1
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Chen Y, Wu W, Jin C, Cui J, Diao Y, Wang R, Xu R, Yao Z, Li X. Integrating Single-Cell RNA-Seq and Bulk RNA-Seq Data to Explore the Key Role of Fatty Acid Metabolism in Breast Cancer. Int J Mol Sci 2023; 24:13209. [PMID: 37686016 PMCID: PMC10487665 DOI: 10.3390/ijms241713209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer immune escape is associated with the metabolic reprogramming of the various infiltrating cells in the tumor microenvironment (TME), and combining metabolic targets with immunotherapy shows great promise for improving clinical outcomes. Among all metabolic processes, lipid metabolism, especially fatty acid metabolism (FAM), plays a major role in cancer cell survival, migration, and proliferation. However, the mechanisms and functions of FAM in the tumor immune microenvironment remain poorly understood. We screened 309 fatty acid metabolism-related genes (FMGs) for differential expression, identifying 121 differentially expressed genes. Univariate Cox regression models in The Cancer Genome Atlas (TCGA) database were then utilized to identify the 15 FMGs associated with overall survival. We systematically evaluated the correlation between FMGs' modification patterns and the TME, prognosis, and immunotherapy. The FMGsScore was constructed to quantify the FMG modification patterns using principal component analysis. Three clusters based on FMGs were demonstrated in breast cancer, with three patterns of distinct immune cell infiltration and biological behavior. An FMGsScore signature was constructed to reveal that patients with a low FMGsScore had higher immune checkpoint expression, higher immune checkpoint inhibitor (ICI) scores, increased immune microenvironment infiltration, better survival advantage, and were more sensitive to immunotherapy than those with a high FMGsScore. Finally, the expression and function of the signature key gene NDUFAB1 were examined by in vitro experiments. This study significantly demonstrates the substantial impact of FMGs on the immune microenvironment of breast cancer, and that FMGsScores can be used to guide the prediction of immunotherapy efficacy in breast cancer patients. In vitro experiments, knockdown of the NDUFAB1 gene resulted in reduced proliferation and migration of MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaofeng Li
- Department of Epidemiology and Health Statistics, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
3
|
Szatmári P, Ducza E. Changes in Expression and Function of Placental and Intestinal P-gp and BCRP Transporters during Pregnancy. Int J Mol Sci 2023; 24:13089. [PMID: 37685897 PMCID: PMC10487423 DOI: 10.3390/ijms241713089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
ABC transporters are ubiquitous in the human body and are responsible for the efflux of drugs. They are present in the placenta, intestine, liver and kidney, which are the major organs that can affect the pharmacokinetic and pharmacologic properties of drugs. P-gp and BCRP transporters are the best-characterized transporters in the ABC superfamily, and they have a pivotal role in the barrier tissues due to their efflux mechanism. Moreover, during pregnancy, drug efflux is even more important because of the developing fetus. Recent studies have shown that placental and intestinal ABC transporters have great importance in drug absorption and distribution. Placental and intestinal P-gp and BCRP show gestational-age-dependent expression changes, which determine the drug concentration both in the mother and the fetus during pregnancy. They may have an impact on the efficacy of antibiotic, antiviral, antihistamine, antiemetic and oral antidiabetic therapies. In this review, we would like to provide an overview of the pharmacokinetically relevant expression alterations of placental and intestinal ABC transporters during pregnancy.
Collapse
Affiliation(s)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary;
| |
Collapse
|
4
|
Ghasemi M, Rahgozar M, Kavousi K. Complex Disease Genes Identification Using a Heterogeneous Network Embedding Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:875-882. [PMID: 35594221 DOI: 10.1109/tcbb.2022.3175598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Finding the causal relation between a gene and a disease using experimental approaches is a time-consuming and expensive task. However, computational approaches are cost-efficient methods for identifying candidate genes. This article proposes a new heterogeneous biological network embedding approach, named NetEM, to identify disease-associated genes. To evaluate NetEM, we examine six complex diseases, including peroxisomal disorders, sarcoma, grave's disease, lysosomal storage diseases, blood coagulation disorders, and cardiomyopathy hypertrophic. Our experiments indicate that NetEM outperforms three well-known state-of-the-art algorithms: Cardigan, DIAMOnD and GeneWanderer, in identifying disease genes. We examine TCGA data of Invasive Lobular Breast Cancer and CPTAC data of human glioblastoma as other case studies to evaluate NetEM using real data. This evaluation also indicates the validity of the method. The source codes of NetEM and data are available in the supplementary of this article.
Collapse
|
5
|
Gupta AO, Raymond G, Pierpont RI, Kemp S, McIvor RS, Rayannavar A, Miller B, Lund TC, Orchard PJ. Treatment of cerebral adrenoleukodystrophy: allogeneic transplantation and lentiviral gene therapy. Expert Opin Biol Ther 2022; 22:1151-1162. [DOI: 10.1080/14712598.2022.2124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Gerald Raymond
- Division of Neurogenetics and The Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rene I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC - University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands
| | - R Scott McIvor
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota
| | | | - Bradley Miller
- Division of Pediatric Endocrinology, University of Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapies, University of Minnesota
| |
Collapse
|
6
|
Genetic Cross-Talk between Oral Squamous Cell Carcinoma and Type 2 Diabetes: The Potential Role of Immunity. DISEASE MARKERS 2022; 2022:6389906. [PMID: 35634436 PMCID: PMC9135565 DOI: 10.1155/2022/6389906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Background. This bioinformatics study was aimed at evaluating type 2 diabetes (T2D) and oral squamous cell carcinoma (OSCC) with regard to related immune cells and prognosis. Methods. We downloaded the data on OSCC from TCGA and for T2D from GEO database. Differentially expressed genes were analyzed, i.e., for OSCC genes with
,
; and for T2D, genes with
,
. The intersected genes between OSCC and T2D were cross-talk genes. The expression values of immune-related genes in case samples in OSCC and T2D were assessed and underwent multivariate and univariate analysis (Cox-PH model). The intersection between the immune genes and cross-talk genes was taken and further analyzed by recursive feature elimination (RFE), survival analysis, and ROC analysis. Results. 1008 cross-talk genes were acquired, including 28 common upregulated, 440 common downregulated, and 540 differently regulated DEGs. We extracted the gene expression value of 782 immune-related genes, of which seven increased immune cells were obtained. From the results, plasmacytoid dendritic cells and effector memory CD8 T cells were highly negatively correlated in both OSCC and T2D. After estimating a low- and high-risk model for survival, we found that activated dendritic cell was significantly different between high and low groups (
), followed by plasmacytoid dendritic cell. We integrated DE_Immune genes set 1 and DE_Immune genes set 2 and eight key immune-related cross-talk genes (C1QC, ABCD1, NOS2, PDIA4, IL1RN, ALOX15, CSE1L, and PSMC4) were evaluated. After ROC analysis, we obtained that ABCD1, C1QC, CSE1L, and PSMC4 had higher classification and prediction effects on OSCC and T2D. Conclusion. This study revealed a close relationship between T2D and OSCC. Thereby, plasmacytoid dendritic cell and activated dendritic cell-related genes were associated with the survival of T2D-related OSCC, while ABCD1, C1QC, CSE1L, and PSMC4 were the most important immune-related cross-talk genes.
Collapse
|
7
|
Wang R, Qin Y, Li X. Structural basis of acyl-CoA transport across the peroxisomal membrane by human ABCD1. Cell Res 2022; 32:214-217. [PMID: 34754073 PMCID: PMC8807786 DOI: 10.1038/s41422-021-00585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Affiliation(s)
- Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu Qin
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Cholico GN, Fling RR, Zacharewski NA, Fader KA, Nault R, Zacharewski TR. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci Rep 2021; 11:15689. [PMID: 34344994 PMCID: PMC8333094 DOI: 10.1038/s41598-021-95214-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing β-oxidation. In this study, the mechanism of β-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete β-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).
Collapse
Affiliation(s)
- Giovan N Cholico
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
10
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Al‐Majdoub ZM, Achour B, Couto N, Howard M, Elmorsi Y, Scotcher D, Alrubia S, El‐Khateeb E, Vasilogianni A, Alohali N, Neuhoff S, Schmitt L, Rostami‐Hodjegan A, Barber J. Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Lett 2020; 594:4134-4150. [PMID: 33128234 PMCID: PMC7756589 DOI: 10.1002/1873-3468.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.
Collapse
Affiliation(s)
- Zubida M. Al‐Majdoub
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Narciso Couto
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Martyn Howard
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Yasmine Elmorsi
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Eman El‐Khateeb
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | | | - Noura Alohali
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Practice DepartmentCollege of PharmacyPrincess Noura Bint Abdul Rahman UniversityRiyadhSaudi Arabia
| | | | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine University DüsseldorfGermany
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Simcyp DivisionCertara UK LtdSheffieldUK
| | - Jill Barber
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| |
Collapse
|
12
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
13
|
Bioinformatic Profiling Identifies a Fatty Acid Metabolism-Related Gene Risk Signature for Malignancy, Prognosis, and Immune Phenotype of Glioma. DISEASE MARKERS 2019; 2019:3917040. [PMID: 31885736 PMCID: PMC6914924 DOI: 10.1155/2019/3917040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/03/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells commonly have metabolic abnormalities. Aside from altered glucose and amino acid metabolism, cancers cells often share the attribute of fatty acid metabolic alterations. However, fatty acid metabolism related-gene set has not been systematically investigated in gliomas. Here, we provide a bioinformatic profiling of the fatty acid catabolic metabolism-related gene risk signature for the malignancy, prognosis and immune phenotype of glioma. In this study, a cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as validating set. After confirmed that fatty acid catabolic metabolism-related gene set could distinguish clinicopathological features of gliomas, we used LASSO regression analysis to develop a fatty-acid metabolism-related gene risk signature for glioma. This 8-gene risk signature was found to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that this 8-gene risk signature had high prognostic values in patients with gliomas. Correlation analysis showed that our risk signature was closely associated with the immune cells involved in the microenvironment of glioma. Furthermore, the fatty acid catabolic metabolism-related gene risk signature was also found to be significantly correlated with immune checkpoint members B7-H3 and Tim-3. In summary, we have identified a fatty acid metabolism-related gene risk signature for malignancy, prognosis, and immune phenotype of glioma; and our study might contribute to better understanding of metabolic pathways and further developing of novel therapeutic approaches for gliomas.
Collapse
|
14
|
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett 2019; 18:2220-2231. [PMID: 31452723 PMCID: PMC6676536 DOI: 10.3892/ol.2019.10541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) remains one of the major causes of suboptimal outcome following therapy in head and neck squamous cell carcinoma (HNSCC). ATP-binding cassette (ABC) transporters are overexpressed in HNSCC, which contributes to the limited effect of chemotherapeutic treatment. In addition to their named function, tyrosine kinase inhibitors (TKIs) have been revealed to impact on ABC transporter activity and expression. Therefore, the present study aimed to investigate the effects of combination therapy using different TKIs combined with cisplatin. Reverse transcription-quantitative PCR was used to characterize ABC transporter and receptor expression in 5 HNSCC cell lines treated with 3 different TKIs (pazopanib, dovitinib, nintedanib) and cisplatin. Treatment efficacy was analyzed using a crystal violet staining assay. Analysis of ABC transporter (ABCB1, ABCC1 and ABCG2) genetic alterations was performed using The Cancer Genome Atlas. Statistical analysis was conducted to evaluate the effects of mono- and combination treatment. With the exception of ABCB1, all of the investigated ABC transporters were expressed in each cell line. The additive effects of TKI + cisplatin combination treatment were observed for pazopanib in three cell lines, nintedanib in four cell lines, and were not observed for dovitinib in any of the cell lines investigated. The combination of multi-kinase inhibitors and conventional chemotherapy in HNSCC may strengthen the use of current therapeutic strategies; nintedanib appears to be the most suitable TKI for combination therapy. Further efforts are required to classify TKI efficacy with regard to cisplatin resistance.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Francesco De Donno
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Marie Luise Knierim
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Valentin Steinacker
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
15
|
Vrana D, Hlavac V, Brynychova V, Vaclavikova R, Neoral C, Vrba J, Aujesky R, Matzenauer M, Melichar B, Soucek P. ABC Transporters and Their Role in the Neoadjuvant Treatment of Esophageal Cancer. Int J Mol Sci 2018; 19:E868. [PMID: 29543757 PMCID: PMC5877729 DOI: 10.3390/ijms19030868] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.
Collapse
Affiliation(s)
- David Vrana
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Veronika Brynychova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Radka Vaclavikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Cestmir Neoral
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Jiri Vrba
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Rene Aujesky
- Department of Surgery, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Marcel Matzenauer
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 976/3, 77515 Olomouc, Czech Republic.
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Department of Surgery, Faculty Hospital Pilsen, Alej Svobody 80, 30460 Pilsen, Czech Republic.
| |
Collapse
|
16
|
Soucek P, Hlavac V, Elsnerova K, Vaclavikova R, Kozevnikovova R, Raus K. Whole exome sequencing analysis of ABCC8 and ABCD2 genes associating with clinical course of breast carcinoma. Physiol Res 2016; 64:S549-57. [PMID: 26681085 DOI: 10.33549/physiolres.933212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to introduce methods for exome sequencing of two ATP-binding cassette (ABC) transporters ABCC8 and ABCD2 recently suggested to play a putative role in breast cancer progression and prognosis of patients. We performed next generation sequencing targeted at analysis of all exons in ABCC8 and ABCD2 genes and surrounding noncoding sequences in blood DNA samples from 24 patients with breast cancer. The revealed alterations were characterized by in silico tools. We then compared the most frequent functionally relevant polymorphism rs757110 in ABCC8 with clinical data of patients. In total, the study identified 113 genetic alterations (>70 % novel ones) in both genes. Of these alterations, 83 were noncoding, 13 synonymous, 10 frameshifts and 7 were missense alterations. Four in silico programs predicted pathogenicity of two polymorphisms and four newly identified alterations. Rs757110 polymorphism in ABCC8 did not significantly associate with clinical data of the patients. In conclusion, exome sequencing identified several functionally relevant alterations in ABCC8 and ABCD2 genes that may further be used for a larger follow-up study aiming to assess their clinical significance.
Collapse
Affiliation(s)
- P Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.
| | | | | | | | | | | |
Collapse
|
17
|
Liu X, Li S, Peng W, Feng S, Feng J, Mahboob S, Al-Ghanim KA, Xu P. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio). PLoS One 2016; 11:e0153246. [PMID: 27058731 PMCID: PMC4825979 DOI: 10.1371/journal.pone.0153246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/27/2016] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.
Collapse
Affiliation(s)
- Xiang Liu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- Department of Aquaculture, College of Animal Sciences, Shanxi Agriculture University, Taigu, Shanxi, China
| | - Shangqi Li
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Wenzhu Peng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Shuaisheng Feng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jianxin Feng
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- College of Ocean & Earth Science, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
18
|
Pandolfi F, Altamura S, Frosali S, Conti P. Key Role of DAMP in Inflammation, Cancer, and Tissue Repair. Clin Ther 2016; 38:1017-28. [PMID: 27021609 DOI: 10.1016/j.clinthera.2016.02.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively. METHODS We conducted a MEDLINE search for articles pertaining to the various issues related to DAMP, and we discuss the most relevant articles especially (ie, not only those published in journals with a higher impact factor). FINDINGS A cluster of remarkable articles on DAMP have appeared in the literature in recent years. Regarding inflammation, several strategies have been proposed to target HMGB1, from antibodies to recombinant box A, which interacts with RAGE, competing with the full molecule. In tissue repair, it was reported that the overexpression of HMGB1 or the administration of exogenous HMGB1 significantly increased the number of vessels and promoted recovery in skin-wound, ischemic injury. IMPLICATIONS Due to the bivalent nature of DAMP, it is often difficult to explain the relative role of DAMP in inflammation versus its role in tissue repair. However, this point is crucial as DAMP-related treatments move into clinical practice.
Collapse
Affiliation(s)
- Franco Pandolfi
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy.
| | - Simona Altamura
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Simona Frosali
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Pio Conti
- Postgraduate Medical School, Chieti University, Chieti, Italy
| |
Collapse
|
19
|
Abstract
In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters.
Collapse
|