1
|
Hajdarpašić A, Tukker M, Rijdt WT, Mohamedhoesein S, Meijers WC, Caliskan K. Epigenetics of cardiomyopathies: the next frontier. Heart Fail Rev 2025; 30:257-270. [PMID: 39586986 DOI: 10.1007/s10741-024-10460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Cardiomyopathies (CMP) are a diverse group of myocardial diseases that cause structural, functional, and pathological changes to the heart. Alterations at the molecular level associated with the clinical phenotype and progression of CMPs cannot be solely explained by the genetic mutations, even in inherited cardiomyopathies. Epigenetics and environmental factors are likely to significantly modify the clinical manifestations of CMPs, resulting in variable clinical expression and different age-related penetrance. This review examines the role of dysfunctional DNA methylation, histone modifications, chromatin remodelling, and noncoding RNAs in the development and exacerbation of CMPs, highlighting their potential as diagnostic markers and therapeutic targets, including the use of histone deacetylase inhibitors. Additionally, it explores how environmental exposures can influence epigenetic changes and potentially be used for preventive strategies and personalized care in CMP patients. Monozygotic twin studies and intergenerational studies are discussed as valuable tools for understanding the interplay between genetics, epigenetics, and environmental factors. Lastly, this review addresses current challenges and future perspectives, such as the need for greater specificity in epigenetic therapies, minimizing off-target effects, and investigating sex differences in CMP research and treatment.
Collapse
Affiliation(s)
- Aida Hajdarpašić
- Department of Medical Biology and Genetics, Sarajevo Medical School, University Sarajevo School of Science and Technology, Hrasnička Cesta 3a, 71210, Sarajevo, Ilidža, Bosnia and Herzegovina.
| | - Martijn Tukker
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter Te Rijdt
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sharida Mohamedhoesein
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wouter C Meijers
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Cardiovascular Institute. Erasmus MC - University Medical Center Rotterdam, Office RG-431Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Vasireddi SK, Draksler TZ, Bouman A, Kummeling J, Wheeler M, Reuter C, Srivastava S, Harris J, Fisher PG, Narayan SM, Wang PJ, Badhwar N, Kleefstra T, Perez MV. Arrhythmias including atrial fibrillation and congenital heart disease in Kleefstra syndrome: a possible epigenetic link. Europace 2023; 26:euae003. [PMID: 38195854 PMCID: PMC10803030 DOI: 10.1093/europace/euae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
AIMS Kleefstra syndrome (KS), often diagnosed in early childhood, is a rare genetic disorder due to haploinsufficiency of EHMT1 and is characterized by neuromuscular and intellectual developmental abnormalities. Although congenital heart disease (CHD) is common, the prevalence of arrhythmias and CHD subtypes in KS is unknown. METHODS AND RESULTS Inspired by a novel case series of KS patients with atrial tachyarrhythmias in the USA, we evaluate the two largest known KS registries for arrhythmias and CHD: Radboudumc (50 patients) based on health record review at Radboud University Medical Center in the Netherlands and GenIDA (163 patients) based on worldwide surveys of patient families. Three KS patients (aged 17-25 years) presented with atrial tachyarrhythmias without manifest CHD. In the international KS registries, the median [interquartile range (IQR)] age was considerably younger: GenIDA/Radboudumc at 10/13.5 (12/13) years, respectively. Both registries had a 40% prevalence of cardiovascular abnormalities, the majority being CHD, including septal defects, vascular malformations, and valvular disease. Interestingly, 4 (8%) patients in the Radboudumc registry reported arrhythmias without CHD, including one atrial fibrillation (AF), two with supraventricular tachycardias, and one with non-sustained ventricular tachycardia. The GenIDA registry reported one patient with AF and another with chronic ectopic atrial tachycardia (AT). In total, atrial tachyarrhythmias were noted in six young KS patients (6/213 or 3%) with at least four (three AF and one AT) without structural heart disease. CONCLUSION In addition to a high prevalence of CHD, evolving data reveal early-onset atrial tachyarrhythmias in young KS patients, including AF, even in the absence of structural heart disease.
Collapse
Affiliation(s)
- Sunil K Vasireddi
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tanja Zdolsek Draksler
- Centre for Knowledge Transfer in Information Technologies, Jozef Stefan Institute, Ljubljana, Slovenia
- IDefine Europe, Ljubljana, Slovenia
| | - Arianne Bouman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacqueline Harris
- Department of Neurology and Neurogenetics, Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Paul G Fisher
- Department of Neurology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA, USA
| | - Sanjiv M Narayan
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Paul J Wang
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Nitish Badhwar
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | - Marco V Perez
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Center, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
- Stanford Center for Undiagnosed Diseases, Falk Cardiovascular Research Center, Stanford University, 870 Quarry Road, Palo Alto, CA 94305, USA
| |
Collapse
|
3
|
Scott AK, Rafuse M, Neu CP. Mechanically induced alterations in chromatin architecture guide the balance between cell plasticity and mechanical memory. Front Cell Dev Biol 2023; 11:1084759. [PMID: 37143893 PMCID: PMC10151697 DOI: 10.3389/fcell.2023.1084759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
Phenotypic plasticity, or adaptability, of a cell determines its ability to survive and function within changing cellular environments. Changes in the mechanical environment, ranging from stiffness of the extracellular matrix (ECM) to physical stress such as tension, compression, and shear, are critical environmental cues that influence phenotypic plasticity and stability. Furthermore, an exposure to a prior mechanical signal has been demonstrated to play a fundamental role in modulating phenotypic changes that persist even after the mechanical stimulus is removed, creating stable mechanical memories. In this mini review, our objective is to highlight how the mechanical environment alters both phenotypic plasticity and stable memories through changes in chromatin architecture, mainly focusing on examples in cardiac tissue. We first explore how cell phenotypic plasticity is modulated in response to changes in the mechanical environment, and then connect the changes in phenotypic plasticity to changes in chromatin architecture that reflect short-term and long-term memories. Finally, we discuss how elucidating the mechanisms behind mechanically induced chromatin architecture that lead to cell adaptations and retention of stable mechanical memories could uncover treatment methods to prevent mal-adaptive permanent disease states.
Collapse
Affiliation(s)
- Adrienne K. Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Michael Rafuse
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
4
|
Donniacuo M, De Angelis A, Telesca M, Bellocchio G, Riemma MA, Paolisso P, Scisciola L, Cianflone E, Torella D, Castaldo G, Capuano A, Urbanek K, Berrino L, Rossi F, Cappetta D. Atrial fibrillation: Epigenetic aspects and role of sodium-glucose cotransporter 2 inhibitors. Pharmacol Res 2023; 188:106591. [PMID: 36502999 DOI: 10.1016/j.phrs.2022.106591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia and is associated with substantial morbidity and mortality. Pathophysiological aspects consist in the activation of pro-fibrotic signaling and Ca2+ handling abnormalities at atrial level. Structural and electrical remodeling creates a substrate for AF by triggering conduction abnormalities and cardiac arrhythmias. The care of AF patients focuses predominantly on anticoagulation, symptoms control and the management of risk factors and comorbidities. The goal of AF therapy points to restore sinus rhythm, re-establish atrioventricular synchrony and improve atrial contribution to the stroke volume. New layer of information to better comprehend AF pathophysiology, and identify targets for novel pharmacological interventions consists of the epigenetic phenomena including, among others, DNA methylation, histone modifications and noncoding RNAs. Moreover, the benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in diabetic and non-diabetic patients at cardiovascular risk as well as emerging evidence on the ability of SGLT2i to modify epigenetic signature in cardiovascular diseases provide a solid background to investigate a possible role of this drug class in the onset and progression of AF. In this review, following a summary of pathophysiology and management, epigenetic mechanisms in AF and the potential of sodium-glucose SGLT2i in AF patients are discussed.
Collapse
Affiliation(s)
- M Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - A De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - G Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - M A Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - P Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - L Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - E Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - D Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - G Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy
| | - A Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - K Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced, Via G. Salvatore 486, 80131 Naples, Italy.
| | - L Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - D Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
5
|
Li T, Yan Z, Fan Y, Fan X, Li A, Qi Z, Zhang J. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med 2023; 9:1077290. [PMID: 36698953 PMCID: PMC9868426 DOI: 10.3389/fcvm.2022.1077290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Myocardial infarction is the leading cause of death and disability worldwide, and the development of new treatments can help reduce the size of myocardial infarction and prevent adverse cardiovascular events. Cardiac repair after myocardial infarction can effectively remove necrotic tissue, induce neovascularization, and ultimately replace granulation tissue. Cardiac inflammation is the primary determinant of whether beneficial cardiac repair occurs after myocardial infarction. Immune cells mediate inflammatory responses and play a dual role in injury and protection during cardiac repair. After myocardial infarction, genetic ablation or blocking of anti-inflammatory pathways is often harmful. However, enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways may improve cardiac repair after myocardial infarction. A deficiency of neutrophils or monocytes does not improve overall cardiac function after myocardial infarction but worsens it and aggravates cardiac fibrosis. Several factors are critical in regulating inflammatory genes and immune cells' phenotypes, including DNA methylation, histone modifications, and non-coding RNAs. Therefore, strict control and timely suppression of the inflammatory response, finding a balance between inflammatory cells, preventing excessive tissue degradation, and avoiding infarct expansion can effectively reduce the occurrence of adverse cardiovascular events after myocardial infarction. This article reviews the involvement of neutrophils, monocytes, macrophages, and regulatory T cells in cardiac repair after myocardial infarction. After myocardial infarction, neutrophils are the first to be recruited to the damaged site to engulf necrotic cell debris and secrete chemokines that enhance monocyte recruitment. Monocytes then infiltrate the infarct site and differentiate into macrophages and they release proteases and cytokines that are harmful to surviving myocardial cells in the pre-infarct period. As time progresses, apoptotic neutrophils are cleared, the recruitment of anti-inflammatory monocyte subsets, the polarization of macrophages toward the repair phenotype, and infiltration of regulatory T cells, which secrete anti-inflammatory factors that stimulate angiogenesis and granulation tissue formation for cardiac repair. We also explored how epigenetic modifications regulate the phenotype of inflammatory genes and immune cells to promote cardiac repair after myocardial infarction. This paper also elucidates the roles of alarmin S100A8/A9, secreted frizzled-related protein 1, and podoplanin in the inflammatory response and cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Tingting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajie Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aolin Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Zhongwen Qi,
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Junping Zhang,
| |
Collapse
|
6
|
Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120798. [PMID: 36551003 PMCID: PMC9774431 DOI: 10.3390/bioengineering9120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.
Collapse
|
7
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Jones AC, Patki A, Claas SA, Tiwari HK, Chaudhary NS, Absher DM, Lange LA, Lange EM, Zhao W, Ratliff SM, Kardia SLR, Smith JA, Irvin MR, Arnett DK. Differentially Methylated DNA Regions and Left Ventricular Hypertrophy in African Americans: A HyperGEN Study. Genes (Basel) 2022; 13:genes13101700. [PMID: 36292585 PMCID: PMC9601679 DOI: 10.3390/genes13101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) hypertrophy (LVH) is an independent risk factor for cardiovascular disease, and African Americans experience a disparate high risk of LVH. Genetic studies have identified potential candidate genes and variants related to the condition. Epigenetic modifications may continue to help unravel disease mechanisms. We used methylation and echocardiography data from 636 African Americans selected from the Hypertension Genetic Epidemiology Network (HyperGEN) to identify differentially methylated regions (DMRs) associated with LVH. DNA extracted from whole blood was assayed on Illumina Methyl450 arrays. We fit linear mixed models to examine associations between co-methylated regions and LV traits, and we then conducted single CpG analyses within significant DMRs. We identified associations between DMRs and ejection fraction (XKR6), LV internal diastolic dimension (TRAK1), LV mass index (GSE1, RPS15 A, PSMD7), and relative wall thickness (DNHD1). In single CpG analysis, CpG sites annotated to TRAK1 and DNHD1 were significant. These CpGs were not associated with LV traits in replication cohorts but the direction of effect for DNHD1 was consistent across cohorts. Of note, DNHD1, GSE1, and PSMD7 may contribute to cardiac structural function. Future studies should evaluate relationships between regional DNA methylation patterns and the development of LVH.
Collapse
Affiliation(s)
- Alana C. Jones
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Steven A. Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Ninad S. Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Devin M. Absher
- Hudson Alpha Institute of Biotechnology, Huntsville, AL 35806, USA
| | - Leslie A. Lange
- Department of Epidemiology, School of Public Health, University of Colorado, Aurora, CO 80045, USA
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Ethan M. Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO 80045, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Correspondence:
| | - Donna K. Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
9
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
10
|
Marques EB, Souza KPD, Alvim-Silva T, Martins ILF, Pedro S, Scaramello CBV. Nutrition and Cardiovascular Diseases: Programming and Reprogramming. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
13
|
Cai S, Wang P, Xie T, Li Z, Li J, Lan R, Ding Y, Lu J, Ye J, Wang J, Li Z, Liu P. Histone H4R3 symmetric di-methylation by Prmt5 protects against cardiac hypertrophy via regulation of Filip1L/β-catenin. Pharmacol Res 2020; 161:105104. [PMID: 32739429 DOI: 10.1016/j.phrs.2020.105104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Although histone lysine methylation has been extensively studied for their participation in pathological cardiac hypertrophy, the potential regulatory role of histone arginine methylation remains to be elucidated. The present study focused on H4R3 symmetric di-methylation (H4R3me2s) induced by protein arginine methyltransferase 5 (Prmt5), and explored its epigenetic regulation and underlying mechanisms in cardiomyocyte hypertrophy. METHODS AND RESULTS 1. The expressions of Prmt5 and H4R3me2s were suppressed in cardiac hypertrophy models in vivo and in vitro; 2. Prmt5 silencing or its inhibitor EPZ, or knockdown of cooperator of Prmt5 (Copr5) to disrupt H4R3me2s, facilitated cardiomyocyte hypertrophy, whereas overexpression of wild type Prmt5 rather than the inactive mutant protected cardiomyocytes against hypertrophy; 3. ChIP-sequence analysis identified Filip1L as a target gene of Prmt5-induced H4R3me2s; 4. Knockdown or inhibition of Prmt5 impaired Filip1L transcription and subsequently prevented β-catenin degradation, thus augmenting cardiomyocyte hypertrophy. CONCLUSIONS The present study reveals that Prmt5-induced H4R3me2s ameliorates cardiomyocyte hypertrophy by transcriptional upregulation of Filip1L and subsequent enhancement of β-catenin degradation. Deficiency of Prmt5 and the resulting suppression of H4R3me2s might facilitate the development of pathological cardiac hypertrophy. Prmt5 might serve as a key epigenetic regulator in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Sidong Cai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Panxia Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Tingting Xie
- School of Nursing, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Haizhu District, Guangzhou, China
| | - Zhenzhen Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jingyan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rui Lan
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Yanqing Ding
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Jiantao Ye
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Junjian Wang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China.
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratory of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, No.132 East Wai-huan Road, Higher Education Mega Center, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
14
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
15
|
Zhou XL, Zhu RR, Wu X, Xu H, Li YY, Xu QR, Liu S, Huang H, Xu X, Wan L, Wu QC, Liu JC. NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2. J Cell Mol Med 2018; 23:568-575. [PMID: 30334333 PMCID: PMC6307761 DOI: 10.1111/jcmm.13961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Histone lysine methylation plays an important role in the regulation of ventricular remodelling. NSD2 is involved in many types of tumours through enhancing H3K36me2 expression. However, the role of NSD2 in the regulation of histone lysine methylation during ventricular remodelling remains unclear. In this study, we established cardiac hypertrophy model in C57BL/6 mice by transverse aortic constriction and found that histone lysine methylation participated in ventricular remodelling regulation via the up‐regulation of H3K27me2 and H3K36me2 expression. In addition, we constructed transgenic C57BL/6 mice with conditional knockout of NSD2 (NSD2−/−) in the myocardium. NSD2−/− C57BL/6 mice had milder ventricular remodelling and significantly improved cardiac function compared with wild‐type mice, and the expression of H3K36me2 but not H3K27me2 was down‐regulated. In conclusion, NSD2 promotes ventricular remodelling mediated by the regulation of H3K36me2.
Collapse
Affiliation(s)
- Xue-Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Rong-Rong Zhu
- Department of Obstetrics and Gynecology, Jiangxi Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, China
| | - Xia Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hua Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yun-Yun Li
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Rong Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Sheng Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xinping Xu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Qi-Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2016.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Abstract
PURPOSE OF REVIEW Here, we provide a summary of the current knowledge on the impact of early life nutrition on cardiovascular diseases that have emerged from studies in humans and experimental animal models. The involvement of epigenetic mechanisms in the Developmental Origins of Health and Disease will be discussed in relation to the implications for the heart and the cardiovascular system. RECENT FINDINGS Environmental cues, such as parental diet and a suboptimal in utero environment can shape growth and development, causing long-lasting cardiometabolic perturbations. Increasing evidence suggest that these effects are mediated at the epigenomic level, and can be passed onto future generations. In the last decade, epigenetic mechanisms (DNA methylation, histone modifications) and RNA-based mechanisms (microRNAs, piRNAs, and tRNAs) have therefore emerged as potential candidates for mediating inheritance of cardiometabolic diseases. SUMMARY The burden of obesity and associated cardiometabolic diseases is believed to arise through interaction between an individual's genetics and the environment. Moreover, the risk of developing poor cardiometabolic health in adulthood is defined by early life exposure to pathological cues and can be inherited by future generations, initiating a vicious cycle of transmission of disease. Elucidating the molecular triggers of such a process will help tackle and prevent the uncontrolled rise in obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Elena Loche
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
18
|
Gao H, Zhang N, Lu F, Yu X, Zhu L, Mo X, Wang W. Circulating histones for predicting prognosis after cardiac surgery: a prospective study. Interact Cardiovasc Thorac Surg 2016; 23:681-687. [PMID: 27357468 DOI: 10.1093/icvts/ivw198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The objective of this study was to assess the perioperative changes in circulating histones and their relationships with other biomarkers and clinical outcomes after cardiac surgery with cardiopulmonary bypass (CPB) in patients. METHODS Forty-eight patients with congenital cardiac diseases undergoing corrective procedure with CPB were prospectively enrolled in this study. Circulating histones, N-terminal pro-brain natriuretic peptide (NT-proBNP), procalcitonin (PCT) and C-reactive protein (CRP) were measured preoperatively (T0) and at 0 (T1), 24 (T2), 48 (T3) and 72 (T4) h postoperatively. The relationships between biomarkers and clinical outcomes were analysed. RESULTS Circulating histones, NT-proBNP, PCT and CRP increased significantly postoperatively, with histones reaching the peak value earliest at T1. Circulating histone levels were higher in patients with adverse events. Receiver operating characteristic curve analysis showed that peak histone levels had a better predictive value for adverse events postoperatively. Peak histone levels correlated with the peak level of NT-proBNP (r = 0.563, P < 0.01), PCT (r = 0.551, P < 0.01), CRP (r = 0.606, P < 0.01) and clinical parameters such as ventilation time (r = 0.601, P < 0.01) and intensive care unit time (r = 0.623, P < 0.01). CONCLUSIONS Circulating histones reached peak levels faster than NT-proBNP, PCT and CRP. Furthermore, peak histone levels correlated with biomarkers and postoperative clinical outcomes. Circulating histones may be used as a prognostic indicator for patients after cardiac surgery with CPB. CLINICAL TRIALS ClinicalTrials.gov (ID: NCT02325765).
Collapse
Affiliation(s)
- Hongxiang Gao
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Naipu Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangfang Lu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xindi Yu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Limin Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Mo
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Abstract
With the impressive advancement in high-throughput 'omics' technologies over the past two decades, epigenetic mechanisms have emerged as the regulatory interface between the genome and environmental factors. These mechanisms include DNA methylation, histone modifications, ATP-dependent chromatin remodeling and RNA-based mechanisms. Their highly interdependent and coordinated action modulates the chromatin structure controlling access of the transcription machinery and thereby regulating expression of target genes. Given the rather limited proliferative capability of human cardiomyocytes, epigenetic regulation appears to play a particularly important role in the myocardium. The highly dynamic nature of the epigenome allows the heart to adapt to environmental challenges and to respond quickly and properly to cardiac stress. It is now becoming evident that histone-modifying and chromatin-remodeling enzymes as well as numerous non-coding RNAs play critical roles in cardiac development and function, while their dysregulation contributes to the onset and development of pathological cardiac remodeling culminating in HF. This review focuses on up-to-date knowledge about the epigenetic mechanisms and highlights their emerging role in the healthy and failing heart. Uncovering the determinants of epigenetic regulation holds great promise to accelerate the development of successful new diagnostic and therapeutic strategies in human cardiac disease.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA,
| | | |
Collapse
|
20
|
Xu H, Yi Q, Yang C, Wang Y, Tian J, Zhu J. Histone modifications interact with DNA methylation at the GATA4 promoter during differentiation of mesenchymal stem cells into cardiomyocyte-like cells. Cell Prolif 2016; 49:315-29. [PMID: 27117983 DOI: 10.1111/cpr.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES A previous study of ours confirmed that Islet-1 specifically induces differentiation of MSCs into cardiomyocytes, and that one of the mechanisms underlying that process is regulation of histone acetylation. Here, we further explore the mechanism of MSC differentiation into cardiomyocytes from the perspective of interactions between epigenetic modifications. MATERIALS AND METHODS We used lentiviral vectors to overexpress Islet-1 in MSCs, and ChIP-qPCR, MSP and BSP were performed to detect levels of histone acetylation/methylation and DNA methylation in the GATA4 and Nkx2.5 promoters. To further explore relationships between these epigenetic modifications, we used 5-aza or TSA to interfere with DNA methylation and histone acetylation, respectively, and detected effects on the other two modifications. RESULTS Histone acetylation level increased and its methylation level decreased at GATA4 and Nkx2.5 promoters; DNA methylation level was reduced at the GATA4 promoter but did not change at the Nkx2.5 promoter. Furthermore, 5-aza increased histone acetylation level and reduced its methylation level at the GATA4 promoter but had no effect on the Nkx2.5 promoter; TSA reduced histone methylation and DNA methylation levels at the GATA4 promoter, but it only reduced histone methylation level at the Nkx2.5 promoter. CONCLUSIONS Histone acetylation/methylation and DNA methylation were both involved in regulating GATA4 expression, but Nkx2.5 expression was not regulated by DNA methylation. These three modifications had high correlation with each other during regulation of GATA4 and produced a regulation loop at the GATA4 promoter.
Collapse
Affiliation(s)
- Hao Xu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chunmei Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yue Wang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| |
Collapse
|
21
|
Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 2015; 7:791-811. [PMID: 25832587 DOI: 10.2217/epi.15.24] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca L Hancock
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Dunne
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Louise J Walport
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Emily Flashman
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
22
|
Abstract
In spite of improving life expectancy over the course of the previous century, the health of the U.S. population is now worsening. Recent increasing rates of type 2 diabetes, obesity and uncontrolled high blood pressure predict a growing incidence of cardiovascular disease and shortened average lifespan. The daily >$1billion current price tag for cardiovascular disease in the United States is expected to double within the next decade or two. Other countries are seeing similar trends. Current popular explanations for these trends are inadequate. Rather, increasingly poor diets in young people and in women during pregnancy are a likely cause of declining health in the U.S. population through a process known as programming. The fetal cardiovascular system is sensitive to poor maternal nutritional conditions during the periconceptional period, in the womb and in early postnatal life. Developmental plasticity accommodates changes in organ systems that lead to endothelial dysfunction, small coronary arteries, stiffer vascular tree, fewer nephrons, fewer cardiomyocytes, coagulopathies and atherogenic blood lipid profiles in fetuses born at the extremes of birthweight. Of equal importance are epigenetic modifications to genes driving important growth regulatory processes. Changes in microRNA, DNA methylation patterns and histone structure have all been implicated in the cardiovascular disease vulnerabilities that cross-generations. Recent experiments offer hope that detrimental epigenetic changes can be prevented or reversed. The large number of studies that provide the foundational concepts for the developmental origins of disease can be traced to the brilliant discoveries of David J.P. Barker.
Collapse
|
23
|
Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie 2015; 113:1-9. [DOI: 10.1016/j.biochi.2015.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/11/2015] [Indexed: 01/04/2023]
|
24
|
Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M. Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem? Stem Cells Dev 2015; 24:1035-52. [DOI: 10.1089/scd.2014.0533] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christiaan C. Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Kalbitz M, Grailer JJ, Fattahi F, Jajou L, Herron TJ, Campbell KF, Zetoune FS, Bosmann M, Sarma JV, Huber-Lang M, Gebhard F, Loaiza R, Valdivia HH, Jalife J, Russell MW, Ward PA. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J 2015; 29:2185-93. [PMID: 25681459 DOI: 10.1096/fj.14-268730] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.
Collapse
Affiliation(s)
- Miriam Kalbitz
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Jamison J Grailer
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Fatemeh Fattahi
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Lawrence Jajou
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Todd J Herron
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Katherine F Campbell
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Firas S Zetoune
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Markus Bosmann
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - J Vidya Sarma
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Markus Huber-Lang
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Florian Gebhard
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Randall Loaiza
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Hector H Valdivia
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - José Jalife
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Mark W Russell
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| | - Peter A Ward
- *Department of Pathology and Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany; Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; and Center for Thrombosis and Hemostasis and Department of Hematology, Oncology and Pneumology, University Medical Center, Mainz, Germany
| |
Collapse
|
26
|
Abstract
Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.
Collapse
Affiliation(s)
- Qing-Jun Zhang
- Department of Internal Medicine-Cardiology Division & Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75350, USA
| | - Zhi-Ping Liu
- Department of Internal Medicine-Cardiology Division & Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75350, USA
| |
Collapse
|
27
|
Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, Bottino R, Pero R, Lembo F, Avvedimento EV, Esposito G, Trimarco B, Chiariotti L, Perrino C. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One 2014; 9:e106024. [PMID: 25181347 PMCID: PMC4152141 DOI: 10.1371/journal.pone.0106024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022] Open
Abstract
Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF.
Collapse
Affiliation(s)
- Tiziana Angrisano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- Department of Biology, Federico II University, Naples, Italy
| | | | - Simona Keller
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Gianluigi Pironti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ermanno Florio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Bottino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Francesca Lembo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | | | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
- * E-mail: (LC); (CP)
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- * E-mail: (LC); (CP)
| |
Collapse
|
28
|
Burggren WW. Epigenetics as a source of variation in comparative animal physiology – or – Lamarck is lookin' pretty good these days. J Exp Biol 2014; 217:682-9. [DOI: 10.1242/jeb.086132] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Considerable variation is inherent both within and between comparative physiological data sets. Known sources for such variation include diet, gender, time of day and season of experiment, among many other factors, but a meta-analysis of physiological studies shows that surprisingly few studies report controlling for these factors. In fact, less than 3% of comparative physiological papers mention epigenetics. However, our understanding of epigenetic influences on physiological processes is growing rapidly, and it is highly likely that epigenetic phenomena are an additional ‘hidden’ source of variation, particularly in wild-caught specimens. Recent studies have shown epigenetic inheritance of commonly studied traits such as metabolic rate (water fleas Daphnia magna; emu, Dromaius novaellandiae), hypoxic tolerance, cardiac performance (zebrafish, Danio rerio), as well as numerous morphological effects. The ecological and evolutionary significance of such epigenetic inheritance is discussed in a comparative physiological context. Finally, against this context of epigenetic inheritance of phenotype, this essay also provides a number of caveats and warnings regarding the interpretation of transgenerational phenotype modification as a true epigenetic phenomenon. Parental effects, sperm storage, multiple paternity and direct gamete exposure can all be confounding factors. Epigenetic inheritance may best be studied in animal models that can be maintained in the laboratory over multiple generations, to yield parental stock that themselves are free of epigenetic effects from the historical experiences of their parents.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
29
|
Abstract
Our advances in technology allow us to sequence DNA to uncover genetic differences not only between individuals, but also between normal and diseased cells within an individual. However, there is still a lot we have yet to understand regarding the epigenetic mechanisms that also contribute to our individuality and to disease. The 80th Biochemical Society Annual Symposium entitled Epigenetic Mechanisms in Development and Disease brought together some leading researchers in the field who discussed their latest insights into epigenetic mechanisms. Methylation of DNA has been the focus of much study from both a developmental perspective and imprinting of genes to its contribution to diseases such as cancer. Recently, the modification of methylcytosine to hydoxymethylcytosine within cells was uncovered, which opened a host of potential new mechanisms, and a flurry of new studies are underway to uncover its significance. Epigenetics is not confined to a study of DNA, and the post-translational modifications on the histone proteins have a significant role to play in regulating gene expression. There are many different modifications and, as shown at the Symposium, new variations used by cells are still being uncovered. We are some way to identifying how these modifications are added and removed and the protein complexes responsible for these changes. A focus on the function of the complexes and the interactions between individual modifications to regulate gene expression is advancing our knowledge, as discussed in the accompanying papers, although there are clearly plenty of opportunities for new breakthroughs to be made.
Collapse
|