1
|
James NR, O'Neill JS. Circadian Control of Protein Synthesis. Bioessays 2024:e202300158. [PMID: 39668398 DOI: 10.1002/bies.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Daily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle. We propose that a major function of this temporal compartmentalization-and of circadian rhythmicity in general-is to optimize the energy efficiency of protein synthesis and associated processes such as complex assembly. We further propose that much of this temporal compartmentalization is achieved at the level of translational initiation, such that the translational machinery alternates between distinct translational mechanisms, each using a distinct toolkit of phosphoproteins to preferentially recognize and translate different classes of mRNA.
Collapse
Affiliation(s)
- Nathan R James
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - John S O'Neill
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
2
|
Zhang J, Shi Y. An upstream open reading frame (5'-uORF) links oxidative stress to translational control of ALCAT1 through phosphorylation of eIF2α. Free Radic Biol Med 2024; 214:129-136. [PMID: 38360278 PMCID: PMC11798684 DOI: 10.1016/j.freeradbiomed.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1) is an enzyme that promotes mitochondrial dysfunction by catalyzing pathological remodeling of cardiolipin. Upregulation of ALCAT1 protein expression by oxidative stress is implicated in the pathogenesis of age-related metabolic diseases, but the underlying molecular mechanisms remain elusive. In this study, we identified a highly conserved upstream open reading frame (uORF) at the 5'-untranslated region (5'-UTR) of ALCAT1 mRNA as a key regulator of ALCAT1 expression in response to oxidative stress. We show that the uORF serves as a decoy that prevents translation initiation of ALCAT1 under homeostatic condition. The inhibitory activity of the uORF on ALCAT1 mRNA translation is mitigated by oxidative stress but not ER stress, which requires the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Consequently, ablation of uORF or eIF2α phosphorylation at Ser51 renders ALCAT1 protein expression unresponsive to induction by oxidative stress. Taken together, our data show that the uORF links oxidative stress to translation control of ALCAT1 mRNAs through phosphorylation of eIF2α at Ser51.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Patil S, Chalkiadaki K, Mergiya TF, Krimbacher K, Amorim IS, Akerkar S, Gkogkas CG, Bramham CR. eIF4E phosphorylation recruits β-catenin to mRNA cap and promotes Wnt pathway translation in dentate gyrus LTP maintenance. iScience 2023; 26:106649. [PMID: 37250335 PMCID: PMC10214474 DOI: 10.1016/j.isci.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, β-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.
Collapse
Affiliation(s)
- Sudarshan Patil
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Tadiwos F. Mergiya
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Konstanze Krimbacher
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Inês S. Amorim
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Shreeram Akerkar
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Clive R. Bramham
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Effects and mechanisms of animal-free hydrolysates on recombination protein yields in CHO cells. Appl Microbiol Biotechnol 2022; 106:7387-7396. [PMID: 36229612 DOI: 10.1007/s00253-022-12229-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Chinese hamster ovary (CHO) cells are the commonly used cell lines for producing recombinant therapeutic proteins (RTPs) because they possess post-translational modifications similar to human cells. Culture media are necessary for cell growth, and their quality affects the yields and quality of RTPs. Due to safety concerns for the complex purification of RTPs, the development of serum-free media (SFM) is necessary for CHO cells. To meet the need for CHO cells with higher cell density and RTP productivity with consistent product quality in large-scale suspension cultures, the optimization of SFM through adding some enzymatic animal-free hydrolysates (AFHs) is preferred. The AFHs can improve cell culture performance and product yield of RTPs without affecting their quality. Here, the effect and mechanism of various AFHs in improving CHO cell culture performance and protein expression are reviewed. KEY POINTS: • AFHs that improve the recombinant protein yield of CHO cells are reviewed. • AFHs improve recombinant protein yield via influencing cell performance. • The AFHs do not affect the quality of recombinant protein in CHO cells. • AFHs can provide nutrients, block cell cycle, and reduce oxidative stress.
Collapse
|
5
|
Sharma A, Nair R, Achreja A, Mittal A, Gupta P, Balakrishnan K, Edgar CL, Animasahun O, Dwivedi B, Barwick BG, Gupta VA, Matulis SM, Bhasin M, Lonial S, Nooka AK, Wiita AP, Boise LH, Nagrath D, Shanmugam M. Therapeutic implications of mitochondrial stress-induced proteasome inhibitor resistance in multiple myeloma. SCIENCE ADVANCES 2022; 8:eabq5575. [PMID: 36170375 PMCID: PMC9519052 DOI: 10.1126/sciadv.abq5575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter SLC7A11, and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher SLC7A11 expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pulkit Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kamakshi Balakrishnan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Claudia L. Edgar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
- Corresponding author.
| |
Collapse
|
6
|
Rehan M, Shafiullah, Sultanat. Cytotoxicity of oleanane type triterpene from leaf extract of Pterospermum acerifolium (in vitro) and theoretical investigation of inhibitory signaling pathway. CHINESE HERBAL MEDICINES 2021; 13:124-130. [PMID: 36117756 PMCID: PMC9476737 DOI: 10.1016/j.chmed.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Objective To evaluate the cytotoxic activity of taraxerol isolated from the leaves of Pterospermum acerifolium and its EtOH extract against human breast, colon, and lung cancer cell lines and docking studies. Methods The structures of the isolated compounds were elucidated by several spectroscopic methods such as 1H-NMR, 13C-NMR, DEPT-135, COSY, HSQC, and HMBC. The extract and isolated compound were analyzed for cytotoxic activity on MDA-MB-231, BT-549, A-549, and SW-480 cancer cell lines by MTT assay. Molecular docking was performed on software such as Chem3D pro 12.0.2.1076, Discovery Studio Visualizer, Auto Dock Tools-1.5.6 and Auto dock vina. Results The extract and isolated compound taraxerol both displayed excellent inhibitory activity (IC50: 80 µg/mL for extract and 160 µg/mL for compound) on breast cancer cell (MDA-MB-231). The docking studies show a strong affinity with PI3K (-9.8 Kcal/mol) and mTOR (-10.0 Kcal/mol). Conclusion The results confirm that the extract and compound exhibited strong cytotoxicity on the MDA-MB-231 cancer cell. So, the extract and the compound may be useful in human chemotherapies.
Collapse
|
7
|
Yang Y, Zhang L. The effects of caloric restriction and its mimetics in Alzheimer's disease through autophagy pathways. Food Funct 2020; 11:1211-1224. [PMID: 32068753 DOI: 10.1039/c9fo02611h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that commonly occurs among older individuals. Increasing evidence suggests that a low-caloric diet might be a promising adjuvant therapeutic strategy for slowing or preventing the pathogenesis and progression of AD through the induction of autophagy. Several intracellular pathways have been implicated in caloric restriction (CR)-induced autophagy. In this review, we summarized the efficacy of CR as well as its mimetics (resveratrol, spermidine, aspirin, rapamycin, metformin, and curcumin) in improving cognitive function of rodent models of AD. On the basis of recent in vitro and animal studies, the beneficial effects of CR- or caloric restriction mimetics-induced autophagy in alleviating amyloid burden and tau pathology of AD were also discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China.
| | - Lihui Zhang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
8
|
Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis. Proc Nutr Soc 2020; 80:106-117. [PMID: 33023679 DOI: 10.1017/s0029665120007879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2-3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this 'muscle full' phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.
Collapse
|
9
|
Ospina-Rojas IC, Pozza PC, Rodrigueiro RJB, Gasparino E, Khatlab AS, Murakami AE. High leucine levels affecting valine and isoleucine recommendations in low-protein diets for broiler chickens. Poult Sci 2020; 99:5946-5959. [PMID: 33142512 PMCID: PMC7647919 DOI: 10.1016/j.psj.2020.08.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
Four experiments were conducted to estimate the optimal standardized ileal digestible (SID) level of branched-chain amino acids in low-protein diets during the starter, grower, and finisher periods, using the response surface methodology, and to study their effects on performance and mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway of broiler chickens from 8 to 21 D of age. In experiments 1, 2, and 3, a total of 1,500 Cobb male broiler chickens were assigned to 15 diets of a central composite rotatable design (CCD) of response surface methodology containing 5 levels of SID Leu, Val, and Ile with 5 replicate pens of 20 birds each. A 3-factor, 5-level CCD platform was used to fit the second-order polynomial equation of broiler performance. In experiment 4, a total of 540 8-day-old Cobb male broiler chickens were distributed in a completely randomized 2 x 3 x 3 factorial arrangement with 2 SID Leu levels (1.28 or 1.83%), 3 SID Val levels (0.65, 0.90, or 1.20%), and 3 SID Ile levels (0.54, 0.79, or 1.09%) for a total of 18 treatments with 5 replicate cages of 6 birds each. High Leu levels impaired (P < 0.05) gain:feed when birds were fed marginal Val or Ile diets. However, gain:feed was restored when both Val and Ile were supplemented to reach adequate or high levels. High Leu levels increased (P < 0.05) mRNA expression of S6K1 and eEF2 genes only in birds fed high Ile levels. Dietary SID Leu, Val, and Ile levels required for gain:feed optimization in low-protein diets were estimated at 1.37, 0.94, and 0.87% during the starter period; 1.23, 0.82, and 0.75% during the grower period; and 1.15, 0.77, and 0.70% during the finisher phase, respectively. Higher Val and Ile levels are required to optimize the effect of Leu supplementation on mRNA expression of mTOR pathway genes in the pectoralis major muscle of broilers from day 1 to 21 after hatch.
Collapse
Affiliation(s)
- I C Ospina-Rojas
- CJ Corporation, Av. Engenheiro Luís Carlos Berrini, São Paulo - SP, Brazil
| | - P C Pozza
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - R J B Rodrigueiro
- CJ Corporation, Av. Engenheiro Luís Carlos Berrini, São Paulo - SP, Brazil
| | - E Gasparino
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - A S Khatlab
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - A E Murakami
- Animal Science Department, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| |
Collapse
|
10
|
Tafur L, Kefauver J, Loewith R. Structural Insights into TOR Signaling. Genes (Basel) 2020; 11:E885. [PMID: 32759652 PMCID: PMC7464330 DOI: 10.3390/genes11080885] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
Collapse
Affiliation(s)
- Lucas Tafur
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Jennifer Kefauver
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland
| |
Collapse
|
11
|
Silva MC, Nandi GA, Tentarelli S, Gurrell IK, Jamier T, Lucente D, Dickerson BC, Brown DG, Brandon NJ, Haggarty SJ. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun 2020; 11:3258. [PMID: 32591533 PMCID: PMC7320012 DOI: 10.1038/s41467-020-16984-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.
Collapse
Affiliation(s)
- M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Ghata A Nandi
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Sharon Tentarelli
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Ian K Gurrell
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN, RM 5820, Boston, MA, 02114, USA
| | - Bradford C Dickerson
- MGH Frontotemporal Disorders Unit, Gerontology Research Unit, Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St. Suite 2691, Charlestown, MA, 02129, USA
| | - Dean G Brown
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | | | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Reciprocal Regulation between Primary Cilia and mTORC1. Genes (Basel) 2020; 11:genes11060711. [PMID: 32604881 PMCID: PMC7349257 DOI: 10.3390/genes11060711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In quiescent cells, primary cilia function as a mechanosensor that converts mechanic signals into chemical activities. This unique organelle plays a critical role in restricting mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is essential for quiescent cells to maintain their quiescence. Multiple mechanisms have been identified that mediate the inhibitory effect of primary cilia on mTORC1 signaling. These mechanisms depend on several tumor suppressor proteins localized within the ciliary compartment, including liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), polycystin-1, and polycystin-2. Conversely, changes in mTORC1 activity are able to affect ciliogenesis and stability indirectly through autophagy. In this review, we summarize recent advances in our understanding of the reciprocal regulation of mTORC1 and primary cilia.
Collapse
|
13
|
Han X, Sun Z. Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in Renal Tubule Cells. Hypertension 2020; 75:1233-1241. [PMID: 32223380 DOI: 10.1161/hypertensionaha.120.14642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KL (klotho) levels decline with age, which is an important mechanistic driver of aging. KL gene deficiency is associated with hypertension. The purpose of this study is to investigate the potential role of H3K27me3 (histone 3 lysine [K] 27 trimethylation) in the regulation of KL gene expression and examine the related molecular pathways that may drive kidney cell aging. Kidneys were collected from 6-month-old WT (wild type; young WT), 30-month-old WT (aged WT), and 6- (young) and 20-month-old (aged) KL mutant mice, respectively. We demonstrated that the H3K27me3 level was increased in kidneys of aged WT and KL mutant mice versus young WT mice. Elevation of H3K27me3 levels was likely due to downregulation of the H3K27 (histone H3 Lys 27)-specific demethylase JMJD3 (the Jumonji domain containing-3) in the aged kidneys. Inhibition of PRC2 (polycomb repressive complex C2; histone trimethyltransferase) decreased the H3K27me3 levels leading to an increase in the expression of KL in cultured primary renal tubule cells assessed by Western blot and KL promoter activity assays. The chromatin immunoprecipitation qPCR assay revealed that H3K27me3 was physically associated with the KL promoter region. Furthermore, aging impaired the SGK1 (serum- and glucocorticoid-induced protein kinase 1)/FOXO3a (the forkhead box class O 3a) signaling leading to upregulation of p53 and p16 (aging markers) in the kidney of aged WT mice. KL may regulate the SGK1/FOXO3 signaling, which was decreased due to KL deficiency. Thus, aging-associated downregulation of KL gene expression may be partly attributed to upregulation of H3K27me3 levels. Downregulation of KL may impair the SGK1/FOXO3 signaling contributing to kidney cell aging.
Collapse
Affiliation(s)
- Xiaobin Han
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
14
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Xie YC, Yao ZH, Yao XL, Pan JZ, Zhang SF, Zhang Y, Hu JC. Glucagon-Like Peptide-2 Receptor is Involved in Spatial Cognitive Dysfunction in Rats After Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2019; 66:1559-1576. [PMID: 30452417 DOI: 10.3233/jad-180782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) affects the aging population and especially patients with neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. CCH is closely related to the cognitive dysfunction in these diseases. Glucagon-like peptide-2 receptor (GLP2R) mRNA and protein are highly expressed in the gut and in hippocampal neurons. This receptor is involved in the regulation of food intake and the control of energy balance and glucose homeostasis. The present study employed behavioral techniques, electrophysiology, western blotting, immunohistochemistry, quantitative real time polymerase chain reaction (qRT-PCR), and Golgi staining to investigate whether the expression of GLP2R changes after CCH and whether GLP2R is involved in cognitive impairment caused by CCH. Our findings show that CCH significantly decreased hippocampal GLP2R mRNA and protein levels. GLP2R upregulation could prevent CCH-induced cognitive impairment. It also improved the CCH-induced impairment of long-term potentiation and long-term depression. Additionally, GLP2R modulated after CCH the AKT-mTOR-p70S6K pathway in the hippocampus. Moreover, an upregulation of the GLP2R increased the neurogenesis in the dentate gyrus, neuronal activity, and density of dendritic spines and mushroom spines in hippocampal neurons. Our findings reveal the involvement of GLP2R via a modulation of the AKT-mTOR-p70S6K pathway in the mechanisms underlying CCH-induced impairments of spatial learning and memory. We suggest that the GLP2R and the AKT-mTOR-p70S6K pathway in the hippocampus are promising targets to treat cognition deficits in CCH.
Collapse
Affiliation(s)
- Yan-Chun Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Li Yao
- Department of Neurology, Central Hospital of Zhengzhou, Zhengzhou, China
| | - Jian-Zhen Pan
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Feng Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji-Chang Hu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Nachmani D, Bothmer AH, Grisendi S, Mele A, Bothmer D, Lee JD, Monteleone E, Cheng K, Zhang Y, Bester AC, Guzzetti A, Mitchell CA, Mendez LM, Pozdnyakova O, Sportoletti P, Martelli MP, Vulliamy TJ, Safra M, Schwartz S, Luzzatto L, Bluteau O, Soulier J, Darnell RB, Falini B, Dokal I, Ito K, Clohessy JG, Pandolfi PP. Germline NPM1 mutations lead to altered rRNA 2'-O-methylation and cause dyskeratosis congenita. Nat Genet 2019; 51:1518-1529. [PMID: 31570891 PMCID: PMC6858547 DOI: 10.1038/s41588-019-0502-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
RNA modifications are emerging as key determinants of gene expression. However, compelling genetic demonstrations of their relevance to human disease are lacking. Here, we link ribosomal RNA 2'-O-methylation (2'-O-Me) to the etiology of dyskeratosis congenita. We identify nucleophosmin (NPM1) as an essential regulator of 2'-O-Me on rRNA by directly binding C/D box small nucleolar RNAs, thereby modulating translation. We demonstrate the importance of 2'-O-Me-regulated translation for cellular growth, differentiation and hematopoietic stem cell maintenance, and show that Npm1 inactivation in adult hematopoietic stem cells results in bone marrow failure. We identify NPM1 germline mutations in patients with dyskeratosis congenita presenting with bone marrow failure and demonstrate that they are deficient in small nucleolar RNA binding. Mice harboring a dyskeratosis congenita germline Npm1 mutation recapitulate both hematological and nonhematological features of dyskeratosis congenita. Thus, our findings indicate that impaired 2'-O-Me can be etiological to human disease.
Collapse
Affiliation(s)
- Daphna Nachmani
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anne H Bothmer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Silvia Grisendi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Dietmar Bothmer
- Hochschule Zittau/Görlitz, Institute of Ecology and Environmental Protection, Zittau, Germany
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanuele Monteleone
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ke Cheng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yang Zhang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Assaf C Bester
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alison Guzzetti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caitlin A Mitchell
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lourdes M Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Paolo Sportoletti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria-Paola Martelli
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Tom J Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Modi Safra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Olivier Bluteau
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Jean Soulier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Inderjeet Dokal
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Hu S, Cheng M, Fan R, Wang Z, Wang L, Zhang T, Zhang M, Louis E, Zhong J. Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis. Int Immunopharmacol 2019; 70:88-100. [PMID: 30797172 DOI: 10.1016/j.intimp.2019.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM AZD8055, a new immunosuppressive reagent, a dual TORC1/2 inhibitor, had been used successfully in animal models for heart transplantation. The aim of this study was to evaluate the effects and mechanisms of AZD8055 on chronic intestinal inflammation. METHODS Dextran sulfate sodium (DSS) - induced chronic colitis was used to investigate the effects of AZD8055 on the development of colitis. Colitis activity was monitored by body weight assessment, colon length, histology and cytokine profile analysis. RESULTS AZD8055 treatment significantly alleviated the severity of colitis, as assessed by colonic length and colonic damage. In addition, AZD8055 treatment decreased the colonic CD4+ T cell numbers and reduced both Th1 and Th17 cell activation and cytokine production. The percentages of Treg cells in the colon were also expanded by AZD8055 treatment. Furthermore, AZD8055 effectively inhibited mTOR downstream proteins and signal transducer and activator of transcription related proteins in CD4+ T cells of intestinal lamina propria. CONCLUSIONS These findings increased our understanding of DSS-induced colitis and shed new lights on mechanisms of digestive tract chronic inflammation. Dual TORC1/2 inhibition showed potent anti-inflammatory and immune regulation effects by targeting critical signaling pathways. The results supported the strategy of using dual mTOR inhibitor to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Shurong Hu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and technology, Wuhan, Hubei, PR China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China
| | - Edouard Louis
- Translational Gastroenterology Research Unit, GIGA-R, University of Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Unit, University Hospital, CHU Liege, Domaine du Sart Tilman, 4000 Liege, Belgium.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
18
|
Tao Z, Li T, Ma H, Yang Y, Zhang C, Hai L, Liu P, Yuan F, Li J, Yi L, Tong L, Wang Y, Xie Y, Ming H, Yu S, Yang X. Autophagy suppresses self-renewal ability and tumorigenicity of glioma-initiating cells and promotes Notch1 degradation. Cell Death Dis 2018; 9:1063. [PMID: 30337536 PMCID: PMC6194143 DOI: 10.1038/s41419-018-0957-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023]
Abstract
Autophagy is a vital process that involves degradation of long-lived proteins and dysfunctional organelles and contributes to cellular metabolism. Glioma-initiating cells (GICs) have the ability to self-renew, differentiate into heterogeneous types of tumor cells, and sustain tumorigenicity; thus, GICs lead to tumor recurrence. Accumulating evidence indicates that autophagy can induce stem cell differentiation and increase the lethality of temozolomide against GICs. However, the mechanism underlying the regulation of GIC self-renewal by autophagy remains uncharacterized. In the present study, autophagy induced by AZD8055 and rapamycin treatment suppressed GIC self-renewal in vitro. We found that autophagy inhibited Notch1 pathway activation. Moreover, autophagy activated Notch1 degradation, which is associated with maintenance of the self-renewal ability of GICs. Furthermore, autophagy abolished the tumorigenicity of CD133 + U87-MG neurosphere cells in an intracranial model. These findings suggest that autophagy regulating GICs self-renewal and tumorigenicity is probably bound up with Notch1 degradation. The results of this study could aid in the design of autophagy-based clinical trials for glioma treatments, which may be of great value.
Collapse
Affiliation(s)
- Zhennan Tao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Haiwen Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Chen Zhang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Long Hai
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Feng Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Luqing Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300052, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yingshuai Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
19
|
Wang CX, Chen F, Zhang WF, Zhang SH, Shi K, Song HQ, Wang YJ, Kim SW, Guan WT. Leucine Promotes the Growth of Fetal Pigs by Increasing Protein Synthesis through the mTOR Signaling Pathway in Longissimus Dorsi Muscle at Late Gestation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3840-3849. [PMID: 29584425 DOI: 10.1021/acs.jafc.8b00330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Leucine (Leu) plays an important role in protein synthesis and metabolism. The present study tested whether Leu supplementation in the diet for sows during late pregnancy could improve piglet birth weight, and it also investigated the possible underlying mechanism. Two hundred sows at day 70 of pregnancy were selected and assigned to four groups fed with following four diets until farrowing, respectively: corn and soybean meal-based diet group (CON), CON + 0.40% Leu, CON + 0.80% Leu, and CON + 1.20% Leu. We found that supplementing with 0.80% Leu significantly increased mean piglet birth weight ( P < 0.05). Supplementation with 0.40, 0.80, and 1.20% Leu increased the plasma concentration of Leu, while decreasing the plasma concentrations of valine (Val) and isoleucine (Ile) in both farrowing sows and newborn piglets ( P < 0.05). The protein expressions of amino acid transporters (including LAT1, SNAT1, SNAT2, 4F2hc, and rBAT) in duodenum, jejunum, ileum, longissimus dorsi muscle of newborn piglets, and placenta of sows showed a difference among the CON group and Leu supplemented groups. Expressions of p-mTOR, p-4E-BP1, and p-S6K1 in longissimus dorsi muscle were also enhanced in each of the supplemental Leu groups compared to CON ( P < 0.05). Collectively, these results indicated that 0.40-0.80% Leu supplementation during late gestation enhanced birth weight of fetal pigs by increasing protein synthesis through modulation of the plasma amino acids profile, amino acid transporters expression, and mTOR signaling pathway.
Collapse
Affiliation(s)
- Chao-Xian Wang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Fang Chen
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Wen-Fei Zhang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Shi-Hai Zhang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Kui Shi
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Han-Qing Song
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yi-Jiang Wang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| | - Sung Woo Kim
- Department of Animal Science , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Wu-Tai Guan
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
20
|
Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8018197. [PMID: 29375734 PMCID: PMC5742498 DOI: 10.1155/2017/8018197] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction.
Collapse
|
21
|
Molinari F, Pin F, Gorini S, Chiandotto S, Pontecorvo L, Penna F, Rizzuto E, Pisu S, Musarò A, Costelli P, Rosano G, Ferraro E. The mitochondrial metabolic reprogramming agent trimetazidine as an 'exercise mimetic' in cachectic C26-bearing mice. J Cachexia Sarcopenia Muscle 2017; 8:954-973. [PMID: 29130633 PMCID: PMC5700442 DOI: 10.1002/jcsm.12226] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia. METHODS For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received 5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior, and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also performed. RESULTS Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength increase, an enhanced fast-to slow myofibre phenotype shift, reduced glycaemia, PGC1α up-regulation, oxidative metabolism, and mitochondrial biogenesis. TMZ also partially restores the myofibre cross-sectional area in C26-bearing mice, while modulation of autophagy and apoptosis were excluded as mediators of TMZ effects. CONCLUSIONS In conclusion, our data show that TMZ acts like an 'exercise mimetic' and is able to enhance some mechanisms of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for clinical use.
Collapse
Affiliation(s)
- Francesca Molinari
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166, Rome, Italy
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, IIM, University of Turin, Corso Raffaello, 10125, Turin, Italy
| | - Stefania Gorini
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166, Rome, Italy
| | - Sergio Chiandotto
- DMCM Department of Molecular and Clinical Medicine, c/o Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, Via Scarpa, 00161, Rome, Italy
| | - Laura Pontecorvo
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166, Rome, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, IIM, University of Turin, Corso Raffaello, 10125, Turin, Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana, 00184, Rome, Italy
| | - Simona Pisu
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Via Scarpa, 00161, Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Via Scarpa, 00161, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 00161, Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, IIM, University of Turin, Corso Raffaello, 10125, Turin, Italy
| | - Giuseppe Rosano
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166, Rome, Italy.,Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace London, SW17, UK
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Via di Val Cannuta, 00166, Rome, Italy
| |
Collapse
|
22
|
Adjibade P, Grenier St-Sauveur V, Bergeman J, Huot ME, Khandjian EW, Mazroui R. DDX3 regulates endoplasmic reticulum stress-induced ATF4 expression. Sci Rep 2017; 7:13832. [PMID: 29062139 PMCID: PMC5653821 DOI: 10.1038/s41598-017-14262-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulation of unfolded and potentially toxic proteins in the endoplasmic reticulum (ER) activates a cell stress adaptive response, which involves a reprogramming of general gene expression. ATF4 is a master stress-induced transcription factor that orchestrates gene expression in cells treated with various ER stress inducers including those used to treat cancers. ER stress-induced ATF4 expression occurs mainly at the translational level involving the activity of the phosphorylated (P) translation initiation factor (eIF) eIF2α. While it is well established that under ER stress PeIF2α drives ATF4 expression through a specialised mode of translation re-initiation, factors (e.g. RNA-binding proteins and specific eIFs) involved in PeIF2α-mediated ATF4 translation remain unknown. Here we identified the RNA-binding protein named DDX3 as a promotor of ATF4 expression in cancer cells treated with sorafenib, an ER stress inducer used as a chemotherapeutic. Depletion experiments showed that DDX3 is required for PeIF2α-mediated ATF4 expression. Luciferase and polyribosomes assays showed that DDX3 drives ER stress-induced ATF4 mRNA expression at the translational level. Protein-interaction assays showed that DDX3 binds the eIF4F complex, which we found to be required for ER stress-induced ATF4 expression. This study thus showed that PeIF2α-mediated ATF4 mRNA translation requires DDX3 as a part of the eIF4F complex.
Collapse
Affiliation(s)
- Pauline Adjibade
- Centre de recherche en cancérologie. Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, Québec, PQ, Canada
| | - Valérie Grenier St-Sauveur
- Centre de recherche en cancérologie. Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, Québec, PQ, Canada.,Complexe de diagnostic et d'épidémiosurveillance vétérinaires du Québec (CDEVQ) Université de Montréal, Montréal, Canada
| | - Jonathan Bergeman
- Centre de recherche en cancérologie. Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, Québec, PQ, Canada
| | - Marc-Etienne Huot
- Centre de recherche en cancérologie. Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, Québec, PQ, Canada
| | - Edouard W Khandjian
- Centre de Recherche, Institut universitaire en santé mentale de Québec. Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, PQ, Canada
| | - Rachid Mazroui
- Centre de recherche en cancérologie. Centre de recherche du CHU de Québec. Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
23
|
Patton MS, Lodge DJ, Morilak DA, Girotti M. Ketamine Corrects Stress-Induced Cognitive Dysfunction through JAK2/STAT3 Signaling in the Orbitofrontal Cortex. Neuropsychopharmacology 2017; 42:1220-1230. [PMID: 27748739 PMCID: PMC5437880 DOI: 10.1038/npp.2016.236] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
Deficits in cognitive flexibility are prominent in stress-related psychiatric disorders, including depression. Ketamine has rapid antidepressant efficacy, but it is unknown if ketamine improves cognitive symptoms. In rats, 2 weeks chronic intermittent cold (CIC) stress impairs reversal learning, a form of cognitive flexibility mediated by the orbitofrontal cortex (OFC) that we have used previously to model cognitive dysfunction in depression. We have shown that activating JAK2/STAT3 signaling in the OFC rescued the CIC stress-induced reversal learning deficit. Thus, in the present study we determined whether ketamine also corrects the stress-induced reversal learning deficit, and if JAK2/STAT3 signaling is involved in this effect. A single injection of ketamine (10 mg/kg, i.p.) 24 h prior to testing rescued the CIC stress-induced reversal learning deficit. CIC stress decreased JAK2 phosphorylation in the OFC, and ketamine restored pJAK2 levels within 2 h post injection. The JAK2 inhibitor AG490 given systemically or into the OFC at the time of ketamine injection prevented its beneficial effect on reversal learning. We then tested the role of JAK2/STAT3 in ketamine-induced plasticity in the OFC. Ketamine depressed local field potentials evoked in the OFC by excitatory thalamic afferent stimulation, and this was prevented by JAK2 inhibition in the OFC. Further, in both the OFC and primary cortical neurons in culture, ketamine increased expression of the neural plasticity-related protein Arc, and this was prevented by JAK2 inhibition. These results suggest that the JAK2/STAT3 signaling pathway is a novel mechanism by which ketamine exerts its therapeutic effects on stress-induced cognitive dysfunction in the OFC.
Collapse
Affiliation(s)
- Michael S Patton
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Milena Girotti
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center in San Antonio, Mail Code 7764, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA, Tel: +210 567 4278, Fax: +210 567 4300, E-mail:
| |
Collapse
|
24
|
Ermolao A, Zanotto T, Carraro N, Fornasier T, Zaccaria M, Neunhaeuserer D, Bergamin M. Repeated sprint ability is not enhanced by caffeine, arginine, and branched-chain amino acids in moderately trained soccer players. J Exerc Rehabil 2017; 13:55-61. [PMID: 28349034 PMCID: PMC5332000 DOI: 10.12965/jer.1732722.361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/01/2017] [Indexed: 11/23/2022] Open
Abstract
The aim was to investigate the effect of a dietary supplementation on the repeated sprint ability (RSA) performance in recreationally trained team sports athletes. Twelve young men underwent a RSA exercise protocol in five trials, in which participants ingested carbohydrates (CHO) plus caffeine (Caf), CHO plus arginine (Arg), CHO plus branched-chain amino acids (BCAA), CHO plus Caf, Arg, and BCAA (ALL), and CHO only. Heart rate, oxygen saturation, hematic lactate, ratings of perceived exertion, average sprint time, total time, best sprint time, peak power, and average power were taken. Data revealed no significant effects neither on physiological nor performance parameters with any of the supplements.
Collapse
Affiliation(s)
- Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Tobia Zanotto
- School of Health Sciences, Queen Margaret University, Edinburgh, United Kingdom
| | - Nicolò Carraro
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Tommaso Fornasier
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Marco Zaccaria
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Daniel Neunhaeuserer
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Marco Bergamin
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Hotamisligil GS, Davis RJ. Cell Signaling and Stress Responses. Cold Spring Harb Perspect Biol 2016; 8:8/10/a006072. [PMID: 27698029 DOI: 10.1101/cshperspect.a006072] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress-signaling pathways are evolutionarily conserved and play an important role in the maintenance of homeostasis. These pathways are also critical for adaptation to new cellular environments. The endoplasmic reticulum (ER) unfolded protein response (UPR) is activated by biosynthetic stress and leads to a compensatory increase in ER function. The JNK and p38 MAPK signaling pathways control adaptive responses to intracellular and extracellular stresses, including environmental changes such as UV light, heat, and hyperosmotic conditions, and exposure to inflammatory cytokines. Metabolic stress caused by a high-fat diet represents an example of a stimulus that coordinately activates both the UPR and JNK/p38 signaling pathways. Chronic activation of these stress-response pathways ultimately causes metabolic changes associated with obesity and altered insulin sensitivity. Stress-signaling pathways, therefore, represent potential targets for therapeutic intervention in the metabolic stress response and other disease processes.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Broad Institute of Harvard-MIT, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
26
|
Abstract
The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.
Collapse
Affiliation(s)
- Jianling Xie
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia
| | - Xuemin Wang
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher G Proud
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 2016; 311:E157-74. [PMID: 27189933 PMCID: PMC4967146 DOI: 10.1152/ajpendo.00059.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, Orlando, Florida;
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
28
|
Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxf) 2016; 216:15-41. [PMID: 26010896 PMCID: PMC4843955 DOI: 10.1111/apha.12532] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Skeletal muscles comprise a substantial portion of whole body mass and are integral for locomotion and metabolic health. Increasing age is associated with declines in both muscle mass and function (e.g. strength‐related performance, power) with declines in muscle function quantitatively outweighing those in muscle volume. The mechanisms behind these declines are multi‐faceted involving both intrinsic age‐related metabolic dysregulation and environmental influences such as nutritional and physical activity. Ageing is associated with a degree of ‘anabolic resistance’ to these key environmental inputs, which likely accelerates the intrinsic processes driving ageing. On this basis, strategies to sensitize and/or promote anabolic responses to nutrition and physical activity are likely to be imperative in alleviating the progression and trajectory of sarcopenia. Both resistance‐ and aerobic‐type exercises are likely to confer functional and health benefits in older age, and a clutch of research suggests that enhancement of anabolic responsiveness to exercise and/or nutrition may be achieved by optimizing modifications of muscle‐loading paradigms (workload, volume, blood flow restriction) or nutritional support (e.g. essential amino acid/leucine) patterns. Nonetheless, more work is needed in which a more holistic view in ageing studies is taken into account. This should include improved characterization of older study recruits, that is physical activity/nutritional behaviours, to limit confounding variables influencing whether findings are attributable to age, or other environmental influences. Nonetheless, on balance, ageing is associated with declines in muscle mass and function and a partially related decline in aerobic capacity. There is also good evidence that metabolic flexibility is impaired in older age.
Collapse
Affiliation(s)
- M. S. Brook
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - D. J. Wilkinson
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - B. E. Phillips
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - J. Perez-Schindler
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - A. Philp
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| | - K. Smith
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| | - P. J. Atherton
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical Metabolic and Molecular Physiology; University of Nottingham; Royal Derby Hospital Centre; Derby UK
| |
Collapse
|
29
|
Liu MN, Liu AY, Pei FH, Ma X, Fan YJ, DU YJ, Liu BR. Functional mechanism of the enhancement of 5-fluorouracil sensitivity by TUSC4 in colon cancer cells. Oncol Lett 2015; 10:3682-3688. [PMID: 26788191 DOI: 10.3892/ol.2015.3801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 07/07/2015] [Indexed: 02/01/2023] Open
Abstract
5-Fluorouracil (5-FU) is the chemotherapeutic drug of choice for the treatment of metastatic colorectal cancer (CRC). Tumor suppressor candidate 4 (TUSC4), also referred to as nitrogen permease regulator-like 2 (NPRL2), is located at chromosome 3p21.3 and expressed in numerous normal tissues, including the heart, liver, skeletal muscle, kidney, and pancreas. The aim of the present study was to investigate the functional mechanism by which TUSC4 affects sensitivity to 5-FU and to determine its clinical significance in CRC. The results of the present study demonstrated that TUSC4 overexpression increases the sensitivity of HCT116 cells to 5-FU. The IC50 of 5-FU was reduced in cells transduced with TUSC4 compared with negative control (NC) cells, and the effect of TUSC4 on 5-FU sensitivity was time dependent. Following TUSC4 transduction in HCT116 cells, a proportion of the cells were arrested in the G1 phase of the cell cycle, and a reduction in the S phase population was observed. Flow cytometry analysis revealed that TUSC4 transduction and 5-FU treatment increased apoptosis compared with NC cells. The mechanism through which TUSC4 overexpression enhances 5-FU sensitivity involves the downregulation of the function of the PI3K/Akt/mTOR network. Furthermore, 5-FU upregulated caspase-3 and caspase-9, promoting apoptosis in TUSC4-overexpressing cells compared with cells that were transduced with TUSC4 or treated with 5-FU and NC cells. The findings of the present study indicate that TUSC4 has potential as a biomarker for the prediction of the response to 5-FU and prognosis in patients with colorectal cancer and other types of human cancer. TUSC4 may also act as a molecular therapeutic agent for enhancing the patient's response to 5-FU treatment.
Collapse
Affiliation(s)
- Ming-Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Ai-Yun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Xiao Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Yu-Jing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Ya-Ju DU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
30
|
Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr 2015; 102:828-36. [PMID: 26354539 DOI: 10.3945/ajcn.114.103184] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. OBJECTIVE We aimed to compare protein digestion and absorption kinetics, postprandial amino acid availability, anabolic signaling, and the subsequent myofibrillar protein synthetic response after the ingestion of milk compared with beef during recovery from resistance-type exercise. DESIGN In crossover trials, 12 healthy young men performed a single bout of resistance exercise. Immediately after cessation of exercise, participants ingested 30 g protein by consuming isonitrogenous amounts of intrinsically l-[1-(13)C]phenylalanine-labeled beef or milk. Blood and muscle biopsy samples were collected at rest and after exercise during primed continuous infusions of l-[ring-(2)H5]phenylalanine and l-[ring-3,5-(2)H2]tyrosine to assess protein digestion and absorption kinetics, plasma amino acid availability, anabolic signaling, and subsequent myofibrillar protein synthesis rates in vivo in young men. RESULTS Beef protein-derived phenylalanine appeared more rapidly in circulation compared with milk ingestion (P < 0.001). The availability of phenylalanine during the 5-h postexercise period tended to be higher after beef (64% ± 3%) ingestion than after milk ingestion (57% ± 3%; P = 0.08). Both beef and milk ingestion were followed by an increase in the phosphorylation of mammalian target of rapamycin complex 1 and 70-kDa S6 protein kinase 1 during postexercise recovery. Milk ingestion increased myofibrillar protein synthesis rates to a greater extent than did beef ingestion during the 0- to 2-h postexercise phase (P = 0.013). However, the increase in myofibrillar protein synthesis rates did not differ between milk and beef ingestion during the entire 0- to 5-h postexercise phase (P = 0.114). CONCLUSIONS Both milk and beef ingestion augment the postexercise myofibrillar protein synthetic response in young men, with a stronger stimulation of myofibrillar protein synthesis during the early postprandial stage after milk ingestion. This trial was registered at www.clinicaltrials.gov as NCT01578590.
Collapse
Affiliation(s)
- Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stefan H Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stephan van Vliet
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Brook MS, Wilkinson DJ, Smith K, Atherton PJ. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise. Eur J Sport Sci 2015; 16:633-44. [PMID: 26289597 DOI: 10.1080/17461391.2015.1073362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.
Collapse
Affiliation(s)
- Matthew S Brook
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Daniel J Wilkinson
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Kenneth Smith
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| | - Philip J Atherton
- a MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology , University of Nottingham , UK
| |
Collapse
|
32
|
Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 2015; 27:1557-68. [PMID: 25936523 DOI: 10.1016/j.cellsig.2015.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | - Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Bianca Knoch
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | | |
Collapse
|
33
|
Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture. Appl Microbiol Biotechnol 2015; 99:8429-40. [DOI: 10.1007/s00253-015-6789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
34
|
Li J, Li X, Wang J, Wang Y, Qiu H. MicroRNA-218 increases cellular sensitivity to Rapamycin via targeting Rictor in cervical cancer. APMIS 2015; 123:562-70. [PMID: 25908215 DOI: 10.1111/apm.12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/20/2015] [Indexed: 01/08/2023]
Abstract
We previously reported that microRNA-218 was frequently lost in cervical cancer and restoration of microRNA-218 increased cellular radio-sensitivity via inhibiting. Herein, we aim to investigate the effects of microRNA-218 on cellular response to mTOR inhibition. The expression of microRNA-218 and Rictor were measured by Taqman PCR and real time PCR in a panel of 15 cervical cancer tissues. MicroRNA-218 was stably overexpressed in four cervical cancer cell lines and a series of in vitro and in vivo experiments were performed to investigate cellular sensitivity to Rapamycin. In primary cultured cervical cancer cells, the expression of microRNA-218 was negatively correlated with the mRNA level of Rictor, which predicted cellular sensitivity to Rapamycin (p = 0.002, R(2) = 0.6810). In vitro, overexpression of microRNA-218 significantly reduced the level of Rictor and enhanced the growth-inhibition, cell cycle arrest, and apoptosis induced by Rapamycin. In vivo, overexpression of microRNA-218 further enhanced the suppressive effects of Rapamycin on tumor growth. In conclusion, we demonstrated that microRNA-218 could re-sensitize cervical cancer to Rapamycin through targeting Rictor. Moreover, patients with loss of microRNA-218 presented notable resistance to Rapamycin, indicating that microRNA-218 might be a valid marker for patients-stratification in future clinical trials.
Collapse
Affiliation(s)
- Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaocui Li
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingpu Wang
- Special Inspection Department, Yantai Longkuang center Hospital, Yantai, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Haifeng Qiu
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Atherton PJ, Phillips BE, Wilkinson DJ. Exercise and Regulation of Protein Metabolism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:75-98. [DOI: 10.1016/bs.pmbts.2015.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Deficiency in either 4E-BP1 or 4E-BP2 augments innate antiviral immune responses. PLoS One 2014; 9:e114854. [PMID: 25531441 PMCID: PMC4273997 DOI: 10.1371/journal.pone.0114854] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023] Open
Abstract
Genetic deletion of both 4E-BP1 and 4E-BP2 was found to protect cells against viral infections. Here we demonstrate that the individual loss of either 4E-BP1 or 4E-BP2 in mouse embryonic fibroblasts (MEFs) is sufficient to confer viral resistance. shRNA-mediated silencing of 4E-BP1 or 4E-BP2 renders MEFs resistant to viruses, and compared to wild type cells, MEFs knockout for either 4E-BP1 or 4E-BP2 exhibit enhanced translation of Irf-7 and consequently increased innate immune response to viruses. Accordingly, the replication of vesicular stomatitis virus, encephalomyocarditis virus, influenza virus and Sindbis virus is markedly suppressed in these cells. Importantly, expression of either 4E-BP1 or 4E-BP2 in double knockout or respective single knockout cells diminishes their resistance to viral infection. Our data show that loss of 4E-BP1 or 4E-BP2 potentiates innate antiviral immunity. These results provide further evidence for translational control of innate immunity and support targeting translational effectors as an antiviral strategy.
Collapse
|
37
|
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web. J Mammary Gland Biol Neoplasia 2014; 19:253-70. [PMID: 25544707 DOI: 10.1007/s10911-014-9329-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
Collapse
Affiliation(s)
- A Dittrich
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
38
|
Phung TL, Du W, Xue Q, Ayyaswamy S, Gerald D, Antonello Z, Nhek S, Perruzzi CA, Acevedo I, Ramanna-Valmiki R, Rodriguez-Waitkus P, Enayati L, Hochman ML, Lev D, Geeganage S, Benjamin LE. Akt1 and akt3 exert opposing roles in the regulation of vascular tumor growth. Cancer Res 2014; 75:40-50. [PMID: 25388284 DOI: 10.1158/0008-5472.can-13-2961] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular tumors are endothelial cell neoplasms whose mechanisms of tumorigenesis are poorly understood. Moreover, current therapies, particularly those for malignant lesions, have little beneficial effect on clinical outcomes. In this study, we show that endothelial activation of the Akt1 kinase is sufficient to drive de novo tumor formation. Mechanistic investigations uncovered opposing functions for different Akt isoforms in this regulation, where Akt1 promotes and Akt3 inhibits vascular tumor growth. Akt3 exerted negative effects on tumor endothelial cell growth and migration by inhibiting activation of the translation regulatory kinase S6-Kinase (S6K) through modulation of Rictor expression. S6K in turn acted through a negative feedback loop to restrain Akt3 expression. Conversely, S6K signaling was increased in vascular tumor cells where Akt3 was silenced, and the growth of these tumor cells was inhibited by a novel S6K inhibitor. Overall, our findings offer a preclinical proof of concept for the therapeutic utility of treating vascular tumors, such as angiosarcomas, with S6K inhibitors.
Collapse
Affiliation(s)
- Thuy L Phung
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas.
| | - Wa Du
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Qi Xue
- Eli Lilly and Company, Indianapolis, Indiana
| | - Sriram Ayyaswamy
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | | | - Zeus Antonello
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sokha Nhek
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Isabel Acevedo
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rajesh Ramanna-Valmiki
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Paul Rodriguez-Waitkus
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Ladan Enayati
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Marcelo L Hochman
- Hemangioma International Treatment Center, Charleston, South Carolina
| | - Dina Lev
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas
| | | | - Laura E Benjamin
- Eli Lilly and Company, Indianapolis, Indiana. Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
39
|
Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, Tsukerman P, Biton M, Mudhasani R, Jones SN, Meyuhas O. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. PLoS One 2014; 9:e109410. [PMID: 25338081 PMCID: PMC4206288 DOI: 10.1371/journal.pone.0109410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 01/02/2023] Open
Abstract
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.
Collapse
Affiliation(s)
- Ilona Patursky-Polischuk
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Kasir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rachel Miloslavski
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mirit Hausner-Hanochi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshe Biton
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rajini Mudhasani
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
40
|
Abstract
The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR) pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes) decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease) in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.
Collapse
Affiliation(s)
- Sabarish Nagarajan
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Savraj S Grewal
- Department of Biochemistry and Molecular Biology, and Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
41
|
Chang W, Wei K, Ho L, Berry GJ, Jacobs SS, Chang CH, Rosen GD. A critical role for the mTORC2 pathway in lung fibrosis. PLoS One 2014; 9:e106155. [PMID: 25162417 PMCID: PMC4146613 DOI: 10.1371/journal.pone.0106155] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases.
Collapse
Affiliation(s)
- Wenteh Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ke Wei
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Ho
- Division of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan S. Jacobs
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cheryl H. Chang
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Glenn D. Rosen
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Li C, Wang Q, Wang JF. Transforming growth factor-β (TGF-β) induces the expression of chondrogenesis-related genes through TGF-β receptor II (TGFRII)-AKT-mTOR signaling in primary cultured mouse precartilaginous stem cells. Biochem Biophys Res Commun 2014; 450:646-51. [PMID: 24946212 DOI: 10.1016/j.bbrc.2014.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
Precartilaginous stem cells (PSCs) are adult stem cells which could initiate chondrocytes and bone growth. In the current study, we purified PSCs from the neonate mice' perichondrial mesenchyme through immunomagnetic beads with the fibroblast growth factor receptor-3 (FGFR-3) antibody. Mouse PSCs were seeded and cultured, and their phenotype was confirmed by FGFR-3 over-expression. Transforming growth factor-β (TGF-β) was added to induce PSCs differentiation. TGF-β increased mRNA expression of chondrogenesis-related genes (collagen type II, Sox 9, and aggrecan) in the cultured PSCs, which was abolished by TGF-β receptor II (TGFRII) lentiviral shRNA depletion. TGF-β induced AKT activation in mouse PSCs, while the PI3K/AKT inhibitor (LY294002) and the AKT specific inhibitors (perifosine and MK-2206) largely suppressed TGF-β-induced collagen II, Sox 9, and aggrecan mRNA expression. Meanwhile, the mTOR complex 1 (mTORC1) blocker RAD001 or the mTORC1/2 dual inhibitor AZD-2014 also alleviated TGF-β-induced chondrogenesis-associated genes expression. Further, lentiviral shRNA depletion of SIN1 (a mTORC2 component) or mTOR inhibited TGF-β's effect in the mouse PSCs. In conclusion, our evidence suggests that TGF-β induces the expression of chondrogenesis-related genes through TGFRII-AKT-mTOR signaling in cultured mouse PSCs.
Collapse
Affiliation(s)
- Cheng Li
- Department of Orthopedics, Wuxi First People's Hospital Affiliated to Nanjing Medical University, Wuxi City, Jiangsu 214023, China
| | - Qiong Wang
- Department of Orthopedics, Wuxi First People's Hospital Affiliated to Nanjing Medical University, Wuxi City, Jiangsu 214023, China.
| | - Jun-Fang Wang
- Department of Orthopedics, Wuxi First People's Hospital Affiliated to Nanjing Medical University, Wuxi City, Jiangsu 214023, China.
| |
Collapse
|
43
|
AKT inhibitors promote cell death in cervical cancer through disruption of mTOR signaling and glucose uptake. PLoS One 2014; 9:e92948. [PMID: 24705275 PMCID: PMC3976291 DOI: 10.1371/journal.pone.0092948] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability. EXPERIMENTAL DESIGN Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay. RESULTS Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56%) and MK-2206 (30 µM-49%) treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment. CONCLUSIONS The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.
Collapse
|
44
|
Abstract
Target of rapamycin (TOR) forms two conserved, structurally distinct kinase complexes termed TOR complex 1 (TORC1) and TORC2. Each complex phosphorylates a different set of substrates to regulate cell growth. In mammals, mTOR is stimulated by nutrients and growth factors and inhibited by stress to ensure that cells grow only during favorable conditions. Studies in different organisms have reported localization of TOR to several distinct subcellular compartments. Notably, the finding that mTORC1 is localized to the lysosome has significantly enhanced our understanding of mTORC1 regulation. Subcellular localization may be a general principle used by TOR to enact precise spatial and temporal control of cell growth.
Collapse
Affiliation(s)
- Charles Betz
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
45
|
Zhu J, Zheng C, Chen J, Luo J, Su B, Huang Y, Su W, Li Z, Cui T. Ghrelin protects human umbilical vein endothelial cells against high glucose-induced apoptosis via mTOR/P70S6K signaling pathway. Peptides 2014; 52:23-8. [PMID: 24287118 DOI: 10.1016/j.peptides.2013.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/31/2022]
Abstract
Ghrelin exhibits its biological effect through binding to the growth hormone secretagogue 1a receptor (GHS-R1a). Recently, it has been reported that ghrelin has an anti-apoptotic effect in several cell types. However, the molecule mechanisms underlying the anti-apoptotic effect of ghrelin remain poorly understood. In this study, we investigated the intracellular mechanisms responsible for anti-apoptotic effect of ghrelin on human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with ghrelin inhibited high glucose-induced cell apoptosis. Ghrelin stimulated the rapid phosphorylation of mammalian target of rapamycin (mTOR), P70S6K and S6. The GHS-R1a-specific antagonist [D-Lys3]-GHRP-6 abolished the anti-apoptotic effect and inhibited the activation of mTOR, P70S6K, S6 induced by ghrelin. Pretreatment of cells with specific inhibitor of mTOR blocked the anti-apoptotic effect of ghrelin. In addition, ghrelin protected HUVECs against high glucose induced apoptosis by increasing Bcl-2/Bax ratio. Taken together, our results demonstrate that ghrelin produces a protective effect on HUVECs through activating GHS-R1a and mTOR/P70S6K signaling pathway mediates the effect of ghrelin. These observations suggest that ghrelin may act as a survival factor in preventing HUVECs apoptosis caused by high glucose.
Collapse
Affiliation(s)
- Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Chenghong Zheng
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China; Department of Endocrinology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Jie Chen
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Jing Luo
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Bintao Su
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Yan Huang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Wen Su
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Zixi Li
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Tianpen Cui
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China.
| |
Collapse
|
46
|
Gururajan A, van den Buuse M. Is the mTOR-signalling cascade disrupted in Schizophrenia? J Neurochem 2013; 129:377-87. [PMID: 24266366 DOI: 10.1111/jnc.12622] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 02/01/2023]
Abstract
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR-based hypothesis of the neuropathology of schizophrenia. During neurodevelopment, genetic and epigenetic factors can disrupt mTOR signalling which affects synthesis of proteins essential for correct neuronal growth and network connectivity. This renders the CNS particularly vulnerable to the effects of secondary factors during adolescence which increases the risk of developing schizophrenia in adulthood. This review discusses the functional roles of the mTOR cascade and presents evidence in support of a novel mTOR-based hypothesis of the neuropathology of schizophrenia. Testing this hypothesis will advance our understanding of the aetiology of this illness and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Anand Gururajan
- Behavioural Neuroscience Laboratory, The Florey Institute of Neuroscience & Mental Health, Parkville, Vic., Australia
| | | |
Collapse
|
47
|
Tu Y, Ji C, Yang B, Yang Z, Gu H, Lu CC, Wang R, Su ZL, Chen B, Sun WL, Xia JP, Bi ZG, He L. DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-SIN1 association mediates ultraviolet B (UVB)-induced Akt Ser-473 phosphorylation and skin cell survival. Mol Cancer 2013; 12:172. [PMID: 24365180 PMCID: PMC3922905 DOI: 10.1186/1476-4598-12-172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/10/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The exposure of skin keratinocytes to Ultraviolet (UV) irradiation leads to Akt phosphorylation at Ser-473, which is important for the carcinogenic effects of excessive sun exposure. The present study investigated the underlying mechanism of Akt Ser-473 phosphorylation by UVB radiation. RESULTS We found that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and mammalian target of rapamycin (mTOR) complex 2 (mTORC2) were both required for UVB-induced Akt Ser-473 phosphorylation in keratinocytes. Inhibition of DNA-PKcs activity via its inhibitor NU7026, a dominant-negative kinase-dead mutation, RNA interference (RNAi) or gene depletion led to the attenuation of UVB-induced Akt Ser-473 phosphorylation. Meanwhile, siRNA silencing or gene depletion of SIN1, a key component of mTORC2, abolished Akt Ser-473 phosphorylation by UVB. Significantly, we discovered that DNA-PKcs was associated with SIN1 in cytosol upon UVB radiation, and this complexation appeared required for Akt Ser-473 phosphorylation. Meanwhile, this DNA-PKcs-SIN1 complexation by UVB was dependent on epidermal growth factor receptor (EGFR) activation, and was disrupted by an EGFR inhibitor (AG1478) or by EGFR depletion. UVB-induced complexation between DNA-PKcs and mTORC2 components was also abolished by NU7026 and DNA-PKcs mutation. Finally, we found that both DNA-PKcs and SIN1 were associated with apoptosis resistance of UVB radiation, and inhibition of them by NU7026 or genetic depletion significantly enhanced UVB-induced cell death and apoptosis. CONCLUSION Taken together, these results strongly suggest that DNA-PKcs-mTORC2 association is required for UVB-induced Akt Ser-473 phosphorylation and cell survival, and might be important for tumor cell transformation.
Collapse
Affiliation(s)
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Institute of Dermatology, Kunming 650032, Yunnan, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
49
|
Li Q, Song XM, Ji YY, Jiang H, Xu LG. The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous cell carcinoma cell growth in vivo and in vitro. Biochem Biophys Res Commun 2013; 440:701-6. [PMID: 24103749 DOI: 10.1016/j.bbrc.2013.09.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/15/2022]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) promotes cell survival and proliferation, and is constitutively activated in head and neck squamous cell carcinoma (HNSCC). Thus mTOR is an important target for drug development in this disease. Here we tested the anti-tumor ability of AZD8055, the novel mTOR inhibitor, in HNSCC cells. AZD8055 induced dramatic cell death of HNSCC lines (Hep-2 and SCC-9) through autophagy. AZD8055 blocked both mTOR complex (mTORC) 1 and mTORC2 activation without affecting Erk in cultured HNSCC cells. Meanwhile, AZD8055 induced significant c-Jun N-terminal kinase (JNK) activation, which was also required for cancer cell death. JNK inhibition by its inhibitors (SP 600125 and JNK-IN-8), or by RNA interference (RNAi) alleviated AZD8055-induced cell death. Finally, AZD8055 markedly increased the survival of Hep-2 transplanted mice through a significant reduction of tumor growth, without apparent toxicity, and its anti-tumor ability was more potent than rapamycin. Meanwhile, AZD8055 administration activated JNK while blocking mTORC1/2 in Hep-2 tumor engrafts. Our current results strongly suggest that AZD8055 may be further investigated for HNSCC treatment in clinical trials.
Collapse
Affiliation(s)
- Qiang Li
- ENT Department, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | | | | | | | | |
Collapse
|
50
|
Andreev DE, Dmitriev SE, Terenin IM, Shatsky IN. Cap-independent translation initiation of apaf-1 mRNA based on a scanning mechanism is determined by some features of the secondary structure of its 5' untranslated region. BIOCHEMISTRY (MOSCOW) 2013; 78:157-65. [PMID: 23581986 DOI: 10.1134/s0006297913020041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have earlier shown that the 5'-untranslated region (5' UTR) of the mRNA coding for activation factor of apoptotic peptidase 1 (Apaf-1) can direct translation in vivo by strictly 5' end-dependent way even in the absence of m(7)G-cap. Dependence of translational efficiency on the cap availability for this mRNA turned out to be relatively low. In this study we demonstrate that this surprising phenomenon is determined the 5'-proximal part (domains I and II) of highly structured Apaf-1 5' UTR. Remarkably, domain II by itself was able to reduce dependence of the mRNA on the cap on its transferring to a short 5' UTR derived from a standard vector. We suggest that the low cap-dependence inherent to some cellular mRNAs may have an important physiological significance under those stress conditions when the function of cap-binding factor eIF4E is impaired.
Collapse
Affiliation(s)
- D E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119994 Moscow, Russia
| | | | | | | |
Collapse
|