1
|
Sweat ME, Shi W, Keating EM, Ponek A, Li J, Ma Q, Park C, Trembley MA, Wang Y, Bezzerides VJ, Conlon FL, Pu WT. CHD4 Interacts With TBX5 to Maintain the Gene Regulatory Network of Postnatal Atrial Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626894. [PMID: 39677667 PMCID: PMC11643115 DOI: 10.1101/2024.12.04.626894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 59 million individuals worldwide. Impairment of atrial cardiomyocyte (aCM) gene regulatory mechanisms predisposes to atrial fibrillation. The transcription factor TBX5 is essential for normal atrial rhythm, and its inactivation causes loss of aCM enhancer accessibility, looping, and transcriptional identity. Here we investigated the mechanisms by which TBX5 regulates chromatin organization. We found that TBX5 recruits CHD4, a chromatin remodeling ATPase, to 33,170 genomic regions (TBX5-enhanced CHD4 sites). As a component of the NuRD complex, CHD4 functions to repress gene transcription. However, combined snRNA-seq and snATAC-seq of CHD4 knockout (KO) and control aCMs revealed that CHD4 has both gene activator and repressor functions. Genes repressed by CHD4 in aCMs included sarcomeric proteins from non-CM cell lineages. Genes activated by CHD4 in aCMs were characterized by TBX5-enhanced CHD4 recruitment, which enhanced chromatin accessibility and promoted the expression of aCM identity genes. This mechanism of TBX5 recruitment of CHD4 was critical for sinus rhythm because Chd4 AKO mice had increased vulnerability to AF from electrical pacing and a fraction had spontaneous AF. Our findings reveal that CHD4 is essential for maintaining aCM gene expression, aCM identity, and atrial rhythm homeostasis.
Collapse
|
2
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
3
|
Munakata Y, Hu M, Kitamura Y, Bynder AL, Fritz AS, Schultz RM, Namekawa SH. Chromatin remodeler CHD4 establishes chromatin states required for ovarian reserve formation, maintenance, and germ cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607691. [PMID: 39185217 PMCID: PMC11343143 DOI: 10.1101/2024.08.12.607691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Adam L. Bynder
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Amelia S. Fritz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Richard M. Schultz
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Saotome M, Poduval D, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade P, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. Nucleic Acids Res 2024; 52:3607-3622. [PMID: 38281186 PMCID: PMC11039999 DOI: 10.1093/nar/gkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Deepak B Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sara A Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
5
|
Saotome M, Poduval DB, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade PA, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. RESEARCH SQUARE 2023:rs.3.rs-2587918. [PMID: 36993416 PMCID: PMC10055546 DOI: 10.21203/rs.3.rs-2587918/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here we determine the roles of CHD4 to enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility at transcription factor binding sites; its depletion leads to altered motif scanning and redistribution of transcription factors to sites not previously occupied. During GATA3-mediated cellular reprogramming, CHD4 activity is necessary to prevent inappropriate chromatin opening and enhancer licensing. Mechanistically, CHD4 competes with transcription factor-DNA interaction by promoting nucleosome positioning over binding motifs. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents inappropriate gene expression by editing binding site selection by transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Deepak Balakrishnan Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Sara A. Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
- Current address: StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, 5650871, Japan
| | - Paul A. Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| |
Collapse
|
6
|
Chang SJ, Bin PJ, Luo CW, Chai CY. CHD4 plays a critical role in arsenite-induced oxidative damage in human urothelial carcinoma. Pathol Res Pract 2022; 240:154173. [DOI: 10.1016/j.prp.2022.154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
7
|
Jia M, Zou X, Yin S, Tian W, Zhao Y, Wang H, Xu G, Cai W, Shao Q. CHD4 orchestrates the symphony of T and B lymphocytes development and a good mediator in preventing from autoimmune disease. Immun Inflamm Dis 2022; 10:e644. [PMID: 35759243 PMCID: PMC9168550 DOI: 10.1002/iid3.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Chromodomain helicase DNA binding protein 4 (CHD4) is an ATPase subunit of the nucleosome remodeling and deacetylation complex. It has been implicated in gene transcription, DNA damage repair, maintenance of genome stability, and chromatin assembly. Meanwhile, it is highly related to cell cycle progression and the proceeding of malignancy. Most of the previous studies were focused on the function of CHD4 with tumor cells, cancer stem cells, and cancer cells multidrug resistance. Recently, some researchers have explored the CHD4 functions on the development and differentiation of adaptive immune cells, such as T and B lymphocytes. In this review, we will discuss details of CHD4 in lymphocyte differentiation and development, as well as the critical role of CHD4 in the pathogenesis of the autoimmune disease.
Collapse
Affiliation(s)
- Miaomiao Jia
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Xueqin Zou
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Shuying Yin
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Weihong Tian
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Yangjing Zhao
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Hui Wang
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
| | - Guoying Xu
- School of Medical Science and Laboratory Medicine, Institute of Medical Genetics and Reproductive ImmunityJiangsu College of NursingHuai'anJiangsuP.R. China
| | - Weili Cai
- School of Medical Science and Laboratory Medicine, Institute of Medical Genetics and Reproductive ImmunityJiangsu College of NursingHuai'anJiangsuP.R. China
| | - Qixiang Shao
- Reproductive Sciences InstituteJiangsu UniversityZhenjiangJiangsuP.R. China
- Department of Immunology, School of MedicineJiangsu UniversityZhenjiangJiangsuP.R. China
- School of Medical Science and Laboratory Medicine, Institute of Medical Genetics and Reproductive ImmunityJiangsu College of NursingHuai'anJiangsuP.R. China
| |
Collapse
|
8
|
Robbe ZL, Shi W, Wasson LK, Scialdone AP, Wilczewski CM, Sheng X, Hepperla AJ, Akerberg BN, Pu WT, Cristea IM, Davis IJ, Conlon FL. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart. Genes Dev 2022; 36:468-482. [PMID: 35450884 PMCID: PMC9067406 DOI: 10.1101/gad.349154.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is one of the central chromatin remodeling complexes that mediates gene repression. NuRD is essential for numerous developmental events, including heart development. Clinical and genetic studies have provided direct evidence for the role of chromodomain helicase DNA-binding protein 4 (CHD4), the catalytic component of NuRD, in congenital heart disease (CHD), including atrial and ventricular septal defects. Furthermore, it has been demonstrated that CHD4 is essential for mammalian cardiomyocyte formation and function. A key unresolved question is how CHD4/NuRD is localized to specific cardiac target genes, as neither CHD4 nor NuRD can directly bind DNA. Here, we coupled a bioinformatics-based approach with mass spectrometry analyses to demonstrate that CHD4 interacts with the core cardiac transcription factors GATA4, NKX2-5, and TBX5 during embryonic heart development. Using transcriptomics and genome-wide occupancy data, we characterized the genomic landscape of GATA4, NKX2-5, and TBX5 repression and defined the direct cardiac gene targets of the GATA4-CHD4, NKX2-5-CHD4, and TBX5-CHD4 complexes. These data were used to identify putative cis-regulatory elements controlled by these complexes. We genetically interrogated two of these silencers in vivo: Acta1 and Myh11 We show that deletion of these silencers leads to inappropriate skeletal and smooth muscle gene misexpression, respectively, in the embryonic heart. These results delineate how CHD4/NuRD is localized to specific cardiac loci and explicates how mutations in the broadly expressed CHD4 protein lead to cardiac-specific disease states.
Collapse
Affiliation(s)
- Zachary L Robbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei Shi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lauren K Wasson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Angel P Scialdone
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Caralynn M Wilczewski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Frank L Conlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Maternal Protein Restriction and Post-Weaning High-Fat Feeding Alter Plasma Amino Acid Profiles and Hepatic Gene Expression in Mice Offspring. Foods 2022; 11:foods11050753. [PMID: 35267386 PMCID: PMC8909731 DOI: 10.3390/foods11050753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal undernutrition during pregnancy is closely associated with epigenetic changes in the child, and it affects the development of obesity throughout the child’s life. Here, we investigate the effect of fetal low protein exposure and post-weaning high-fat consumption on plasma amino acid profiles and hepatic gene expression. Mother C57BL/6J mice were fed a 20% (CN) or 9% (LP) casein diet during pregnancy. After birth, the male offspring of both these groups were fed a high-fat diet (HF) from 6 to 32 weeks. At 32 weeks, the final body weight between the two groups remained unchanged, but the LP-HF group showed markedly higher white fat weight and plasma leptin levels. The LP-HF group exhibited a significant increase in the concentrations of isoleucine, leucine, histidine, phenylalanine, serine, and tyrosine. However, no differences were observed in the lipid content in the liver. According to the hepatic gene expression analysis, the LP-HF group significantly upregulated genes involved in the chromatin modification/organization pathways. Thus, maternal low protein and a post-weaning high-fat environment contributed to severe obesity states and changes in gene expression related to hepatic chromatin modification in offspring. These findings provide novel insights for the prevention of lifestyle-related diseases at the early life stage.
Collapse
|
10
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Hagman JR, Arends T, Laborda C, Knapp JR, Harmacek L, O'Connor BP. Chromodomain helicase DNA-binding 4 (CHD4) regulates early B cell identity and V(D)J recombination. Immunol Rev 2021; 305:29-42. [PMID: 34927255 DOI: 10.1111/imr.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
B lymphocytes develop from uncommitted precursors into immunoglobulin (antibody)-producing B cells, a major arm of adaptive immunity. Progression of early progenitors to antibody-expressing cells in the bone marrow is orchestrated by the temporal regulation of different gene programs at discrete developmental stages. A major question concerns how B cells control the accessibility of these genes to transcription factors. Research has implicated nucleosome remodeling ATPases as mediators of chromatin accessibility. Here, we describe studies of chromodomain helicase DNA-binding 4 (CHD4; also known as Mi-2β) in early B cell development. CHD4 comprises multiple domains that function in nucleosome mobilization and histone binding. CHD4 is a key component of Nucleosome Remodeling and Deacetylase, or NuRD (Mi-2) complexes, which assemble with other proteins that mediate transcriptional repression. We review data demonstrating that CHD4 is necessary for B lineage identity: early B lineage progression, proliferation in response to interleukin-7, responses to DNA damage, and cell survival in vivo. CHD4-NuRD is also required for the Ig heavy-chain repertoire by promoting utilization of distal variable (VH ) gene segments in V(D)J recombination. In conclusion, the regulation of chromatin accessibility by CHD4 is essential for production of antibodies by B cells, which in turn mediate humoral immune responses to pathogens and disease.
Collapse
Affiliation(s)
- James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tessa Arends
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Curtis Laborda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
12
|
Sakaguchi C, Ichihara K, Nita A, Katayama Y, Nakayama KI. Identification and characterization of novel proteins associated with CHD4. Genes Cells 2021; 27:61-71. [PMID: 34897913 DOI: 10.1111/gtc.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
The CHD (chromodomain helicase DNA binding protein) family consists of nine chromatin remodeling factors that alter chromatin structure in an ATP-dependent manner. CHD4 contributes to the regulation of various cellular activities and processes including development through interaction with multiple proteins including formation of the NuRD (nucleosome remodeling and deacetylase activity) complex. Functions of CHD4 that appear not to be mediated by the NuRD complex or other known interactors have also been identified, however, suggesting the existence of unrecognized proteins that also associate with CHD4. We here generated HeLa-S3 and HEK293T cells with a knock-in allele for FLAG epitope-tagged CHD4 and used these cells to identify proteins that bind to CHD4 with the use of immunoprecipitation followed by liquid chromatography and tandem mass spectrometry. LCORL (ligand-dependent nuclear receptor corepressor like) and NOL4L (nucleolar protein 4 like) were reproducibly identified as novel CHD4 interactors. Furthermore, RNA-sequencing analysis of HEK293T cells depleted of CHD4, LCORL, or NOL4L revealed consistent up-regulation of genes related to the Notch signaling pathway. Our results thus suggest that both LCORL and NOL4L may cooperate with CHD4 to suppress the Notch pathway in mammalian cells.
Collapse
Affiliation(s)
- Chihiro Sakaguchi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Issah MA, Wu D, Zhang F, Zheng W, Liu Y, Fu H, Zhou H, Chen R, Shen J. Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). Int J Oncol 2021; 59:107. [PMID: 34792180 PMCID: PMC8651224 DOI: 10.3892/ijo.2021.5287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/06/2022] Open
Abstract
Canonical epigenetic modifications, which include histone modification, chromatin remodeling and DNA methylation, play key roles in numerous cellular processes. Epigenetics underlies how cells that posses DNA with similar sequences develop into different cell types with different functions in an organism. Earlier epigenetic research has primarily been focused at the chromatin level. However, the number of studies on epigenetic modifications of RNA, such as N1‑methyladenosine, 2'‑O‑ribosemethylation, inosine, 5‑methylcytidine, N6‑methyladenosine (m6A) and pseudouridine, has seen an increase. Circular RNAs (circRNAs), a type of RNA species that lacks a 5' cap or 3' poly(A) tail, are abundantly expressed in acute myeloid leukemia (AML) and may regulate disease progression. circRNAs possess various functions, including microRNA sponging, gene transcription regulation and RNA‑binding protein interaction. Furthermore, circRNAs are m6A methylated in other types of cancer, such as colorectal and hypopharyngeal squamous cell cancers. Therefore, the critical roles of circRNA epigenetic modifications, particularly m6A, and their possible involvement in AML are discussed in the present review. Epigenetic modification of circRNAs may become a diagnostic and therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Mohammed Awal Issah
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dansen Wu
- Medical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Feng Zhang
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Weili Zheng
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yanquan Liu
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Haiying Fu
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Huarong Zhou
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Rong Chen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
CHD4 ensures stem cell lineage fidelity during skeletal muscle regeneration. Stem Cell Reports 2021; 16:2089-2098. [PMID: 34450038 PMCID: PMC8452531 DOI: 10.1016/j.stemcr.2021.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies. CHD4/NuRD regulates satellite cell (SC) fate commitment CHD4 deficiency blocks SC proliferation and disrupts skeletal muscle regeneration CHD4/NuRD repress myogenic differentiation genes during SC proliferative expansion CHD4/NuRD represses genes associated with other fates (brain, heart) in SCs
Collapse
|
15
|
Oyama Y, Shigeta S, Tokunaga H, Tsuji K, Ishibashi M, Shibuya Y, Shimada M, Yasuda J, Yaegashi N. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One 2021; 16:e0251079. [PMID: 34161330 PMCID: PMC8221472 DOI: 10.1371/journal.pone.0251079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Platinum sensitivity is an important prognostic factor in patients with ovarian cancer. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core member of the nucleosome remodeling and deacetylase complex, which functions as a chromatin remodeler. Emerging evidence indicates that CHD4 could be a potential therapeutic target for cancer therapy. The purpose of this study was to clarify the role of CHD4 in ovarian cancer and investigate its therapeutic potential focusing on platinum sensitivity. In an analysis of the Cancer Genome Atlas ovarian cancer dataset, CHD4 gene amplification was associated with worse overall survival. CHD4 mRNA expression was significantly higher in platinum-resistant samples in a subsequent clinical sample analysis, suggesting that CHD4 overexpression conferred platinum resistance to ovarian cancer cells, resulting in poor patient survival. In concordance with these findings, CHD4 knockdown enhanced the induction of apoptosis mediated by cisplatin in ovarian cancer cells TOV21G and increased cisplatin sensitivity in multiple ovarian cancer cells derived from different subtypes. However, CHD4 knockdown did not affect the expression of RAD51 or p21, the known targets of CHD4 in other cancer types that can modulate platinum sensitivity. Knockdown and overexpression assays revealed that CHD4 positively regulated the expression of multi-drug transporter MDR1 and its coding protein p-glycoprotein. In addition, a first-in-class CHD4/SMARCA5 inhibitor ED2-AD101 showed synergistic interactions with cisplatin. Our findings suggest that CHD4 mediates platinum sensitivity by modulating MDR1 expression in ovarian cancer. Further, CHD4 suppression has a potential to be a novel therapeutic strategy in combination with platinum agents.
Collapse
Affiliation(s)
- Yoshiko Oyama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Keita Tsuji
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shibuya
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100721. [PMID: 33933452 PMCID: PMC8165551 DOI: 10.1016/j.jbc.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seoyoung Chung
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sophie B Robinson
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kaitlyn E Forester
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
17
|
Novillo A, Fernández-Santander A, Gaibar M, Galán M, Romero-Lorca A, El Abdellaoui-Soussi F, Gómez-Del Arco P. Role of Chromodomain-Helicase-DNA-Binding Protein 4 (CHD4) in Breast Cancer. Front Oncol 2021; 11:633233. [PMID: 33981601 PMCID: PMC8107472 DOI: 10.3389/fonc.2021.633233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
Collapse
Affiliation(s)
- Apolonia Novillo
- Department of Pre-clinical Dentistry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Fernández-Santander
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Gaibar
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel Galán
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia Romero-Lorca
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Pablo Gómez-Del Arco
- Institute of Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
18
|
Chang CL, Huang CR, Chang SJ, Wu CC, Chen HH, Luo CW, Yip HK. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer. Int J Biol Sci 2021; 17:1660-1670. [PMID: 33994851 PMCID: PMC8120460 DOI: 10.7150/ijbs.56976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) has ranked first in terms of incidence in Taiwan. Surgical resection combined with chemo-, radio-, or targeted-therapies are the main treatments for CRC patients in current clinical practice. However, many CRC patients still respond poorly to these treatments, leading to tumor recurrence and an unacceptably high incidence of metastasis and death. Therefore, appropriate diagnosis, treatment, and drug selection are pressing issues in clinical practice. The Mi-2/nucleosome remodeling and deacetylase complex is an important epigenetic regulator of chromatin structure and gene expression. An important component of this complex is chromodomain-helicase-DNA-binding protein 4 (CHD4), which is involved in DNA repair after injury. Recent studies have indicated that CHD4 has oncogenic functions that inhibit multiple tumor suppressor genes through epigenetic regulation. However, the role of CHD4 in CRC has not yet been well investigated. In this study, we compared CHD4 expression in CRC patients from The Cancer Genome Atlas database. We found higher levels of CHD4 expression in CRC patients. In a series of in vitro experiments, we found that CHD4 affected cell motility and drug sensitivity in CRC cells. In animal models, the depletion of CHD4 affected CRC tumor growth, and the combination of a histone deacetylase 1 (HDAC1) inhibitor and platinum drugs inhibited CHD4 expression and increased the cytotoxicity of platinum drugs. Moreover, CHD4 expression was also a prognostic biomarker in CRC patients. Based on the above results, we believe that CHD4 expression is a viable biomarker for predicting metastasis CRC patients, and it has the potential to become a target for drug development.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
19
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
20
|
Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, Ou J, Deng B, Zhu LJ, Johnson N, Cantor SB. Replication Gaps Underlie BRCA Deficiency and Therapy Response. Cancer Res 2021; 81:1388-1397. [PMID: 33184108 PMCID: PMC8026497 DOI: 10.1158/0008-5472.can-20-1602] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/02/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease.See related commentary by Canman, p. 1214.
Collapse
Affiliation(s)
| | - John J Krais
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ke Cong
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Min Peng
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michelle Mosqueda
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sumeet U Nayak
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Samuel M Bond
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer A Calvo
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mihir B Doshi
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Matt Bere
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jianhong Ou
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Bin Deng
- The University of Vermont, Burlington, Vermont
| | - Lihua J Zhu
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neil Johnson
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon B Cantor
- University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
21
|
CHD4 Predicts Aggressiveness in PTC Patients and Promotes Cancer Stemness and EMT in PTC Cells. Int J Mol Sci 2021; 22:ijms22020504. [PMID: 33419089 PMCID: PMC7825451 DOI: 10.3390/ijms22020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 4 (CHD4), a core subunit of the nucleosome remodeling and deacetylation (NuRD) complex is highly expressed in several cancers. However, its role in the pathogenesis and progression of papillary thyroid carcinoma (PTC) has not been investigated. We investigated the prognostic significance of CHD4 in a large cohort of Middle Eastern PTC patients and explored the functional role of CHD4 in regulating cancer stemness and EMT in PTC cells. CHD4 overexpression was observed in 45.3% (650/1436) of PTCs, and was associated with aggressive clinico-pathological parameters and worse outcome. Functional analysis using PTC cell lines showed that forced expression of CHD4 promoted cell proliferation, spheroid growth, migration, invasion and progression of epithelial to mesenchymal transition (EMT) in PTC cells whereas its knockdown reversed the effect. Methylation of E-cadherin was associated with loss of expression in CHD4 expressing cells, while CHD4 depletion reactivated E-cadherin expression. Most importantly, knockdown of mesenchymal transcriptional factors, Snail1 or Zeb1, attenuated the spheroid growth in CHD4 expressing PTC cells, showing a potential link between EMT activation and stemness maintenance in PTC. These findings suggest that CHD4 might be a promising therapeutic target in the treatment of patients with an aggressive subtype of PTC.
Collapse
|
22
|
Low JKK, Silva APG, Sharifi Tabar M, Torrado M, Webb SR, Parker BL, Sana M, Smits C, Schmidberger JW, Brillault L, Jackman MJ, Williams DC, Blobel GA, Hake SB, Shepherd NE, Landsberg MJ, Mackay JP. The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Rep 2020; 33:108450. [PMID: 33264611 PMCID: PMC8908386 DOI: 10.1016/j.celrep.2020.108450] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition. Low et al. examine the architecture of the nucleosome remodeling and deacetylase complex. They define its stoichiometry, use cross-linking mass spectrometry to define subunit locations, and use electron microscopy to reveal large-scale dynamics. They also demonstrate that PWWP2A competes with MBD3 to sequester the HDAC-MTA-RBBP module from NuRD.
Collapse
Affiliation(s)
- Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mehdi Sharifi Tabar
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Sarah R Webb
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Maryam Sana
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | | | - Lou Brillault
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - Matthew J Jackman
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - David C Williams
- Dept of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Gerd A Blobel
- The Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra B Hake
- Institute for Genetics, FB08 Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nicholas E Shepherd
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
23
|
Yen WF, Sharma R, Cols M, Lau CM, Chaudhry A, Chowdhury P, Yewdell WT, Vaidyanathan B, Sun A, Coffre M, Pucella JN, Chen CC, Jasin M, Sun JC, Rudensky AY, Koralov SB, Chaudhuri J. Distinct Requirements of CHD4 during B Cell Development and Antibody Response. Cell Rep 2020; 27:1472-1486.e5. [PMID: 31042474 PMCID: PMC6527137 DOI: 10.1016/j.celrep.2019.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022] Open
Abstract
The immunoglobulin heavy chain (Igh) locus features a dynamic chromatin landscape to promote class switch recombination (CSR), yet the mechanisms that regulate this landscape remain poorly understood. CHD4, a component of the chromatin remodeling NuRD complex, directly binds H3K9me3, an epigenetic mark present at the Igh locus during CSR. We find that CHD4 is essential for early B cell development but is dispensable for the homeostatic maintenance of mature, naive B cells. However, loss of CHD4 in mature B cells impairs CSR because of suboptimal targeting of AID to the Igh locus. Additionally, we find that CHD4 represses p53 expression to promote B cell proliferation. This work reveals distinct roles for CHD4 in B cell development and CSR and links the H3K9me3 epigenetic mark with AID recruitment to the Igh locus. Yen et al. demonstrate that CHD4, a component of the NuRD remodeling complex, is essential for early B cell development, represses p53 expression in mature B cells, and influences the recruitment of AID to DNA during class switch recombination.
Collapse
Affiliation(s)
- Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priyanka Chowdhury
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Amy Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Joseph N Pucella
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Chun-Chin Chen
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Biochemistry, Cellular and Molecular Biology Program, Weill Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
24
|
Hou T, Cao Z, Zhang J, Tang M, Tian Y, Li Y, Lu X, Chen Y, Wang H, Wei FZ, Wang L, Yang Y, Zhao Y, Wang Z, Wang H, Zhu WG. SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair. Nucleic Acids Res 2020; 48:2982-3000. [PMID: 31970415 PMCID: PMC7102973 DOI: 10.1093/nar/gkaa006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.
Collapse
Affiliation(s)
- Tianyun Hou
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyang Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Ming Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yinglu Li
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Yongcan Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Hui Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fu-Zheng Wei
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Haiying Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China
| |
Collapse
|
25
|
Identification of CHD4-β1 integrin axis as a prognostic marker in triple-negative breast cancer using next-generation sequencing and bioinformatics. Life Sci 2019; 238:116963. [DOI: 10.1016/j.lfs.2019.116963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/07/2023]
|
26
|
Wienholz F, Zhou D, Turkyilmaz Y, Schwertman P, Tresini M, Pines A, van Toorn M, Bezstarosti K, Demmers JAA, Marteijn JA. FACT subunit Spt16 controls UVSSA recruitment to lesion-stalled RNA Pol II and stimulates TC-NER. Nucleic Acids Res 2019; 47:4011-4025. [PMID: 30715484 PMCID: PMC6486547 DOI: 10.1093/nar/gkz055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/15/2022] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway.
Collapse
Affiliation(s)
- Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yasemin Turkyilmaz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Petra Schwertman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
27
|
Salamun SG, Sitz J, De La Cruz-Herrera CF, Yockteng-Melgar J, Marcon E, Greenblatt J, Fradet-Turcotte A, Frappier L. The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. J Virol 2019; 93:e01070-19. [PMID: 31462557 PMCID: PMC6819917 DOI: 10.1128/jvi.01070-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.
Collapse
Affiliation(s)
- Samuel G Salamun
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Justine Sitz
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | | | - Jaime Yockteng-Melgar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Facultad de ciencias de la vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Amelie Fradet-Turcotte
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Arends T, Dege C, Bortnick A, Danhorn T, Knapp JR, Jia H, Harmacek L, Fleenor CJ, Straign D, Walton K, Leach SM, Feeney AJ, Murre C, O'Connor BP, Hagman JR. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proc Natl Acad Sci U S A 2019; 116:10927-10936. [PMID: 31085655 PMCID: PMC6561196 DOI: 10.1073/pnas.1821301116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell lineage specification is a tightly regulated process that is dependent on appropriate expression of lineage and developmental stage-specific transcriptional programs. Here, we show that Chromodomain Helicase DNA-binding protein 4 (CHD4), a major ATPase/helicase subunit of Nucleosome Remodeling and Deacetylase Complexes (NuRD) in lymphocytes, is essential for specification of the early B cell lineage transcriptional program. In the absence of CHD4 in B cell progenitors in vivo, development of these cells is arrested at an early pro-B-like stage that is unresponsive to IL-7 receptor signaling and unable to efficiently complete V(D)J rearrangements at Igh loci. Our studies confirm that chromatin accessibility and transcription of thousands of gene loci are controlled dynamically by CHD4 during early B cell development. Strikingly, CHD4-deficient pro-B cells express transcripts of many non-B cell lineage genes, including genes that are characteristic of other hematopoietic lineages, neuronal cells, and the CNS, lung, pancreas, and other cell types. We conclude that CHD4 inhibits inappropriate transcription in pro-B cells. Together, our data demonstrate the importance of CHD4 in establishing and maintaining an appropriate transcriptome in early B lymphopoiesis via chromatin accessibility.
Collapse
Affiliation(s)
- Tessa Arends
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045
| | - Carissa Dege
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
| | - Alexandra Bortnick
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Haiqun Jia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Courtney J Fleenor
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Desiree Straign
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Kendra Walton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Sonia M Leach
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Ann J Feeney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cornelis Murre
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Brian P O'Connor
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - James R Hagman
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045;
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
29
|
Burgold T, Barber M, Kloet S, Cramard J, Gharbi S, Floyd R, Kinoshita M, Ralser M, Vermeulen M, Reynolds N, Dietmann S, Hendrich B. The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO J 2019; 38:embj.2018100788. [PMID: 31036553 PMCID: PMC6576150 DOI: 10.15252/embj.2018100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Multiprotein chromatin remodelling complexes show remarkable conservation of function amongst metazoans, even though components present in invertebrates are often found as multiple paralogous proteins in vertebrate complexes. In some cases, these paralogues specify distinct biochemical and/or functional activities in vertebrate cells. Here, we set out to define the biochemical and functional diversity encoded by one such group of proteins within the mammalian Nucleosome Remodelling and Deacetylation (NuRD) complex: Mta1, Mta2 and Mta3. We find that, in contrast to what has been described in somatic cells, MTA proteins are not mutually exclusive within embryonic stem (ES) cell NuRD and, despite subtle differences in chromatin binding and biochemical interactions, serve largely redundant functions. ES cells lacking all three MTA proteins exhibit complete NuRD loss of function and are viable, allowing us to identify a previously unreported function for NuRD in reducing transcriptional noise, which is essential for maintaining a proper differentiation trajectory during early stages of lineage commitment.
Collapse
Affiliation(s)
- Thomas Burgold
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael Barber
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Susan Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Julie Cramard
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah Gharbi
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robin Floyd
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Masaki Kinoshita
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Meryem Ralser
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Nicola Reynolds
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sabine Dietmann
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Hendrich
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK .,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Liu H, Lu W, He H, Wu J, Zhang C, Gong H, Yang C. Inflammation-dependent overexpression of c-Myc enhances CRL4 DCAF4 E3 ligase activity and promotes ubiquitination of ST7 in colitis-associated cancer. J Pathol 2019; 248:464-475. [PMID: 30945288 DOI: 10.1002/path.5273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/04/2019] [Accepted: 04/01/2019] [Indexed: 02/05/2023]
Abstract
Inflammation is well known as an important driver of the initiation of colitis-associated cancer (CAC). Some cytokines, such as IL-6 and TNF-α can activate expression of the oncogene c-Myc (MYC) and regulate its downstream effects. Cullin-RING E3 Ligases (CRLs) are emerging as master regulators controlling tumorigenesis. Here, we demonstrate that two cullin genes, CUL4A and CUL4B, but not other members, are specifically overexpressed in CAC tumour samples and positively correlate with levels of the proinflammatory cytokines IL-1β and IL-6. In vitro experiments revealed that the transcription factor c-Myc can specifically activate the expression of CUL4A and CUL4B by binding to a conserved site (CACGTG) located in their promoters. Additionally, we found that both CUL4A and CUL4B can form an E3 complex with DNA damage-binding protein 1 (DDB1) and DDB1-CUL4-associated factor 4 (DCAF4). In vitro and in vivo ubiquitination analyses indicate that CRL4DCAF4 E3 ligase specifically directs degradation of ST7 (suppression of tumorigenicity 7). Overexpression of c-Myc in human colon epithelial cells resulted in the accumulation of CUL4A, CUL4B and DCAF4, but degradation of ST7. In contrast, knockdown of c-Myc, CUL4A or CUL4B in the colon adenocarcinoma cell line HT29 caused accumulation of ST7 and inhibition of cell proliferation, colony formation ability and in vivo tumour growth. Collectively, our results provide in vitro and in vivo evidence that c-Myc regulates CRL4DCAF4 E3 ligase activity to mediate ubiquitination of ST7, whose presence is physiologically essential for CAC tumorigenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Liu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Wenzhu Lu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbo He
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Wu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hanlin Gong
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Chunmei Yang
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
31
|
D'Alesio C, Bellese G, Gagliani MC, Lechiara A, Dameri M, Grasselli E, Lanfrancone L, Cortese K, Castagnola P. The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2 + breast cancer cells. Biol Open 2019; 8:bio.038323. [PMID: 30967373 PMCID: PMC6504000 DOI: 10.1242/bio.038323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacetylases (NuRD) complex, has been identified as an oncogene that modulates proliferation and migration of breast cancers (BC). ERBB2 is an oncogenic driver in 20–30% of BC in which its overexpression leads to increased chemoresistance. Here we investigated whether CHD4 depletion affects the ERBB2 cascade and autophagy, which represents a mechanism of resistance against Trastuzumab (Tz), a therapeutic anti-ERBB2 antibody. We show that CHD4 depletion in two ERBB2+ BC cell lines strongly inhibits cell proliferation, induces p27KIP1 upregulation, Tyr1248 ERBB2 phosphorylation, ERK1/2 and AKT dephosphorylation, and downregulation of both ERBB2 and PI3K levels. Moreover, CHD4 silencing impairs late stages of autophagy, resulting in increased levels of LC3 II and SQSTM1/p62, lysosomal enlargement and accumulation of autolysosomes (ALs). Importantly, we show that CHD4 depletion and concomitant treatment with Tz prevent cell proliferation in vitro. Our results suggest that CHD4 plays a critical role in modulating cell proliferation, ERBB2 signaling cascade and autophagy and provide new insights on CHD4 as a potential target for the treatment of ERBB2+ BC. Summary: Inhibition of CHD4 expression impairs cell proliferation and survival through downregulation of ERBB2 signaling and block of autophagy. Therefore, CHD4 should be considered a potential target in ERBB2+ breast cancers.
Collapse
Affiliation(s)
- Carolina D'Alesio
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy.,DIMI, Department of Internal Medicine, Pharmacology, Università di Genova, Viale Benedetto XV, 16132, Genova, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Anastasia Lechiara
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Martina Dameri
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Elena Grasselli
- DISTAV, Department of Earth, Environment and Life science, Università di Genova, Corso Europa 26, 16132, Genova, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Patrizio Castagnola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| |
Collapse
|
32
|
McKenzie LD, LeClair JW, Miller KN, Strong AD, Chan HL, Oates EL, Ligon KL, Brennan CW, Chheda MG. CHD4 regulates the DNA damage response and RAD51 expression in glioblastoma. Sci Rep 2019; 9:4444. [PMID: 30872624 PMCID: PMC6418088 DOI: 10.1038/s41598-019-40327-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/28/2019] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumour. Despite therapy with surgery, radiation, and alkylating chemotherapy, most people have recurrence within 6 months and die within 2 years. A major reason for recurrence is resistance to DNA damage. Here, we demonstrate that CHD4, an ATPase and member of the nucleosome remodelling and deactetylase (NuRD) complex, drives a component of this resistance. CHD4 is overexpressed in GBM specimens and cell lines. Based on The Cancer Genome Atlas and Rembrandt datasets, CHD4 expression is associated with poor prognosis in patients. While it has been known in other cancers that CHD4 goes to sites of DNA damage, we found CHD4 also regulates expression of RAD51, an essential component of the homologous recombination machinery, which repairs DNA damage. Correspondingly, CHD4 suppression results in defective DNA damage response in GBM cells. These findings demonstrate a mechanism by which CHD4 promotes GBM cell survival after DNA damaging treatments. Additionally, we found that CHD4 suppression, even in the absence of extrinsic treatment, cumulatively increases DNA damage. Lastly, we found that CHD4 is dispensable for normal human astrocyte survival. Since standard GBM treatments like radiation and temozolomide chemotherapy create DNA damage, these findings suggest an important resistance mechanism that has therapeutic implications.
Collapse
Affiliation(s)
- Lisa D McKenzie
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John W LeClair
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kayla N Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Averey D Strong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hilda L Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Edward L Oates
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston Children's Hospital, and Dana Farber Cancer Institute, Boston, MA, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Milan G Chheda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
Zhang J, Shih DJ, Lin SY. The Tale of CHD4 in DNA Damage Response and Chemotherapeutic Response. JOURNAL OF CANCER RESEARCH AND CELLULAR THERAPEUTICS 2019; 3:052. [PMID: 32577620 PMCID: PMC7310990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The chromatin remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex. Due to its important role in DNA damage repair, CHD4 has been identified as a key determinant in cancer progression, stem cell differentiation, and T cell and B cell development. Accumulating evidence has revealed that CHD4 can function in NuRD dependent and independent manner in response to DNA damage. Mutations of CHD4 have been shown to diminish its functions, which indicates that interpretation of its mutations may provide tangible benefit for patients. The expression of CHD4 play a dual role in sensitizing cancer cells to chemotherapeutic agents, which provides new insights into the contribution of CHD4 to tumor biology and new therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David J.H. Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Corresponding Author: Shiaw-Yih Lin, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
34
|
NuRD-interacting protein ZFP296 regulates genome-wide NuRD localization and differentiation of mouse embryonic stem cells. Nat Commun 2018; 9:4588. [PMID: 30389936 PMCID: PMC6214896 DOI: 10.1038/s41467-018-07063-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. However, little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We find that the genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as an ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD-interacting protein which regulates genome-wide NuRD binding and cellular differentiation. The NuRD complex plays an important role in regulating lineage commitment and cell fate during early embryonic development. Here the authors present an integrative analysis of MBD3/NuRD composition and binding in mouse embryonic stem cells and neural progenitor cells, providing a molecular basis for genome-wide NuRD localization
Collapse
|
35
|
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18:696-705. [PMID: 30293088 PMCID: PMC6450507 DOI: 10.1038/s41568-018-0060-1] [Citation(s) in RCA: 907] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sally Bamford
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charlotte G Cole
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sari A Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon A Forbes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
36
|
Basu S, Needham LM, Lando D, Taylor EJR, Wohlfahrt KJ, Shah D, Boucher W, Tan YL, Bates LE, Tkachenko O, Cramard J, Lagerholm BC, Eggeling C, Hendrich B, Klenerman D, Lee SF, Laue ED. FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells. Nat Commun 2018; 9:2520. [PMID: 29955052 PMCID: PMC6023872 DOI: 10.1038/s41467-018-04486-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/27/2018] [Indexed: 11/09/2022] Open
Abstract
A major challenge in single-molecule imaging is tracking the dynamics of proteins or complexes for long periods of time in the dense environments found in living cells. Here, we introduce the concept of using FRET to enhance the photophysical properties of photo-modulatable (PM) fluorophores commonly used in such studies. By developing novel single-molecule FRET pairs, consisting of a PM donor fluorophore (either mEos3.2 or PA-JF549) next to a photostable acceptor dye JF646, we demonstrate that FRET competes with normal photobleaching kinetic pathways to increase the photostability of both donor fluorophores. This effect was further enhanced using a triplet-state quencher. Our approach allows us to significantly improve single-molecule tracking of chromatin-binding proteins in live mammalian cells. In addition, it provides a novel way to track the localization and dynamics of protein complexes by labeling one protein with the PM donor and its interaction partner with the acceptor dye.
Collapse
Affiliation(s)
- Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lisa-Maria Needham
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David Lando
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Edward J R Taylor
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Kai J Wohlfahrt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Devina Shah
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Yi Lei Tan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lawrence E Bates
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Olga Tkachenko
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Julie Cramard
- Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - B Christoffer Lagerholm
- Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, UK
| | - Brian Hendrich
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Wellcome Trust - MRC Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Dave Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
37
|
Bornelöv S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, Ralser M, Signolet J, Loos R, Dietmann S, Bertone P, Hendrich B. The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. Mol Cell 2018; 71:56-72.e4. [PMID: 30008319 PMCID: PMC6039721 DOI: 10.1016/j.molcel.2018.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023]
Abstract
Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. Video Abstract
NuRD increases nucleosome density, expelling TFs or inhibiting recruitment NuRD displaces RNA Pol II from TSSs, reducing nascent transcription Local gains in TF and Mediator occupancy can be indirect effects of NuRD activity Resetting protein binding at regulatory elements can promote or suppress transcription
Collapse
Affiliation(s)
- Susanne Bornelöv
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nicola Reynolds
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Xenophontos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Gharbi
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ewan Johnstone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Robin Floyd
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Meryem Ralser
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jason Signolet
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sabine Dietmann
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Paul Bertone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK.
| | - Brian Hendrich
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
38
|
Li Y, Liu Q, McGrail DJ, Dai H, Li K, Lin SY. CHD4 mutations promote endometrial cancer stemness by activating TGF-beta signaling. Am J Cancer Res 2018; 8:903-914. [PMID: 29888111 PMCID: PMC5992509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023] Open
Abstract
Endometrial cancer is one of the most common cancers of the female reproductive system. CHD4, a core subunit of the nucleosome remodeling and deacetylation (NuRD) complex, is frequently mutated in these patients. However the role it plays in promoting endometrial tumorigenesis is poorly understood. Here, we use genetic engineering approaches to modulate CHD4 expression levels and functionally evaluate hot spot mutations R975H and R1162W. We find that CHD4 depletion induces up-regulation of the cancer stem cell (CSC) marker CD133. This CSC phenotype was verified functionally by invasion ability, spheroid formation, and tumorigenicity in vivo. While cells expressing mutated CHD4 did not display impaired CHD4 DNA recruitment or NuRD complex formation, the mutations did reduce the stability of CHD4 protein to phenocopy CHD4 depletion. Consistently, patients with mutant CHD4 showed overexpression of CD133. Network analysis indicated activation of the TGFβ signaling pathway may drive this CSC phenotype, and chemical blockade of TGFβ abrogated the ability CHD4 knockdown cells to form spheroids. Taken together, these results indicate that mutations in CHD4 can promote endometrial tumorigenesis by increasing CSC character through TGFβ signaling pathway.
Collapse
Affiliation(s)
- Yang Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Qingxin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Kaiyi Li
- The Michael E. DeBakey Department of Surgery, Baylor College of MedicineHouston, Texas 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| |
Collapse
|
39
|
Heshmati Y, Türköz G, Harisankar A, Kharazi S, Boström J, Dolatabadi EK, Krstic A, Chang D, Månsson R, Altun M, Qian H, Walfridsson J. The chromatin-remodeling factor CHD4 is required for maintenance of childhood acute myeloid leukemia. Haematologica 2018; 103:1169-1181. [PMID: 29599201 PMCID: PMC6029541 DOI: 10.3324/haematol.2017.183970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/23/2018] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations contribute to leukemogenesis in childhood acute myeloid leukemia and therefore are of interest for potential therapeutic strategies. Herein, we performed large-scale ribonucleic acid interference screens using small hairpin ribonucleic acids in acute myeloid leukemia cells and non-transformed bone marrow cells to identify leukemia-specific dependencies. One of the target genes displaying the strongest effects on acute myeloid leukemia cell growth and less pronounced effects on nontransformed bone marrow cells, was the chromatin remodeling factor CHD4 Using ribonucleic acid interference and CRISPR-Cas9 approaches, we showed that CHD4 was essential for cell growth of leukemic cells in vitro and in vivo Loss of function of CHD4 in acute myeloid leukemia cells caused an arrest in the G0 phase of the cell cycle as well as downregulation of MYC and its target genes involved in cell cycle progression. Importantly, we found that inhibition of CHD4 conferred anti-leukemic effects on primary childhood acute myeloid leukemia cells and prevented disease progression in a patient-derived xenograft model. Conversely, CHD4 was not required for growth of normal hematopoietic cells. Taken together, our results identified CHD4 as a potential therapeutic target in childhood acute myeloid leukemia.
Collapse
Affiliation(s)
- Yaser Heshmati
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gözde Türköz
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Aditya Harisankar
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Boström
- Research Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska University Hospital, Stockholm, Sweden
| | - Esmat Kamali Dolatabadi
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David Chang
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden.,Hematology Center, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Altun
- Research Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska University Hospital, Stockholm, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Turcotte CA, Sloat SA, Rigothi JA, Rosenkranse E, Northrup AL, Andrews NP, Checchi PM. Maintenance of Genome Integrity by Mi2 Homologs CHD-3 and LET-418 in Caenorhabditis elegans. Genetics 2018; 208:991-1007. [PMID: 29339410 PMCID: PMC5844346 DOI: 10.1534/genetics.118.300686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination depends upon the tightly coordinated regulation of chromosome dynamics and is essential for the production of haploid gametes. Central to this process is the formation and repair of meiotic double-stranded breaks (DSBs), which must take place within the constraints of a specialized chromatin architecture. Here, we demonstrate a role for the nucleosome remodeling and deacetylase (NuRD) complex in orchestrating meiotic chromosome dynamics in Caenorhabditis elegans Our data reveal that the conserved Mi2 homologs Chromodomain helicase DNA-binding protein (CHD-3) and its paralog LET-418 facilitate meiotic progression by ensuring faithful repair of DSBs through homologous recombination. We discovered that loss of either CHD-3 or LET-418 results in elevated p53-dependent germ line apoptosis, which relies on the activation of the conserved checkpoint kinase CHK-1 Consistent with these findings, chd-3 and let-418 mutants produce a reduced number of offspring, indicating a role for Mi2 in forming viable gametes. When Mi2 function is compromised, persisting recombination intermediates are detected in late pachytene nuclei, indicating a failure in the timely repair of DSBs. Intriguingly, our data indicate that in Mi2 mutant germ lines, a subset of DSBs are repaired by nonhomologous end joining, which manifests as chromosomal fusions. We find that meiotic defects are exacerbated in Mi2 mutants lacking CKU-80, as evidenced by increased recombination intermediates, corpses, and defects in chromosomal integrity. Taken together, our findings support a model wherein the C. elegans Mi2 complex maintains genomic integrity through reinforcement of a chromatin landscape suitable for homology-driven repair mechanisms.
Collapse
Affiliation(s)
| | - Solomon A Sloat
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| | - Julia A Rigothi
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| | | | | | | | - Paula M Checchi
- Department of Biology, Marist College, Poughkeepsie, New York 12601
| |
Collapse
|
41
|
D'Alesio C, Punzi S, Cicalese A, Fornasari L, Furia L, Riva L, Carugo A, Curigliano G, Criscitiello C, Pruneri G, Pelicci PG, Faretta M, Bossi D, Lanfrancone L. RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget 2018; 7:80901-80915. [PMID: 27779108 PMCID: PMC5348363 DOI: 10.18632/oncotarget.12646] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation plays an essential role in tumor development and epigenetic modifiers are considered optimal potential druggable candidates. In order to identify new breast cancer vulnerabilities and improve therapeutic chances for patients, we performed in vivo and in vitro shRNA screens in a human breast cancer cell model (MCF10DCIS.com cell line) using epigenetic libraries. Among the genes identified in our screening, we deeply investigated the role of Chromodomain Helicase DNA binding Protein 4 (CHD4) in breast cancer tumorigenesis. CHD4 silencing significantly reduced tumor growth in vivo and proliferation in vitro of MCF10DCIS.com cells. Similarly, in vivo breast cancer growth was decreased in a spontaneous mouse model of breast carcinoma (MMTV-NeuT system) and in metastatic patient-derived xenograft models. Conversely, no reduction in proliferative ability of non-transformed mammary epithelial cells (MCF10A) was detected. Moreover, we showed that CHD4 depletion arrests proliferation by inducing a G0/G1 block of cell cycle associated with up-regulation of CDKN1A (p21). These results highlight the relevance of genetic screens in the identification of tumor frailties and the role of CHD4 as a potential pharmacological target to inhibit breast cancer growth.
Collapse
Affiliation(s)
- Carolina D'Alesio
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Simona Punzi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Angelo Cicalese
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Laura Riva
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan 20139, Italy
| | - Alessandro Carugo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy.,Department of Molecular and Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Carmen Criscitiello
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Giancarlo Pruneri
- School of Medicine, University of Milan, Milan 20122, Italy.,Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milan 20141, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy.,Department of Oncology, University of Milan, Milan 20139, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
42
|
Tomati V, Pesce E, Caci E, Sondo E, Scudieri P, Marini M, Amato F, Castaldo G, Ravazzolo R, Galietta LJV, Pedemonte N. High-throughput screening identifies FAU protein as a regulator of mutant cystic fibrosis transmembrane conductance regulator channel. J Biol Chem 2018; 293:1203-1217. [PMID: 29158263 PMCID: PMC5787799 DOI: 10.1074/jbc.m117.816595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
In cystic fibrosis, deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. One possible approach to reducing the detrimental health effects of cystic fibrosis could be the identification of proteins whose suppression rescues F508del-CFTR function in bronchial epithelial cells. However, searches for these potential targets have not yet been conducted, particularly in a relevant airway background using a functional readout. To identify proteins associated with F508del-CFTR processing, we used a high-throughput functional assay to screen an siRNA library targeting 6,650 different cellular proteins. We identified 37 proteins whose silencing significantly rescued F508del-CFTR activity, as indicated by enhanced anion transport through the plasma membrane. These proteins included FAU, UBE2I, UBA52, MLLT6, UBA2, CHD4, PLXNA1, and TRIM24, among others. We focused our attention on FAU, a poorly characterized protein with unknown function. FAU knockdown increased the plasma membrane targeting and function of F508del-CFTR, but not of wild-type CFTR. Investigation into the mechanism of action revealed a preferential physical interaction of FAU with mutant CFTR, leading to its degradation. FAU and other proteins identified in our screening may offer a therapeutically relevant panel of drug targets to correct basic defects in F508del-CFTR processing.
Collapse
Affiliation(s)
- Valeria Tomati
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Emanuela Pesce
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Emanuela Caci
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Elvira Sondo
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Paolo Scudieri
- the Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Monica Marini
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Felice Amato
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy
- CEINGE-Advanced Biotechnology Scarl, 80145 Naples, Italy, and
| | - Giuseppe Castaldo
- the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy
- CEINGE-Advanced Biotechnology Scarl, 80145 Naples, Italy, and
| | - Roberto Ravazzolo
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy
- the Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, 16132 Genova, Italy
| | - Luis J V Galietta
- the Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Nicoletta Pedemonte
- From the Unità Operativa Complessa (U.O.C.) Genetica Medica, Istituto Giannina Gaslini, 16147 Genova, Italy,
| |
Collapse
|
43
|
Luo CW, Wu CC, Chang SJ, Chang TM, Chen TY, Chai CY, Chang CL, Hou MF, Pan MR. CHD4-mediated loss of E-cadherin determines metastatic ability in triple-negative breast cancer cells. Exp Cell Res 2018; 363:65-72. [PMID: 29305962 DOI: 10.1016/j.yexcr.2017.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/25/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of cancer with aggressive behaviors (high recurrence and metastasis rate) and poor prognosis. Therefore, studying the determining factors that lead to malignant TNBCs is necessary to develop personalized therapy and improve survival rates. In this study, we first analyzed levels of chromodomain helicase DNA binding protein 4 (CHD4) in 60 TNBC patients by immunohistochemical staining. We then clarified the role of CHD4 in TNBC and non-TNBC cell lines. Our clinical data indicated that higher CHD4 expression is positively correlated with metastatic stage, tumor recurrence, and survival status. Consistent with the clinical analytical data, our in vitro data also indicated that high level of CHD4 is positively correlated with malignant behaviors in TNBC cells, such as cell motility and mortality. For further analyses, we found that E-cadherin, N-cadherin and fibronetin are involved in CHD4-mediated epithelial-mesenchymal transition (EMT). Silencing of CHD4 also increased drug sensitivity to cisplatin and PARP1 inhibitor, especially in TNBC cells. Altogether, our findings showed that CHD4 is not only a potential prognostic biomarker for TNBC patient survival, but is also a powerful candidate in the development of new anti-cancer agents in TNBC.
Collapse
Affiliation(s)
- Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
44
|
Miller A, Hendrich B. Chromatin Remodelling Proteins and Cell Fate Decisions in Mammalian Preimplantation Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:3-14. [PMID: 29177761 DOI: 10.1007/978-3-319-63187-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The very first cell divisions in mammalian embryogenesis produce a ball of cells, each with the potential to form any cell in the developing embryo or placenta. At some point, the embryo produces enough cells that some are located on the outside of the embryo, while others are completely surrounded by other cells. It is at this point that cells undergo the very first lineage commitment event: outer cells form the trophectoderm and lose the potential to form embryonic lineages, while inner cells form the Inner Cell Mass, which retain embryonic potential. Cell identity is defined by gene expression patterns, and gene expression is largely controlled by how the DNA is packaged into chromatin. A number of protein complexes exist which are able to use the energy of ATP to remodel chromatin: that is, to alter the nucleosome topology of chromatin. Here, we summarise the evidence that chromatin remodellers play essential roles in the successful completion of preimplantation development in mammals and describe recent efforts to understand the molecular mechanisms through which chromatin remodellers facilitate the successful completion of the first cell fate decisions in mammalian embryogenesis.
Collapse
Affiliation(s)
- Anzy Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Brian Hendrich
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK. .,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
45
|
Torrado M, Low JKK, Silva APG, Schmidberger JW, Sana M, Sharifi Tabar M, Isilak ME, Winning CS, Kwong C, Bedward MJ, Sperlazza MJ, Williams DC, Shepherd NE, Mackay JP. Refinement of the subunit interaction network within the nucleosome remodelling and deacetylase (NuRD) complex. FEBS J 2017; 284:4216-4232. [PMID: 29063705 DOI: 10.1111/febs.14301] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/19/2017] [Accepted: 10/18/2017] [Indexed: 01/29/2023]
Abstract
The nucleosome remodelling and deacetylase (NuRD) complex is essential for the development of complex animals. NuRD has roles in regulating gene expression and repairing damaged DNA. The complex comprises at least six proteins with two or more paralogues of each protein routinely identified when the complex is purified from cell extracts. To understand the structure and function of NuRD, a map of direct subunit interactions is needed. Dozens of published studies have attempted to define direct inter-subunit connectivities. We propose that conclusions reported in many such studies are in fact ambiguous for one of several reasons. First, the expression of many NuRD subunits in bacteria is unlikely to lead to folded, active protein. Second, interaction studies carried out in cells that contain endogenous NuRD complex can lead to false positives through bridging of target proteins by endogenous components. Combining existing information on NuRD structure with a protocol designed to minimize false positives, we report a conservative and robust interaction map for the NuRD complex. We also suggest a 3D model of the complex that brings together the existing data on the complex. The issues and strategies discussed herein are also applicable to the analysis of a wide range of multi-subunit complexes. ENZYMES Micrococcal nuclease (MNase), EC 3.1.31.1; histone deacetylase (HDAC), EC 3.5.1.98.
Collapse
Affiliation(s)
- Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney, Australia
| | | | - Maryam Sana
- School of Life and Environmental Sciences, University of Sydney, Australia
| | | | - Musa E Isilak
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Courtney S Winning
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Cherry Kwong
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Max J Bedward
- School of Life and Environmental Sciences, University of Sydney, Australia
| | - Mary J Sperlazza
- Department of Pathology and Laboratory Medicine, The University of North Carolina - Chapel Hill, NC, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, The University of North Carolina - Chapel Hill, NC, USA
| | - Nicholas E Shepherd
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Australia
| |
Collapse
|
46
|
Zapata L, Susak H, Drechsel O, Friedländer MR, Estivill X, Ossowski S. Signatures of positive selection reveal a universal role of chromatin modifiers as cancer driver genes. Sci Rep 2017; 7:13124. [PMID: 29030609 PMCID: PMC5640613 DOI: 10.1038/s41598-017-12888-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022] Open
Abstract
Tumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian model for driver prediction. We demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Luis Zapata
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Hana Susak
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Oliver Drechsel
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Marc R Friedländer
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691, Stockholm, Sweden
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Experimental Genetics Division, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Stephan Ossowski
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
47
|
Hou MF, Luo CW, Chang TM, Hung WC, Chen TY, Tsai YL, Chai CY, Pan MR. The NuRD complex-mediated p21 suppression facilitates chemoresistance in BRCA-proficient breast cancer. Exp Cell Res 2017; 359:458-465. [PMID: 28842166 DOI: 10.1016/j.yexcr.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex play a role in silencing gene expression. CHD4, the core component of the NuRD complex, which cooperates with histone deacetylase in reducing tumor suppressor genes (TSGs). To dissect the mechanisms underlying cancer promotion, we clarify the role of CHD4 in cyclin-dependent kinase inhibitor protein p21. Here, our data indicates that CHD4 deficiency impairs the recruitments of HDAC1 to the p21 promoter. ~ 300bp proximal promoter region is responsible for CHD4-HDAC1 axis-mediated p21 transcriptional activity. For identifying the role of anti-cancer drug response, knockdown of p21 overcomes cisplatin and poly-(ADP-ribose) polymerase (PARP) inhibitor-mediated growth suppression in CHD4-depleted cells. Consistent with in vitro data, tissue of patients and bioinformatics approach also showed positive correlation between CHD4 and p21. Overall, our findings not only identify that CHD4 deficiency preferentially impairs cell survival via increasing the level of p21, but also establishes targeting CHD4 as a potential therapeutic implication in BRCA-proficient breast cancer treatment.
Collapse
Affiliation(s)
- Ming-Feng Hou
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
48
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
49
|
Carr AR, Ponjavic A, Basu S, McColl J, Santos AM, Davis S, Laue ED, Klenerman D, Lee SF. Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function. Biophys J 2017; 112:1444-1454. [PMID: 28402886 PMCID: PMC5390298 DOI: 10.1016/j.bpj.2017.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Single-molecule localization microscopy, typically based on total internal reflection illumination, has taken our understanding of protein organization and dynamics in cells beyond the diffraction limit. However, biological systems exist in a complicated three-dimensional environment, which has required the development of new techniques, including the double-helix point spread function (DHPSF), to accurately visualize biological processes. The application of the DHPSF approach has so far been limited to the study of relatively small prokaryotic cells. By matching the refractive index of the objective lens immersion liquid to that of the sample media, we demonstrate DHPSF imaging of up to 15-μm-thick whole eukaryotic cell volumes in three to five imaging planes. We illustrate the capabilities of the DHPSF by exploring large-scale membrane reorganization in human T cells after receptor triggering, and by using single-particle tracking to image several mammalian proteins, including membrane, cytoplasmic, and nuclear proteins in T cells and embryonic stem cells.
Collapse
Affiliation(s)
- Alexander R. Carr
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Davis
- Radcliffe Department of Clinical Medicine and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven F. Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom,Corresponding author
| |
Collapse
|
50
|
Yu H, Jiang Y, Liu L, Shan W, Chu X, Yang Z, Yang ZQ. Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer. Oncotarget 2017; 8:13099-13115. [PMID: 28055972 PMCID: PMC5355080 DOI: 10.18632/oncotarget.14402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
A wide range of the epigenetic effectors that regulate chromatin modification, gene expression, genomic stability, and DNA repair contain structurally conserved domains called plant homeodomain (PHD) fingers. Alternations of several PHD finger-containing proteins (PHFs) due to genomic amplification, mutations, deletions, and translocations have been linked directly to various types of cancer. However, little is known about the genomic landscape and the clinical significance of PHFs in breast cancer. Hence, we performed a large-scale genomic and transcriptomic analysis of 98 PHF genes in breast cancer using TCGA and METABRIC datasets and correlated the recurrent alterations with clinicopathological features and survival of patients. Different subtypes of breast cancer had different patterns of copy number and expression for each PHF. We identified a subset of PHF genes that was recurrently altered with high prevalence, including PYGO2 (pygopus family PHD finger 2), ZMYND8 (zinc finger, MYND-type containing 8), ASXL1 (additional sex combs like 1) and CHD3 (chromodomain helicase DNA binding protein 3). Copy number increase and overexpression of ZMYND8 were more prevalent in Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. ZMYND8 was also involved in a positive feedback circuit of the estrogen receptor (ER) pathway, and the expression of ZMYND8 was repressed by the bromodomain and extra terminal (BET) inhibitor in breast cancer. Our findings suggest a promising avenue for future research-to focus on a subset of PHFs to better understand the molecular mechanisms and to identify therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Huimei Yu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- College of Basic Medicine, Jilin University, Changchun, China
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wenqi Shan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaofang Chu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|