 10.1093/jxb/erx424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/07/2017] [Indexed: 05/30/2023]
Abstract
Plant responses to the environment and developmental processes are mediated by a complex signaling network. The Arabidopsis thaliana mitogen-activated protein kinases (MAPKs) MPK3 and MPK6 and their orthologs in other plants are shared signal transducers that respond to many developmental and environmental signals and thus represent highly connected hubs in the cellular signaling network. In animals, specific MAPK signaling complexes are assembled which enable input-specific protein-protein interactions and thus specific signaling outcomes. In plants, not much is known about such signaling complexes. Here, we report that MPK3, MPK6, and MPK10 orthologs in tomato, tobacco, and Arabidopsis as well as tomato MAPK kinase 4 (MKK4) associate with high molecular weight (~250-550 kDa) multiprotein complexes. Elicitation by the defense-associated peptides flg22 and systemin resulted in phosphorylation and activation of the monomeric MAPKs, whereas the complex-associated MAPKs remained unphosphorylated and inactive. In contrast, treatment of tomato cells with a phosphatase inhibitor resulted in association of phosphorylated MPK1/2 with the complex. These results demonstrate that plant MAPKs and MAPKKs dynamically assemble into stable multiprotein complexes and this may depend on their phosphorylation status. Identification of the constituents of these multiprotein complexes promises a deeper understanding of signaling dynamics.
Collapse
Affiliation(s)
- Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Sarah Pulliam
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Rebecca Higgins
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | | |
Collapse
|
36
|
Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv Biol Regul 2017; 66:23-30. [PMID: 29102394 DOI: 10.1016/j.jbior.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a three-tiered kinase cascade where mitogen-activated protein kinase kinase kinases (MAP3Ks) lead to the activation of mitogen-activated protein kinase kinases (MAP2K), and ultimately MAPK proteins. MAPK signaling can promote a diverse set of biological outcomes, ranging from cell death to proliferation. There are multiple mechanisms which govern MAPK output, such as the duration and strength of the signal, cellular localization to upstream and downstream binding partners, pathway crosstalk and the binding to scaffold and adaptor molecules. This review will focus on scaffold and adaptor proteins that bind to and regulate apoptosis signal-regulating kinase 1 (ASK1), a MAP3K protein with a critical role in mediating stress response pathways.
Collapse
Affiliation(s)
- Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA.
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells. Mol Cell Biochem 2017; 444:1-13. [PMID: 29159770 PMCID: PMC6002436 DOI: 10.1007/s11010-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023]
Abstract
The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.
Collapse
|
38
|
Matsuba S, Yabe-Wada T, Takeda K, Sato T, Suyama M, Takai T, Kikuchi T, Nukiwa T, Nakamura A. Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells. Front Immunol 2017; 8:1538. [PMID: 29181004 PMCID: PMC5693852 DOI: 10.3389/fimmu.2017.01538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells, basophils, and eosinophils are central effectors in allergic inflammatory disorders. These cells secrete abundant serine proteases as well as chemical mediators and cytokines; however, the expression profiles and functions of their endogenous inhibitors remain elusive. We found that murine secretory leukoprotease inhibitor (SLPI) is expressed in basophils and eosinophils but in not in mast cells. SLPI-deficient (Slpi−/−) basophils produce more cytokines than wild-type mice after IgE stimulation. Although the deletion of SLPI in basophils did not affect the release of chemical mediators upon IgE stimulation, the enzymatic activity of the serine protease tryptase was increased in Slpi−/− basophils. Mice transferred with Slpi−/− basophils were highly sensitive to IgE-mediated chronic allergic inflammation. Eosinophils lacking SLPI showed greater interleukin-6 secretion and invasive activity upon lipopolysaccharide stimulation, and the expression of matrix metalloproteinase-9 by these eosinophils was increased without stimulation. The absence of SLPI increases JNK1 phosphorylation at the steady state, and augments the serine phosphorylation of JNK1-downstream ETS transcriptional factor Elk-1 in eosinophils upon stimulation. Of note, SLPI interacts with a scaffold protein, JNK-interacting protein 3 (JIP3), that constitutively binds to the cytoplasmic domain of toll-like receptor (TLR) 4, suggesting that SLPI controls Elk-1 activation via binding to JIP3 in eosinophils. Mice transferred with Slpi−/− eosinophils showed the exacerbation of chitin-induced allergic inflammation. These findings showed that SLPI is a negative regulator in allergic effector cells and suggested a novel inhibitory role of SLPI in the TLR4 signaling pathways.
Collapse
Affiliation(s)
- Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
39
|
Noma K, Goncharov A, Ellisman MH, Jin Y. Microtubule-dependent ribosome localization in C. elegans neurons. eLife 2017; 6:26376. [PMID: 28767038 PMCID: PMC5577916 DOI: 10.7554/elife.26376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/01/2017] [Indexed: 01/23/2023] Open
Abstract
Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons.
Collapse
Affiliation(s)
- Kentaro Noma
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Alexandr Goncharov
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| | - Mark H Ellisman
- National Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California, San Diego, San Diego, United States
| | - Yishi Jin
- Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
| |
Collapse
|
40
|
Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget 2017; 8:55684-55714. [PMID: 28903453 PMCID: PMC5589692 DOI: 10.18632/oncotarget.18264] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022] Open
Abstract
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process.
Collapse
Affiliation(s)
- Isabelle Corre
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacques Huot
- Le Centre de Recherche du CHU de Québec-Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| |
Collapse
|
41
|
Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:16-25. [PMID: 28479419 DOI: 10.1016/j.exphem.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatric patients. Despite advances in the treatment of this disease, many children with T-cell ALL (T-ALL) die from disease relapse due to low responses to standard chemotherapy and the lack of a targeted therapy that selectively eradicates the chemoresistant leukemia-initiating cells (LICs) responsible for disease recurrence. We reported recently that the reprogramming factor Krüppel-like factor 4 (KLF4) has a tumor-suppressive function in children with T-ALL. KLF4 silencing by promoter deoxyribonucleic acid (DNA) methylation in patients with T-ALL leads to aberrant activation of the mitogen-activated protein kinase kinase MAP2K7 and the downstream c-Jun NH2-terminal kinase (JNK) pathway that controls the expansion of leukemia cells via c-Jun and activating transcription factor 2. This pathway can be inhibited with small molecules and therefore has the potential to eliminate LICs and eradicate disease in combination with standard therapy for patients with refractory and relapsed disease. The present review summarizes the role of the KLF4-MAP2K7 pathway in T-ALL pathogenesis and the function of JNK and MAP2K7 in carcinogenesis and therapy.
Collapse
|
42
|
Ahn JH, So SP, Kim NY, Kim HJ, Yoon SY, Kim DH. c-Jun N-terminal Kinase (JNK) induces phosphorylation of amyloid precursor protein (APP) at Thr668, in okadaic acid-induced neurodegeneration. BMB Rep 2017; 49:376-81. [PMID: 26839154 PMCID: PMC5032005 DOI: 10.5483/bmbrep.2016.49.7.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence have revealed that phosphorylation of amyloid precursor protein (APP) at Thr668 is involved in the pathogenesis of Alzheimer's disease (AD). Okadaic acid (OA), a protein phosphatase-2A inhibitor, has been used in AD research models to increase tau phosphorylation and induce neuronal death. We previously showed that OA increased levels of APP and induced accumulation of APP in axonal swellings. In this study, we found that in OA-treated neurons, phosphorylation of APP at Thr668 increased and accumulated in axonal swellings by c-jun N-terminal kinase (JNK), and not by Cdk5 or ERK/MAPK. These results suggest that JNK may be one of therapeutic targets for the treatment of AD. [BMB Reports 2016; 49(7): 376-381].
Collapse
Affiliation(s)
- Ji-Hwan Ahn
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Pil So
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Na-Young Kim
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyun-Ju Kim
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Yong Yoon
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Hou Kim
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine; Department of Brain Science, University of Ulsan College of Medicine; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
43
|
Pleinis JM, Davis CW, Cantrell CB, Qiu DY, Zhan X. Purification, auto-activation and kinetic characterization of apoptosis signal-regulating kinase I. Protein Expr Purif 2017; 132:34-43. [PMID: 28082061 DOI: 10.1016/j.pep.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023]
Abstract
Apoptosis signal-regulating kinase I (ASK1) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the downstream MAP kinase kinases (MKKs) from two MAP kinase cascades: c-Jun N-terminal kinase (JNK) and p38. The essential physiological functions of ASK1 have attracted extensive attention. However, our understanding of the molecular mechanisms of ASK1, including the activation mechanism of ASK1 and the catalytic mechanism of ASK1-mediated MKK phosphorylation, remain unclear. The lack of purified ASK1 protein has hindered the elucidation of ASK1-initiated signal transduction mechanisms. Here, we report a one-step chromatography method for the expression and purification of functional full-length ASK1 from Escherichia coli. The purified ASK1 demonstrates auto-phosphorylation activity. The kinase activity of auto-phosphorylated ASK1 (pASK1) was also evaluated on two MKK substrates, MKK4 and 7, from the JNK cascades. Our results show that MKK7 can be phosphorylated by pASK1 more effectively than MKK4. The steady-state kinetic analysis demonstrates that MKK7 is a better ASK1 substrate than MKK4. These observations are further confirmed by direct pull-down assays which shows ASK1 binds MKK7 significantly stronger than MKK4. Furthermore, robust phospho-tyrosine signal is observed in MKK4 phosphorylation by pASK1 in addition to the phospho-serine and phospho-threonine. This study provides novel mechanistic and kinetic insights into the ASK1-initiated MAPK signal transduction via highly controlled reconstructed protein systems.
Collapse
Affiliation(s)
- John M Pleinis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Cameron W Davis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Caleb B Cantrell
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - David Y Qiu
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA
| | - Xuanzhi Zhan
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505, USA.
| |
Collapse
|
44
|
Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2016; 83:255-268. [PMID: 27620987 DOI: 10.1111/bcp.13126] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
Vinca alkaloids have been approved as anticancer drugs for more than 50 years. They have been classified as cytotoxic chemotherapy drugs that act during cellular mitosis, enabling them to target fast growing cancer cells. With the evolution of cancer drug development there has been a shift towards new "targeted" therapies to avoid the side effects and general toxicities of "cytotoxic chemotherapies" such as the vinca alkaloids. Due to their original classification, many have overlooked the fact that vinca alkaloids, taxanes and related drugs do have a specific molecular target: tubulin. They continue to be some of the most effective anticancer drugs, perhaps because their actions upon the microtubule network extend far beyond the ability to halt cells in mitosis, and include the induction of apoptosis at all phases of the cell cycle. In this review, we highlight the numerous cellular consequences of disrupting microtubule dynamics, expanding the textbook knowledge of microtubule destabilising agents and providing novel opportunities for their use in cancer therapy.
Collapse
Affiliation(s)
- Darcy Bates
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Alan Eastman
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
45
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
46
|
Rattanasinchai C, Gallo KA. MLK3 Signaling in Cancer Invasion. Cancers (Basel) 2016; 8:cancers8050051. [PMID: 27213454 PMCID: PMC4880868 DOI: 10.3390/cancers8050051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3) was first cloned in 1994; however, only in the past decade has MLK3 become recognized as a player in oncogenic signaling. MLK3 is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates signals from several cell surface receptors including receptor tyrosine kinases (RTKs), chemokine receptors, and cytokine receptors. Once activated, MLK3 transduces signals to multiple downstream pathways, primarily to c-Jun terminal kinase (JNK) MAPK, as well as to extracellular-signal-regulated kinase (ERK) MAPK, P38 MAPK, and NF-κB, resulting in both transcriptional and post-translational regulation of multiple effector proteins. In several types of cancer, MLK3 signaling is implicated in promoting cell proliferation, as well as driving cell migration, invasion and metastasis.
Collapse
Affiliation(s)
| | - Kathleen A Gallo
- Cell and Molecular Biology program, Michigan State University, East Lansing, MI 48824, USA.
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
47
|
Cunningham CA, Cardwell LN, Guan Y, Teixeiro E, Daniels MA. POSH Regulates CD4+ T Cell Differentiation and Survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4003-13. [PMID: 27084103 PMCID: PMC4868786 DOI: 10.4049/jimmunol.1501728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
The scaffold molecule POSH is crucial for the regulation of proliferation and effector function in CD8(+) T cells. However, its role in CD4(+) T cells is not known. In this study, we found that disruption of the POSH scaffold complex established a transcriptional profile that strongly skewed differentiation toward Th2, led to decreased survival, and had no effect on cell cycle entry. This is in stark contrast to CD8(+) T cells in which POSH regulates cell cycle and does not affect survival. Disruption of POSH in CD4(+) T cells resulted in the loss of Tak1-dependent activation of JNK1/2 and Tak1-mediated survival. However, in CD8(+) T cells, POSH regulates only JNK1. Remarkably, each type of T cell had a unique composition of the POSH scaffold complex and distinct posttranslational modifications of POSH. These data indicate that the mechanism that regulates POSH function in CD4(+) T cells is different from CD8(+) T cells. All together, these data strongly suggest that POSH is essential for the integration of cell-type-specific signals that regulate the differentiation, survival, and function of T cells.
Collapse
Affiliation(s)
- Cody A Cunningham
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Leah N Cardwell
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| |
Collapse
|
48
|
Gibbs KL, Greensmith L, Schiavo G. Regulation of Axonal Transport by Protein Kinases. Trends Biochem Sci 2016; 40:597-610. [PMID: 26410600 DOI: 10.1016/j.tibs.2015.08.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets.
Collapse
Affiliation(s)
- Katherine L Gibbs
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK.
| |
Collapse
|
49
|
Guo M, Wei J, Zhou Y, Qin Q. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 49:355-363. [PMID: 26691306 DOI: 10.1016/j.fsi.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P < 0.01) up-regulated in juvenile orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
50
|
Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun 2016; 7:10318. [PMID: 26754771 PMCID: PMC4729931 DOI: 10.1038/ncomms10318] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
The non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway plays a crucial role in embryonic development. Recent work has linked defects of this pathway to breast cancer aggressiveness and proposed Wnt/PCP signalling as a therapeutic target. Here we show that the archetypal Wnt/PCP protein VANGL2 is overexpressed in basal breast cancers, associated with poor prognosis and implicated in tumour growth. We identify the scaffold p62/SQSTM1 protein as a novel VANGL2-binding partner and show its key role in an evolutionarily conserved VANGL2–p62/SQSTM1–JNK pathway. This proliferative signalling cascade is upregulated in breast cancer patients with shorter survival and can be inactivated in patient-derived xenograft cells by inhibition of the JNK pathway or by disruption of the VANGL2–p62/SQSTM1 interaction. VANGL2–JNK signalling is thus a potential target for breast cancer therapy. Defects in non-canonical Wnt/planar cell polarity signalling have recently been linked to breast cancer aggressiveness. Puvirajesinghe et al. identify VANGL2, p62/SQSTM1 and JNK as important players in this pathway which may be amenable to therapeutic intervention in breast cancer.
Collapse
|