1
|
Sukkarieh HH, Husein TH, Bustami RT, Saleem RA, Alvi SN, Alodaib AN. Role of age and sex in the incidence of adverse effects among diabetic patients treated with glipizide. Exp Ther Med 2024; 28:391. [PMID: 39161610 PMCID: PMC11332124 DOI: 10.3892/etm.2024.12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Glipizide is an antidiabetic drug that belongs to a class of medication known as sulfonylureas. It is considered one of the highly prescribed antidiabetic drugs for the treatment of type II diabetes in patients following a kidney transplant. It lowers blood glucose levels by causing the release of insulin from β-cells in the pancreas. Its main metabolizing pathway is through the liver. It has several adverse effects, which range from an upset stomach to glipizide-induced haemolytic anaemia and hypoglycaemia. These adverse effects may be spontaneous, or they could have a genetic cause. The present study aimed to assess and document the incidence of glipizide-induced adverse reactions among patients prescribed the drug. The present retrospective case-control study used the electronic medical records of patients prescribed glipizide for the past 3 years. These records were reviewed to extract and document cases and/or signs of glipizide-induced adverse reactions. The results revealed that the incidence of adverse effects was higher among female patients (odds ratio, 2.40, P<0.001). Moreover, the results revealed that the likelihood of developing adverse drug reactions among patients <40 years of age was higher than in older patients (P>0.05). The outcomes of the present study are expected to prompt future studies to take sex and age into consideration, in an aim to improve treatment outcomes, reduce adverse events and decrease the burden of unnecessary costs for healthcare systems. Recommendations also include genetic screening prior to administering the medication, educating the patients and caregivers on the possibility of adverse drug reactions, and routine follow-up. This issue is of utmost importance to achieve the optimal outcomes with the minimal detrimental effects.
Collapse
Affiliation(s)
- Hatouf H. Sukkarieh
- Department of Pharmacology, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Tala H. Husein
- College of Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Rami T. Bustami
- Department of Operations and Project Management, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Rimah A. Saleem
- Department of Biochemistry and Molecular Medicine, Alfaisal University, Riyadh 11533, Kingdom of Saudi Arabia
| | - Syed N. Alvi
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Kingdom of Saudi Arabia
| | - Ali N. Alodaib
- Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Dhas Y, Biswas N, M R D, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. MOLECULAR BIOMEDICINE 2024; 5:40. [PMID: 39333445 PMCID: PMC11436690 DOI: 10.1186/s43556-024-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Drug repurposing in cancer taps into the capabilities of existing drugs, initially designed for other ailments, as potential cancer treatments. It offers several advantages over traditional drug discovery, including reduced costs, reduced development timelines, and a lower risk of adverse effects. However, not all drug classes align seamlessly with a patient's condition or long-term usage. Hence, repurposing of chronically used drugs presents a more attractive option. On the other hand, metabolic reprogramming being an important hallmark of cancer paves the metabolic regulators as possible cancer therapeutics. This review emphasizes the importance and offers current insights into the repurposing of antidiabetic drugs, including metformin, sulfonylureas, sodium-glucose cotransporter 2 (SGLT2) inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), thiazolidinediones (TZD), and α-glucosidase inhibitors, against various types of cancers. Antidiabetic drugs, regulating metabolic pathways have gained considerable attention in cancer research. The literature reveals a complex relationship between antidiabetic drugs and cancer risk. Among the antidiabetic drugs, metformin may possess anti-cancer properties, potentially reducing cancer cell proliferation, inducing apoptosis, and enhancing cancer cell sensitivity to chemotherapy. However, other antidiabetic drugs have revealed heterogeneous responses. Sulfonylureas and TZDs have not demonstrated consistent anti-cancer activity, while SGLT2 inhibitors and DPP-4 inhibitors have shown some potential benefits. GLP-1RAs have raised concerns due to possible associations with an increased risk of certain cancers. This review highlights that further research is warranted to elucidate the mechanisms underlying the potential anti-cancer effects of these drugs and to establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | | | - Lawrence D Jones
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
3
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
4
|
Zhu Y, Li M, Wang H, Yang F, Pang X, Du R, Zhang J, Huang X. Genetically proxied antidiabetic drugs targets and stroke risk. J Transl Med 2023; 21:681. [PMID: 37777789 PMCID: PMC10544120 DOI: 10.1186/s12967-023-04565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Previous studies have assessed the association between antidiabetic drugs and stroke risk, but the results are inconsistent. Mendelian randomization (MR) was used to assess effects of antidiabetic drugs on stroke risk. METHODS We selected blood glucose-lowering variants in genes encoding antidiabetic drugs targets from genome-wide association studies (GWAS). A two-sample MR and Colocalization analyses were applied to examine associations between antidiabetic drugs and the risk of stroke. For antidiabetic agents that had effect on stroke risk, an independent blood glucose GWAS summary data was used for further verification. RESULTS Genetic proxies for sulfonylureas targets were associated with reduced risk of any stroke (OR=0.062, 95% CI 0.013-0.295, P=4.65×10-4) and any ischemic stroke (OR=0.055, 95% CI 0.010-0.289, P=6.25×10-4), but not with intracranial hemorrhage. Colocalization supported shared casual variants for blood glucose with any stroke and any ischemic stroke within the encoding genes for sulfonylureas targets (KCNJ11 and ABCC8) (posterior probability>0.7). Furthermore, genetic variants in the targets of insulin/insulin analogues, glucagon-like peptide-1 analogues, thiazolidinediones, and metformin were not associated with the risk of any stroke, any ischemic stroke and intracranial hemorrhage. The association was consistent in the analysis of sulfonylureas with stroke risk using an independent blood glucose GWAS summary data. CONCLUSIONS Our findings showed that genetic proxies for sulfonylureas targets by lowering blood glucose were associated with a lower risk of any stroke and any ischemic stroke. The study might be of great significance to guide the selection of glucose-lowering drugs in individuals at high risk of stroke.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mao Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongfen Wang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fei Yang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinyuan Pang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Rongrong Du
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medicine, Nankai University, Tianjin, China
| | - Jinghong Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China.
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci 2023; 24:ijms24076039. [PMID: 37047011 PMCID: PMC10094124 DOI: 10.3390/ijms24076039] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
6
|
Malik S, Siddiqi MK, Naseem N, Nabi F, Masroor A, Majid N, Hashmi A, Khan RH. Biophysical insight into the anti-fibrillation potential of Glyburide for its possible implication in therapeutic intervention of amyloid associated diseases. Biochimie 2023; 211:110-121. [PMID: 36958592 DOI: 10.1016/j.biochi.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Protein aggregation is an underlying cause of many neurodegenerative diseases. Also, the overlapping pathological disturbances between neurodegenerative diseases and type-2 diabetes mellitus have urged the scientific community to explore potential of already available anti-diabetic medications in impeding amyloid formation too. Recent study brief out promising potential of an anti-diabetic drug Glyburide(GLY) as an inhibitor of amyloid fibrillation utilizing several biophysical techniques, computational methods and imaging tools. The mechanism of interaction was elucidated and the structural alterations in human serum albumin(HSA) as well as the microenvironment changes of its fluorophores(tryptophan, tyrosine) upon interacting with GLY were studied by spectroscopic techniques like Circular dichroism and synchronous fluorescence. Binding studies detailing about the GLY-HSA complex distance and the energy transfer efficiency was obtained by Fluorescence resonance energy transfer. For aggregation inhibition studies, the existence and size of aggregates formed in HSA and their inhibition by GLY was determined by Turbidity assay, Dynamic light scattering and Rayleigh light scattering along with dye binding assays. The ThT kinetics measurements analysis suggested that GLY deaccelerates fibrillation by decrement of apparent rate(Kapp) constant. The inhibitory effect of GLY might be attributed to native structure stabilization of HSA by obstruction into β-sheet conversion as confirmed by CD spectroscopy results. Amyloid inhibition and suppression of amyloid-induced hemolysis by GLY was further delineated by TEM and SEM analysis respectively. All these findings for the first time report the new facet of the anti-amyloidogenic potential of GLY, making it a promising candidate to treat neurodegenerative diseases too in the near future.
Collapse
Affiliation(s)
- Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
7
|
Dugbartey GJ, Alornyo KK, N'guessan BB, Atule S, Mensah SD, Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed Pharmacother 2022; 149:112818. [PMID: 35286963 DOI: 10.1016/j.biopha.2022.112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Current pharmacological interventions only retard DN progression. Alpha-lipoic acid (ALA) is a potent antioxidant with beneficial effect in other diabetic complications. This study investigates whether ALA supplementation prevents early development and progression of DN. METHOD Fifty-eight male Sprague-Dawley rats were randomly assigned to healthy control and diabetic groups and subjected to overnight fasting. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). On day 3 after T2DM induction, diabetic rats received oral daily administration of ALA (60 mg/kg), gliclazide (15 mg/kg), ramipril (10 mg/kg) or drug combinations for 6 weeks. Untreated diabetic rats served as diabetic control. Blood, kidneys and pancreas were harvested for biochemical and histological analyses. RESULT Induction of T2DM resulted in hypoinsulinemia, hyperglycemia and renal pathology. ALA supplementation maintained β-cell function, normoinsulinemia and normoglycemia in diabetic rats, and prevented renal pathology (PAS, KIM-1, plasma creatinine, total protein, blood urea nitrogen, uric acid and urine albumin/creatinine ratio) and triglycerides level compared to diabetic control (p < 0.001). Additionally, ALA supplementation significantly prevented elevated serum and tissue malondialdehyde, collagen deposition, α-SMA expression, apoptosis and serum IL-1β and IL-6 levels while it markedly increased renal glutathione content and plasma HDL-C compared to diabetic control group (p < 0.001). CONCLUSION ALA supplementation prevents early development and progression of DN by exerting anti-hyperglycemic, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Our findings provide additional option for clinical treatment of DN in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Benoit B N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel D Mensah
- Department of Pathology, University of Ghana Dental School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
8
|
Dugbartey GJ, Wonje QL, Alornyo KK, Robertson L, Adams I, Boima V, Mensah SD. Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Front Pharmacol 2022; 13:850542. [PMID: 35401218 PMCID: PMC8988231 DOI: 10.3389/fphar.2022.850542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a major long-term complication of diabetes mellitus, accounting for over 20% of annual mortality rate of diabetic patients globally. Although several existing anti-diabetic drugs have improved glycemic status in diabetic patients, prevalence of DCM is still high. This study investigates cardiac effect of alpha-lipoic acid (ALA) supplementation of anti-diabetic therapy in experimental DCM. Methods: Following 12 h of overnight fasting, 44 male Sprague Dawley rats were randomly assigned to two groups of healthy control (n = 7) and diabetic (n = 37) groups, and fasting blood glucose was measured. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal (i.p.) administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). After confirmation of T2DM on day 3, diabetic rats received monotherapies with ALA (60 mg/kg; n = 7), gliclazide (15 mg/kg; n = 7), ramipril (10 mg/kg; n = 7) or combination of the three drugs (n = 7) for 6 weeks while untreated diabetic rats received distilled water and were used as diabetic control (n = 9). Rats were then sacrificed, and blood, pancreas and heart tissues were harvested for analyses using standard methods. Results: T2DM induction caused pancreatic islet destruction, hyperglycemia, weight loss, high relative heart weight, and development of DCM, which was characterized by myocardial degeneration and vacuolation, cardiac fibrosis, elevated cardiac damage markers (plasma and cardiac creatine kinase-myocardial band, brain natriuretic peptide and cardiac troponin I). Triple combination therapy of ALA, gliclazide and ramipril preserved islet structure, maintained body weight and blood glucose level, and prevented DCM development compared to diabetic control (p < 0.001). In addition, the combination therapy markedly reduced plasma levels of inflammatory markers (IL-1β, IL-6 and TNF-α), plasma and cardiac tissue malondialdehyde, triglycerides and total cholesterol while significantly increasing cardiac glutathione and superoxide dismutase activity and high-density lipoprotein-cholesterol compared to diabetic control (p < 0.001). Mechanistically, induction of T2DM upregulated cardiac expression of TGF-β1, phosphorylated Smad2 and Smad3 proteins, which were downregulated following triple combination therapy (p < 0.001). Conclusion: Triple combination therapy of ALA, gliclazide and ramipril prevented DCM development by inhibiting TGF-β1/Smad pathway. Our findings can be extrapolated to the human heart, which would provide effective additional pharmacological therapy against DCM in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Louis Robertson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel D Mensah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
9
|
Houtman MJC, Friesacher T, Chen X, Zangerl-Plessl EM, van der Heyden MAG, Stary-Weinzinger A. Development of I KATP Ion Channel Blockers Targeting Sulfonylurea Resistant Mutant K IR6.2 Based Channels for Treating DEND Syndrome. Front Pharmacol 2022; 12:814066. [PMID: 35095528 PMCID: PMC8795863 DOI: 10.3389/fphar.2021.814066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: DEND syndrome is a rare channelopathy characterized by a combination of developmental delay, epilepsy and severe neonatal diabetes. Gain of function mutations in the KCNJ11 gene, encoding the KIR6.2 subunit of the IKATP potassium channel, stand at the basis of most forms of DEND syndrome. In a previous search for existing drugs with the potential of targeting Cantú Syndrome, also resulting from increased IKATP, we found a set of candidate drugs that may also possess the potential to target DEND syndrome. In the current work, we combined Molecular Modelling including Molecular Dynamics simulations, with single cell patch clamp electrophysiology, in order to test the effect of selected drug candidates on the KIR6.2 WT and DEND mutant channels. Methods: Molecular dynamics simulations were performed to investigate potential drug binding sites. To conduct in vitro studies, KIR6.2 Q52R and L164P mutants were constructed. Inside/out patch clamp electrophysiology on transiently transfected HEK293T cells was performed for establishing drug-channel inhibition relationships. Results: Molecular Dynamics simulations provided insight in potential channel interaction and shed light on possible mechanisms of action of the tested drug candidates. Effective IKIR6.2/SUR2a inhibition was obtained with the pore-blocker betaxolol (IC50 values 27-37 μM). Levobetaxolol effectively inhibited WT and L164P (IC50 values 22 μM) and Q52R (IC50 55 μM) channels. Of the SUR binding prostaglandin series, travoprost was found to be the best blocker of WT and L164P channels (IC50 2-3 μM), while Q52R inhibition was 15-20% at 10 μM. Conclusion: Our combination of MD and inside-out electrophysiology provides the rationale for drug mediated IKATP inhibition, and will be the basis for 1) screening of additional existing drugs for repurposing to address DEND syndrome, and 2) rationalized medicinal chemistry to improve IKATP inhibitor efficacy and specificity.
Collapse
Affiliation(s)
- Marien J C Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Xingyu Chen
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Alquisiras-Burgos I, Franco-Pérez J, Rubio-Osornio M, Aguilera P. The short form of the SUR1 and its functional implications in the damaged brain. Neural Regen Res 2022; 17:488-496. [PMID: 34380876 PMCID: PMC8504400 DOI: 10.4103/1673-5374.320967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonylurea receptor (SUR) belongs to the adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter family; however, SUR is associated with ion channels and acts as a regulatory subunit determining the opening or closing of the pore. Abcc8 and Abcc9 genes code for the proteins SUR1 and SUR2, respectively. The SUR1 transcript encodes a protein of 1582 amino acids with a mass around 140–177 kDa expressed in the pancreas, brain, heart, and other tissues. It is well known that SUR1 assembles with Kir6.2 and TRPM4 to establish KATP channels and non-selective cation channels, respectively. Abbc8 and 9 are alternatively spliced, and the resulting transcripts encode different isoforms of SUR1 and SUR2, which have been detected by different experimental strategies. Interestingly, the use of binding assays to sulfonylureas and Western blotting has allowed the detection of shorter forms of SUR (~65 kDa). Identity of the SUR1 variants has not been clarified, and some authors have suggested that the shorter forms are unspecific. However, immunoprecipitation assays have shown that SUR2 short forms are part of a functional channel even coexisting with the typical forms of the receptor in the heart. This evidence confirms that the structure of the short forms of the SURs is fully functional and does not lose the ability to interact with the channels. Since structural changes in short forms of SUR modify its affinity to ATP, regulation of its expression might represent an advantage in pathologies where ATP concentrations decrease and a therapeutic target to induce neuroprotection. Remarkably, the expression of SUR1 variants might be induced by conditions associated to the decrease of energetic substrates in the brain (e.g. during stroke and epilepsy). In this review, we want to contribute to the knowledge of SUR1 complexity by analyzing evidence that shows the existence of short SUR1 variants and its possible implications in brain function.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Javier Franco-Pérez
- Laboratorio de Formación Reticular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Moisés Rubio-Osornio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", CDMX, Mexico
| |
Collapse
|
11
|
Kim J, Park JH, Shah K, Mitchell SJ, Cho K, Hoe HS. The Anti-diabetic Drug Gliquidone Modulates Lipopolysaccharide-Mediated Microglial Neuroinflammatory Responses by Inhibiting the NLRP3 Inflammasome. Front Aging Neurosci 2021; 13:754123. [PMID: 34776934 PMCID: PMC8587901 DOI: 10.3389/fnagi.2021.754123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
The sulfonylurea drug gliquidone is FDA approved for the treatment of type 2 diabetes. Binding of gliquidone to ATP-sensitive potassium channels (SUR1, Kir6 subunit) in pancreatic β-cells increases insulin release to regulate blood glucose levels. Diabetes has been associated with increased levels of neuroinflammation, and therefore the potential effects of gliquidone on micro- and astroglial neuroinflammatory responses in the brain are of interest. Here, we found that gliquidone suppressed LPS-mediated microgliosis, microglial hypertrophy, and proinflammatory cytokine COX-2 and IL-6 levels in wild-type mice, with smaller effects on astrogliosis. Importantly, gliquidone downregulated the LPS-induced microglial NLRP3 inflammasome and peripheral inflammation in wild-type mice. An investigation of the molecular mechanism of the effects of gliquidone on LPS-stimulated proinflammatory responses showed that in BV2 microglial cells, gliquidone significantly decreased LPS-induced proinflammatory cytokine levels and inhibited ERK/STAT3/NF-κB phosphorylation by altering NLRP3 inflammasome activation. In primary astrocytes, gliquidone selectively affected LPS-mediated proinflammatory cytokine expression and decreased STAT3/NF-κB signaling in an NLRP3-independent manner. These results indicate that gliquidone differentially modulates LPS-induced microglial and astroglial neuroinflammation in BV2 microglial cells, primary astrocytes, and a model of neuroinflammatory disease.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Keshvi Shah
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Scott John Mitchell
- UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kwangwook Cho
- UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
12
|
Wangnoo S, Shunmugavelu M, Reddy SVB, Negalur V, Godbole S, Dhandhania VK, Krishna N, Gaurav K. Role of Gliclazide in safely navigating type 2 diabetes mellitus patients towards euglycemia: Expert opinion from India. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
14
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
15
|
Yu M, Li X, Jin H, Chen L, Wang N, Wang H, Cao Y, Sui X, Gao X, Yang H, Wang W. Bioequivalence of a Generic Nateglinide Formulation in Healthy Chinese Volunteers under Fasting and Fed Conditions: A Randomized, Open-Label, Double-Cycle, Double-Crossover Study. Pharmacology 2021; 106:418-425. [PMID: 33866315 DOI: 10.1159/000512851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Nateglinide or N-(trans-4-isopropylcyclohexyl-1-carbonyl)-D-phenylalanine is a drug with a rapid hypoglycemic effect that is mainly used in the treatment of type 2 diabetes. Very few studies have assessed bioequivalence based on feeding status. This study aimed to assess the pharmacokinetic bioequivalence and safety of nateglinide-containing tablets (0.12 g) in healthy Chinese volunteers under fasting and fed conditions. METHODS The studies were performed in 2017-2018 in the Phase I Clinical Trial Ward of the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China. Eligible Chinese volunteers received a single 0.12-g dose of the test or reference formulation, followed by a 7-day washout period and administration of the alternate formulation. Blood samples were collected at various time intervals, and plasma nateglinide concentrations were analyzed by liquid chromatography-tandem mass spectrometry. Then, the adverse events, laboratory test results, vital signs, and physical exam findings were compared between the 2 groups. RESULTS The ratios of the geometric means of Cmax, AUC0-t, and AUC0-inf of the tested to reference preparations under fasting conditions were 105.03% (90% confidence interval [CI]: 99.53-110.83%), 104.02% (90% CI: 101.37-106.74%), and 104.04% (90% CI: 101.38-106.77%), respectively. The same ratios under fed conditions were 96.55% (90% CI: 85.80-108.65%), 103.08% (90% CI: 100.07-106.18%), and 103.07% (90% CI: 100.21-106.01%), respectively. The 90% CI values for Cmax, AUC0-t, and AUC0-inf fell within the accepted range of bioequivalence (80.00-125.0%). Common adverse events included hypoglycemia, heart rate increase, palpitation, sweating, dizziness, and diarrhea. CONCLUSIONS The test formulation (0.12 g) met the CFDA's regulatory definition for bioequivalence to the reference formulation. Both formulations were well tolerated by healthy Chinese subjects. TRIAL REGISTRATION This trial has been registered in the Chinese Clinical trial registry (ChiCTR2000030694), March 10, 2020.
Collapse
Affiliation(s)
- Ming Yu
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaobin Li
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Hao Jin
- Medical room, Jiangsu Deyuan Pharmaceutical Co., Ltd, Lianyungang, China
| | - Lu Chen
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Nan Wang
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Huawei Wang
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Ying Cao
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Sui
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Xue Gao
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| | - Hanyue Yang
- Jiangsu Deyuan Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wenping Wang
- Phase I clinical trial ward, GCP center, Affiliated Hospital of Liaoning, University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
16
|
Drzazga A, Cichońska E, Koziołkiewicz M, Gendaszewska-Darmach E. Formation of βTC3 and MIN6 Pseudoislets Changes the Expression Pattern of Gpr40, Gpr55, and Gpr119 Receptors and Improves Lysophosphatidylcholines-Potentiated Glucose-Stimulated Insulin Secretion. Cells 2020; 9:E2062. [PMID: 32917053 PMCID: PMC7565006 DOI: 10.3390/cells9092062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The impaired spatial arrangement and connections between cells creating islets of Langerhans as well as altered expression of G protein-coupled receptors (GPCRs) often lead to dysfunction of insulin-secreting pancreatic β cells and can significantly contribute to the development of diabetes. Differences in glucose-stimulated insulin secretion (GSIS) are noticeable not only in diabetic individuals but also in model pancreatic β cells, e.g., βTC3 and MIN6 β cell lines with impaired and normal insulin secretion, respectively. Now, we compare the ability of GPCR agonists (lysophosphatidylcholines bearing fatty acid chains of different lengths) to potentiate GSIS in βTC3 and MIN6 β cell models, cultured as adherent monolayers and in a form of pseudoislets (PIs) with pancreatic MS1 endothelial cells. Our aim was also to investigate differences in expression of the GPCRs responsive to LPCs in these experimental systems. Aggregation of β cells into islet-like structures greatly enhanced the expression of Gpr40, Gpr55, and Gpr119 receptors. In contrast, the co-culture of βTC3 cells with endothelial cells converted the GPCR expression pattern closer to the pattern observed in MIN6 cells. Additionally, the efficiencies of various LPC species in βTC3-MS1 PIs also shifted toward the MIN6 cell model.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (E.C.); (M.K.)
| | | | | | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (E.C.); (M.K.)
| |
Collapse
|
17
|
Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
|
18
|
Muftin NQ, Jubair S. KCNJ11 polymorphism is associated with type 2 diabetes mellitus in Iraqi patients. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Braga AV, Costa SOAM, Rodrigues FF, Melo ISF, Morais MI, Coelho MM, Machado RR. Thiamine, riboflavin, and nicotinamide inhibit paclitaxel-induced allodynia by reducing TNF-α and CXCL-1 in dorsal root ganglia and thalamus and activating ATP-sensitive potassium channels. Inflammopharmacology 2019; 28:201-213. [DOI: 10.1007/s10787-019-00625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
|
21
|
Cyranka M, Veprik A, McKay EJ, van Loon N, Thijsse A, Cotter L, Hare N, Saibudeen A, Lingam S, Pires E, Larraufie P, Reimann F, Gribble F, Stewart M, Bentley E, Lear P, McCullagh J, Cantley J, Cox RD, de Wet H. Abcc5 Knockout Mice Have Lower Fat Mass and Increased Levels of Circulating GLP-1. Obesity (Silver Spring) 2019; 27:1292-1304. [PMID: 31338999 PMCID: PMC6658130 DOI: 10.1002/oby.22521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A previous genome-wide association study linked overexpression of an ATP-binding cassette transporter, ABCC5, in humans with a susceptibility to developing type 2 diabetes with age. Specifically, ABCC5 gene overexpression was shown to be strongly associated with increased visceral fat mass and reduced peripheral insulin sensitivity. Currently, the role of ABCC5 in diabetes and obesity is unknown. This study reports the metabolic phenotyping of a global Abcc5 knockout mouse. METHODS A global Abcc5-/- mouse was generated by CRISPR/Cas9. Fat mass was determined by weekly EchoMRI and fat pads were dissected and weighed at week 18. Glucose homeostasis was ascertained by an oral glucose tolerance test, intraperitoneal glucose tolerance test, and intraperitoneal insulin tolerance test. Energy expenditure and locomotor activity were measured using PhenoMaster cages. Glucagon-like peptide 1 (GLP-1) levels in plasma, primary gut cell cultures, and GLUTag cells were determined by enzyme-linked immunosorbent assay. RESULTS Abcc5-/- mice had decreased fat mass and increased plasma levels of GLP-1, and they were more insulin sensitive and more active. Recombinant overexpression of ABCC5 protein in GLUTag cells decreased GLP-1 release. CONCLUSIONS ABCC5 protein expression levels are inversely related to fat mass and appear to play a role in the regulation of GLP-1 secretion from enteroendocrine cells.
Collapse
Affiliation(s)
- Malgorzata Cyranka
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Anna Veprik
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Eleanor J. McKay
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Nienke van Loon
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Amber Thijsse
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Luke Cotter
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Nisha Hare
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Affan Saibudeen
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Swathi Lingam
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - Pierre Larraufie
- Wellcome Trust‐MRC Institute of Metabolic ScienceAddenbrooke's HospitalCambridgeUK
| | - Frank Reimann
- Wellcome Trust‐MRC Institute of Metabolic ScienceAddenbrooke's HospitalCambridgeUK
| | - Fiona Gribble
- Wellcome Trust‐MRC Institute of Metabolic ScienceAddenbrooke's HospitalCambridgeUK
| | - Michelle Stewart
- MRC Harwell Institute, Genetics of Type 2 DiabetesMammalian Genetics Unit, Harwell CampusOxfordshireUK
| | - Elizabeth Bentley
- MRC Harwell Institute, Genetics of Type 2 DiabetesMammalian Genetics Unit, Harwell CampusOxfordshireUK
| | - Pamela Lear
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - James Cantley
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Roger D. Cox
- MRC Harwell Institute, Genetics of Type 2 DiabetesMammalian Genetics Unit, Harwell CampusOxfordshireUK
| | - Heidi de Wet
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
22
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
23
|
Houtman MJC, Chen X, Qile M, Duran K, van Haaften G, Stary-Weinzinger A, van der Heyden MAG. Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents. J Cell Mol Med 2019; 23:4962-4969. [PMID: 31119887 PMCID: PMC7346732 DOI: 10.1111/jcmm.14329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cantú syndrome (CS) is caused by dominant gain-of-function mutation in ATP-dependent potassium channels. Cellular ATP concentrations regulate potassium current thereby coupling energy status with membrane excitability. No specific pharmacotherapeutic options are available to treat CS but IKATP channels are pharmaceutical targets in type II diabetes or cardiac arrhythmia treatment. We have been suggested that IKATP inhibitors, glibenclamide and HMR1098, normalize CS channels. IKATP in response to Mg-ATP, glibenclamide and HMR1098 were measured by inside-out patch-clamp electrophysiology. Results were interpreted in view of cryo-EM IKATP channel structures. Mg-ATP IC50 values of outward current were increased for D207E (0.71 ± 0.14 mmol/L), S1020P (1.83 ± 0.10), S1054Y (0.95 ± 0.06) and R1154Q (0.75 ± 0.13) channels compared to H60Y (0.14 ± 0.01) and wild-type (0.15 ± 0.01). HMR1098 dose-dependently inhibited S1020P and S1054Y channels in the presence of 0.15 mmol/L Mg-ATP, reaching, at 30 μmol/L, current levels displayed by wild-type and H60Y channels in the presence of 0.15 mmol/L Mg-ATP. Glibenclamide (10 μmol/L) induced similar normalization. S1054Y sensitivity to glibenclamide increases strongly at 0.5 mmol/L Mg-ATP compared to 0.15 mmol/L, in contrast to D207E and S1020P channels. Experimental findings agree with structural considerations. We conclude that CS channel activity can be normalized by existing drugs; however, complete normalization can be achieved at supraclinical concentrations only.
Collapse
Affiliation(s)
- Marien J C Houtman
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Muge Qile
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marcel A G van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Sulis PM, Dambrós BF, Mascarello A, dos Santos ARS, Yunes RA, Nunes RJ, Frederico MJS, Barreto Silva FRM. Sulfonyl(thio)urea derivative induction of insulin secretion is mediated by potassium, calcium, and sodium channel signal transduction. J Cell Physiol 2018; 234:10138-10147. [DOI: 10.1002/jcp.27680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Paola Miranda Sulis
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Betina Fernanda Dambrós
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Alessandra Mascarello
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Adair Roberto Soares dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Rosendo Augusto Yunes
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Ricardo José Nunes
- Departamento de Química, Centro de Ciências Físicas e Matemáticas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Campus Universitário Florianópolis Brazil
| |
Collapse
|
25
|
Somatostatin promotes glucose generation of Ca2+oscillations in pancreatic islets both in the absence and presence of tolbutamide. Cell Calcium 2018; 74:35-42. [DOI: 10.1016/j.ceca.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022]
|
26
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
27
|
Ordelheide AM, Hrabě de Angelis M, Häring HU, Staiger H. Pharmacogenetics of oral antidiabetic therapy. Pharmacogenomics 2018; 19:577-587. [PMID: 29580198 DOI: 10.2217/pgs-2017-0195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes prevalence is still on the rise worldwide. Antidiabetic drugs are widely prescribed to patients with Type 2 diabetes. Most patients start with metformin which is mostly well tolerated. However, a high percentage of patients fail to achieve glycemic control. The effectiveness of metformin as well as most other antidiabetic drugs depends among other factors on interindividual genetic differences that are up to now ignored in the treatment of Type 2 diabetes. Interestingly, many genes influencing the effectiveness of antidiabetic drugs are Type 2 diabetes risk genes making matters worse. Here, we shed light on these interindividual genetic differences.
Collapse
Affiliation(s)
- Anna-Maria Ordelheide
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Chair for Experimental Genetics, Technical University Munich, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology & Clinical Chemistry, University Hospital Tübingen, Germany.,Interfaculty Center for Pharmacogenomics & PharmaResearch at the Eberhard Karls University Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Center for Pharmacogenomics & PharmaResearch at the Eberhard Karls University Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy & Biochemistry, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
28
|
Misunderstandings and controversies about the insulin-secreting properties of antidiabetic sulfonylureas. Biochimie 2017; 143:3-9. [DOI: 10.1016/j.biochi.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|
29
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
30
|
Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, Shyng SL. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife 2017; 6. [PMID: 28092267 PMCID: PMC5344670 DOI: 10.7554/elife.24149] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic β-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6 Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity. DOI:http://dx.doi.org/10.7554/eLife.24149.001 The hormone insulin reduces blood sugar levels by encouraging fat, muscle and other body cells to take up sugar. When blood sugar levels rise following a meal, cells within the pancreas known as beta cells should release insulin. In people with diabetes, the beta cells fail to release insulin, meaning that the high blood sugar levels are not corrected. When blood sugar levels are high, beta cells generate more energy in the form of ATP molecules. The increased level of ATP causes channels called ATP-sensitive potassium (KATP) channels in the membrane of the cell to close. This triggers a cascade of events that leads to the release of insulin. Some treatments for diabetes alter how the KATP channels work. For example, a widely prescribed medication called glibenclamide (also known as glyburide in the United States) stimulates the release of insulin by preventing the flow of potassium through KATP channels. It remains unknown exactly how ATP and glibenclamide interact with the channel’s molecular structure to stop the flow of potassium ions. KATP channels are made up of two proteins called SUR1 and Kir6.2. To investigate the structure of the KATP channel, Martin et al. purified channels made of the hamster form of the SUR1 protein and the mouse form of Kir6.2, which each closely resemble their human counterparts. The channels were purified in the presence of ATP and glibenclamide and were then rapidly frozen to preserve their structure, which allowed them to be visualized individually using electron microscopy. By analyzing the images taken from many channels, Martin et al. constructed a highly detailed, three-dimensional map of the KATP channel. The structure revealed by this map shows how SUR1 and Kir6.2 work together and provides insight into how ATP and glibenclamide interact with the channel to block the flow of potassium, and hence stimulate the release of insulin. An important next step will be to improve the structure to more clearly identify where ATP and glibenclamide bind to the KATP channel. It will also be important to study the structures of channels that are bound to other regulatory molecules. This will help researchers to fully understand how KATP channels located throughout the body operate under healthy and diseased conditions. This knowledge will aid in the design of more effective drugs to treat several devastating diseases caused by defective KATP channels. DOI:http://dx.doi.org/10.7554/eLife.24149.002
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Emily A Rex
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Qing Xie
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Matthew R Whorton
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - James Z Chen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
31
|
Parkinson FE, Hatch GM. Is There Enhanced Risk of Cerebral Ischemic Stroke by Sulfonylureas in Type 2 Diabetes? Diabetes 2016; 65:2479-81. [PMID: 27555575 DOI: 10.2337/dbi16-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fiona E Parkinson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
32
|
Liu X, Duan P, Hu X, Li R, Zhu Q. Altered KATP Channel Subunits Expression and Vascular Reactivity in Spontaneously Hypertensive Rats With Age. J Cardiovasc Pharmacol 2016; 68:143-9. [PMID: 27035370 PMCID: PMC4979625 DOI: 10.1097/fjc.0000000000000394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels link membrane excitability to metabolic state to regulate a series of biological activities including the vascular tone. However, their ability to influence hypertension is controversial. Here we aim to investigate possible alteration of KATP channel in vascular smooth muscles (VSMs) during hypertension development process. In this study, we used 16-week-old spontaneously hypertensive rats (SHRs), 49-week-old SHRs, and their age-matched Wistar-Kyoto rats to study the expression of VSM KATP subunits at the mRNA and protein level and the function of VSM KATP by observing the relaxation reactivity of isolated aorta rings to KATP modulators. We found that the expression of VSM KATP subunits Kir6.1 and sulfonylurea receptor (SUR2B) decreased during hypertension. Moreover, the expression of SUR2B and Kir6.1 in 49-week-old SHRs decreased much more than that in 16-week-old SHRs. Furthermore, the aorta rings of 49-week-old SHRs showed lower reactivity to diazoxide than 16-week-old SHRs. This study suggests that KATP channels in VSM subunits Kir6.1 and SUR2B contribute to modify the functionality of this channel in hypertension with age.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Animals
- Aorta/metabolism
- Aorta/physiopathology
- Blood Pressure/drug effects
- Diazoxide/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- KATP Channels/genetics
- KATP Channels/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Potassium Channel Blockers/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred SHR
- Rats, Inbred WKY
- Sulfonylurea Receptors/genetics
- Sulfonylurea Receptors/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Peng Duan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Xingxing Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| | - Ruisheng Li
- Research and Technology Service Center, 302 Hospital of PLA, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
33
|
Duda J, Pötschke C, Liss B. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease. J Neurochem 2016; 139 Suppl 1:156-178. [PMID: 26865375 PMCID: PMC5095868 DOI: 10.1111/jnc.13572] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Dopamine‐releasing neurons within the Substantia nigra (SN DA) are particularly vulnerable to degeneration compared to other dopaminergic neurons. The age‐dependent, progressive loss of these neurons is a pathological hallmark of Parkinson's disease (PD), as the resulting loss of striatal dopamine causes its major movement‐related symptoms. SN DA neurons release dopamine from their axonal terminals within the dorsal striatum, and also from their cell bodies and dendrites within the midbrain in a calcium‐ and activity‐dependent manner. Their intrinsically generated and metabolically challenging activity is created and modulated by the orchestrated function of different ion channels and dopamine D2‐autoreceptors. Here, we review increasing evidence that the mechanisms that control activity patterns and calcium homeostasis of SN DA neurons are not only crucial for their dopamine release within a physiological range but also modulate their mitochondrial and lysosomal activity, their metabolic stress levels, and their vulnerability to degeneration in PD. Indeed, impaired calcium homeostasis, lysosomal and mitochondrial dysfunction, and metabolic stress in SN DA neurons represent central converging trigger factors for idiopathic and familial PD. We summarize double‐edged roles of ion channels, activity patterns, calcium homeostasis, and related feedback/feed‐forward signaling mechanisms in SN DA neurons for maintaining and modulating their physiological function, but also for contributing to their vulnerability in PD‐paradigms. We focus on the emerging roles of maintained neuronal activity and calcium homeostasis within a physiological bandwidth, and its modulation by PD‐triggers, as well as on bidirectional functions of voltage‐gated L‐type calcium channels and metabolically gated ATP‐sensitive potassium (K‐ATP) channels, and their probable interplay in health and PD.
We propose that SN DA neurons possess several feedback and feed‐forward mechanisms to protect and adapt their activity‐pattern and calcium‐homeostasis within a physiological bandwidth, and that PD‐trigger factors can narrow this bandwidth. We summarize roles of ion channels in this view, and findings documenting that both, reduced as well as elevated activity and associated calcium‐levels can trigger SN DA degeneration.
This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Johanna Duda
- Department of Applied Physiology, Ulm University, Ulm, Germany
| | | | - Birgit Liss
- Department of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
34
|
Abstract
In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters.
Collapse
|