1
|
Wang Z, Fu X, Diao W, Wu Y, Rovira C, Wang B. Theoretical study of the in situ formation of H 2O 2 by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant. Chem Sci 2025:d4sc06906d. [PMID: 39829981 PMCID: PMC11740911 DOI: 10.1039/d4sc06906d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are a unique group of monocopper enzymes that exhibit remarkable ability to catalyze the oxidative cleavage of recalcitrant carbohydrate substrates, such as cellulose and chitin, by utilizing O2 or H2O2 as the oxygen source. One of the key challenges in understanding the catalytic mechanism of LPMOs lies in deciphering how they activate dioxygen using diverse reductants. To shed light on this intricate process, we conducted in-depth investigations using quantum mechanical/molecular mechanical (QM/MM) metadynamics simulations, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. Specifically, our study focuses on elucidating the in situ formation mechanism of H2O2 by LPMOs in the presence of cellobiose dehydrogenase (CDH), a proposed natural reductant of LPMOs. Our findings reveal a proton-coupled electron transfer (PCET) process in generating the Cu(ii)-hydroperoxide intermediate from the Cu(ii)-superoxide intermediate. Subsequently, a direct proton transfer to the proximal oxygen of Cu(ii)-hydroperoxide results in the formation of H2O2 and LPMO-Cu(ii). Notably, this mechanism significantly differs from the LPMO/ascorbate system, where two hydrogen atom transfer reactions are responsible for generating H2O2 and LPMO-Cu(i). Based on our simulations, we propose a catalytic mechanism of LPMO in the presence of CDH and the polysaccharide substrate, which involves competitive binding of the substrate and CDH to the reduced LPMOs. While the CDH-bound LPMOs can activate dioxygen to generate H2O2, the substrate-bound LPMOs can employ the H2O2 generated from the LPMO/CDH system to perform the peroxygenase reactions of the polysaccharide substrate. Our work not only provides valuable insights into the reductant-dependent mechanisms of O2 activation in LPMOs but also holds implications for understanding the functions of these enzymes in their natural environment.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Xiaodi Fu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Wenwen Diao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325000 China
| | - Yao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys, 23 08010 Barcelona Spain
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
2
|
Sagar K, Kim M, Wu T, Zhang S, Bominaar EL, Siegler MA, Hendrich M, Garcia-Bosch I. Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex. Eur J Inorg Chem 2024; 27:e202300774. [PMID: 39803332 PMCID: PMC11719791 DOI: 10.1002/ejic.202300774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 01/16/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O2 or H2O2 as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O2 to H2O2 (oxidase) and H2O2 to H2O (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O2 and H2O2 reduction. Herein, we utilize a podal ligand containing H-bond/proton donors (LH2) to analyze the reactivity of mononuclear Cu species towards O2 and H2O2. [(LH2)CuI]1+ (1), [(LH2)CuII]2+ (2), [(LH-)CuII]1+ (3), [(LH2)CuII(OH)]1+ (4), and [(LH2)CuII(OOH)]1+ (5) were synthesized and characterized by structural and spectroscopic means. Complex 1 reacts with O2 to produce 5, which releases H2O2 to generate 3, suggesting that O2 is used by LPMOs to generate H2O2. The reaction of 1 with H2O2 produces 4 and hydroxyl radical, which reacts with C-H substrates in a Fenton-like fashion. Complex 3, which generate 1 via a reversible protonation/reduction, binds H2O and H2O2 to produce 4 and 5, respectively, a mechanism that could be used by LPMOs to control oxidative reactivity.
Collapse
Affiliation(s)
- Kundan Sagar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tong Wu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shuming Zhang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Ayuso-Fernández I, Emrich-Mills TZ, Haak J, Golten O, Hall KR, Schwaiger L, Moe TS, Stepnov AA, Ludwig R, Cutsail Iii GE, Sørlie M, Kjendseth Røhr Å, Eijsink VGH. Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO). Nat Commun 2024; 15:3975. [PMID: 38729930 PMCID: PMC11087555 DOI: 10.1038/s41467-024-48245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| | - Tom Z Emrich-Mills
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Kelsi R Hall
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Lorenz Schwaiger
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - Trond S Moe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - George E Cutsail Iii
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
4
|
Isaksen I, Jana S, Payne CM, Bissaro B, Røhr ÅK. The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent. Biophys J 2024; 123:1139-1151. [PMID: 38571309 PMCID: PMC11079946 DOI: 10.1016/j.bpj.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.
Collapse
Affiliation(s)
- Ingvild Isaksen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Suvamay Jana
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway; INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France.
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
5
|
Sharma G, Kaur B, Singh V, Raheja Y, Falco MD, Tsang A, Chadha BS. Genome and secretome insights: unravelling the lignocellulolytic potential of Myceliophthora verrucosa for enhanced hydrolysis of lignocellulosic biomass. Arch Microbiol 2024; 206:236. [PMID: 38676717 DOI: 10.1007/s00203-024-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
6
|
Franzén CJ, Olsson L, Johansen KS. The lignocellulosic biorefinery concept is sound: a commentary on Zhao et al. Trends Biotechnol 2024; 42:395-396. [PMID: 38129215 DOI: 10.1016/j.tibtech.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
In the opinion paper by Zhao et al. 'Making the biochemical conversion of lignocellulose more robust', the authors claim that '…lignocellulose biorefinery is conceptually wrong'. In response, we argue that this claim itself has already been proved wrong by several companies.
Collapse
Affiliation(s)
- Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Katja Salomon Johansen
- Department of Geosciences and Natural Resource Management, Copenhagen University, DK-1958 Frederiksberg, Denmark.
| |
Collapse
|
7
|
Tamburrini KC, Kodama S, Grisel S, Haon M, Nishiuchi T, Bissaro B, Kubo Y, Longhi S, Berrin JG. The disordered C-terminal tail of fungal LPMOs from phytopathogens mediates protein dimerization and impacts plant penetration. Proc Natl Acad Sci U S A 2024; 121:e2319998121. [PMID: 38513096 PMCID: PMC10990093 DOI: 10.1073/pnas.2319998121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.
Collapse
Affiliation(s)
- Ketty C. Tamburrini
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Sayo Kodama
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sacha Grisel
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Mireille Haon
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Aix Marseille Université, 3PE Platform, Marseille13009, France
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa920-1164, Japan
| | - Bastien Bissaro
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| | - Yasuyuki Kubo
- Faculty of Agriculture, Setsunan University, Osaka573-0101, Japan
| | - Sonia Longhi
- CNRS Aix Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille13009, France
| | - Jean-Guy Berrin
- Institut National de la Recherche pour l’Agriculture, l’Alimentation et l'Environnement, Biodiversité et Biotechnologie Fongiques, UMR 1163, Aix Marseille Université, Marseille13009, France
| |
Collapse
|
8
|
Wieduwilt EK, Lo Leggio L, Hedegård ED. A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions. Dalton Trans 2024; 53:5796-5807. [PMID: 38445349 DOI: 10.1039/d3dt04275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that oxidatively cleave the strong C-H bonds in recalcitrant polysaccharide substrates, thereby playing a crucial role in biomass degradation. Recently, LPMOs have also been shown to be important for several pathogens. It is well established that the Cu(II) resting state of LPMOs is inactive, and the electronic structure of the active site needs to be altered to transform the enzyme into an active form. Whether this transformation occurs due to substrate binding or due to a unique priming reduction has remained speculative. Starting from four different crystal structures of the LPMO LsAA9A with well-defined oxidation states, we use a frontier molecular orbital approach to elucidate the initial steps of the LPMO reaction. We give an explanation for the requirement of the unique priming reduction and analyse electronic structure changes upon substrate binding. We further investigate how the presence of the substrate could facilitate an electron transfer from the copper active site to an H2O2 co-substrate. Our findings could help to control experimental LPMO reactions.
Collapse
Affiliation(s)
- Erna Katharina Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
9
|
Hagemann MM, Wieduwilt EK, Hedegård ED. Understanding the initial events of the oxidative damage and protection mechanisms of the AA9 lytic polysaccharide monooxygenase family. Chem Sci 2024; 15:2558-2570. [PMID: 38362420 PMCID: PMC10866358 DOI: 10.1039/d3sc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024] Open
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a new class of oxidoreductases that boosts polysaccharide degradation employing a copper active site. This boost may facilitate the cost-efficient production of biofuels and high-value chemicals from polysaccharides such as lignocellulose. Unfortunately, self-oxidation of the active site inactivates LPMOs. Other oxidoreductases employ hole-hopping mechanisms as protection against oxidative damage, but little is generally known about the details of these mechanisms. Herein, we employ highly accurate theoretical models based on density functional theory (DFT) molecular mechanics (MM) hybrids to understand the initial steps in LPMOs' protective measures against self-oxidation; we identify several intermediates recently proposed from experiment, and quantify which are important for protective hole-hopping pathways. Investigations on two different LPMOs show consistently that a tyrosine residue close to copper is crucial for protection: this explains recent experiments, showing that LPMOs without this tyrosine are more susceptible to self-oxidation.
Collapse
Affiliation(s)
- Marlisa M Hagemann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erna K Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erik D Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
10
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
11
|
Gao W, Li T, Zhou H, Ju J, Yin H. Carbohydrate-binding modules enhance H 2O 2 tolerance by promoting lytic polysaccharide monooxygenase active site H 2O 2 consumption. J Biol Chem 2024; 300:105573. [PMID: 38122901 PMCID: PMC10825053 DOI: 10.1016/j.jbc.2023.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) oxidatively depolymerize recalcitrant polysaccharides, which is important for biomass conversion. The catalytic domains of many LPMOs are linked to carbohydrate-binding modules (CBMs) through flexible linkers, but the function of these CBMs in LPMO catalysis is not well understood. In this study, we utilized MtLPMO9L and MtLPMO9G derived from Myceliophthora thermophila to investigate the impact of CBMs on LPMO activity, with particular emphasis on their influence on H2O2 tolerance. Using truncated forms of MtLPMO9G generated by removing the CBM, we found reduced substrate binding affinity and enzymatic activity. Conversely, when the CBM was fused to the C terminus of the single-domain MtLPMO9L to create MtLPMO9L-CBM, we observed a substantial improvement in substrate binding affinity, enzymatic activity, and notably, H2O2 tolerance. Furthermore, molecular dynamics simulations confirmed that the CBM fusion enhances the proximity of the active site to the substrate, thereby promoting multilocal cleavage and impacting the exposure of the copper active site to H2O2. Importantly, the fusion of CBM resulted in more efficient consumption of H2O2 by LPMO, leading to improved enzymatic activity and reduced auto-oxidative damage of the copper active center.
Collapse
Affiliation(s)
- Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiu Ju
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Liu Y, Harnden KA, Van Stappen C, Dikanov SA, Lu Y. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase. Proc Natl Acad Sci U S A 2023; 120:e2308286120. [PMID: 37844252 PMCID: PMC10614608 DOI: 10.1073/pnas.2308286120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023] Open
Abstract
The "Histidine-brace" (His-brace) copper-binding site, composed of Cu(His)2 with a backbone amine, is found in metalloproteins with diverse functions. A primary example is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyze the oxidative depolymerization of polysaccharides, providing not only an energy source for native microorganisms but also a route to more effective industrial biomass conversion. Despite its importance, how the Cu His-brace site performs this unique and challenging oxidative depolymerization reaction remains to be understood. To answer this question, we have designed a biosynthetic model of LPMO by incorporating the Cu His-brace motif into azurin, an electron transfer protein. Spectroscopic studies, including ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance, confirm copper binding at the designed His-brace site. Moreover, the designed protein is catalytically active towards both cellulose and starch, the native substrates of LPMO, generating degraded oligosaccharides with multiturnovers by C1 oxidation. It also performs oxidative cleavage of the model substrate 4-nitrophenyl-D-glucopyranoside, achieving a turnover number ~9% of that of a native LPMO assayed under identical conditions. This work presents a rationally designed artificial metalloenzyme that acts as a structural and functional mimic of LPMO, which provides a promising system for understanding the role of the Cu His-brace site in LPMO activity and potential application in polysaccharide degradation.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Kevin A. Harnden
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
13
|
Østby H, Christensen IA, Hennum K, Várnai A, Buchinger E, Grandal S, Courtade G, Hegnar OA, Aachmann FL, Eijsink VGH. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates. Sci Rep 2023; 13:17373. [PMID: 37833388 PMCID: PMC10575960 DOI: 10.1038/s41598-023-44278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that use O2 or H2O2 to oxidatively cleave glycosidic bonds. LPMOs are prevalent in nature, and the functional variation among these enzymes is a topic of great interest. We present the functional characterization of one of the 22 putative AA9-type LPMOs from the fungus Schizophyllum commune, ScLPMO9A. The enzyme, expressed in Escherichia coli, showed C4-oxidative cleavage of amorphous cellulose and soluble cello-oligosaccharides. Activity on xyloglucan, mixed-linkage β-glucan, and glucomannan was also observed, and product profiles differed compared to the well-studied C4-oxidizing NcLPMO9C from Neurospora crassa. While NcLPMO9C is also active on more crystalline forms of cellulose, ScLPMO9A is not. Differences between the two enzymes were also revealed by nuclear magnetic resonance (NMR) titration studies showing that, in contrast to NcLPMO9C, ScLPMO9A has higher affinity for linear substrates compared to branched substrates. Studies of H2O2-fueled degradation of amorphous cellulose showed that ScLPMO9A catalyzes a fast and specific peroxygenase reaction that is at least two orders of magnitude faster than the apparent monooxygenase reaction. Together, these results show that ScLPMO9A is an efficient LPMO with a broad substrate range, which, rather than acting on cellulose, has evolved to act on amorphous and soluble glucans.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Idd A Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Karen Hennum
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Edith Buchinger
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Siri Grandal
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Gaston Courtade
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
14
|
Escudero-Agudelo J, Martínez-Villalobos J, Arocha-Garza H, Galán-Wong LJ, Avilés-Arnaut H, De la Torre-Zavala S. Systematic bioprospection for cellulolytic actinomycetes in the Chihuahuan Desert: isolation and enzymatic profiling. PeerJ 2023; 11:e16119. [PMID: 37790635 PMCID: PMC10542393 DOI: 10.7717/peerj.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/27/2023] [Indexed: 10/05/2023] Open
Abstract
The quest for microbial cellulases has intensified as a response to global challenges in biofuel production. The efficient deconstruction of lignocellulosic biomass holds promise for generating valuable products in various industries such as food, textile, and detergents. This article presents a systematic bioprospection aimed at isolating actinomycetes with exceptional cellulose deconstruction capabilities. Our methodology explored the biodiverse oligotrophic region of Cuatro Cienegas, Coahuila, within the Chihuahuan Desert. Among the evaluated actinomycetes collection, 78% exhibited cellulolytic activity. Through a meticulous screening process based on enzymatic index evaluation, we identified a highly cellulolytic Streptomyces strain for further investigation. Submerged fermentation of this strain revealed an endoglucanase enzymatic activity of 149 U/mg. Genomic analysis of strain Streptomyces sp. STCH565-A revealed unique configurations of carbohydrate-active enzyme (CAZyme) genes, underscoring its potential for lignocellulosic bioconversion applications. These findings not only highlight the significance of the Chihuahuan Desert as a rich source of cellulolytic microorganisms but also offer insights into the systematic exploration and selection of high-performing cellulolytic microorganisms for application in diverse environmental contexts. In conclusion, our bioprospecting study lays a foundation for harnessing the cellulolytic potential of actinomycetes from the Chihuahuan Desert, with implications for advancing cellulose deconstruction processes in various industries. The findings can serve as a blueprint for future bioprospecting efforts in different regions, facilitating the targeted discovery of microorganisms with exceptional cellulosic deconstruction capabilities.
Collapse
Affiliation(s)
- Janneth Escudero-Agudelo
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Juan Martínez-Villalobos
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hector Arocha-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Luis Jesús Galán-Wong
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
15
|
Kuusk S, Eijsink VGH, Väljamäe P. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. J Biol Chem 2023; 299:105094. [PMID: 37507015 PMCID: PMC10458328 DOI: 10.1016/j.jbc.2023.105094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
16
|
Lim H, Brueggemeyer MT, Transue WJ, Meier KK, Jones SM, Kroll T, Sokaras D, Kelemen B, Hedman B, Hodgson KO, Solomon EI. Kβ X-ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H 2O 2 Activation. J Am Chem Soc 2023; 145:16015-16025. [PMID: 37441786 PMCID: PMC10557184 DOI: 10.1021/jacs.3c04048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Wesley J Transue
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katlyn K Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Bradley Kelemen
- IFF Health and Biosciences, Palo Alto, California 94304, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
Reyre JL, Grisel S, Haon M, Xiang R, Gaillard JC, Armengaud J, Guallar V, Margeot A, Arragain S, Berrin JG, Bissaro B. Insights into peculiar fungal LPMO family members holding a short C-terminal sequence reminiscent of phosphate binding motifs. Sci Rep 2023; 13:11586. [PMID: 37463979 DOI: 10.1038/s41598-023-38617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature. White-rot Polyporales, which are major fungal wood decayers, may possess up to 60 LPMO-encoding genes belonging to the auxiliary activities family 9 (AA9). Yet, the functional relevance of such multiplicity remains to be uncovered. Previous comparative transcriptomic studies of six Polyporales fungi grown on cellulosic substrates had shown the overexpression of numerous AA9-encoding genes, including some holding a C-terminal domain of unknown function ("X282"). Here, after carrying out structural predictions and phylogenetic analyses, we selected and characterized six AA9-X282s with different C-term modularities and atypical features hitherto unreported. Unexpectedly, after screening a large array of conditions, these AA9-X282s showed only weak binding properties to cellulose, and low to no cellulolytic oxidative activity. Strikingly, proteomic analysis revealed the presence of multiple phosphorylated residues at the surface of these AA9-X282s, including a conserved residue next to the copper site. Further analyses focusing on a 9 residues glycine-rich C-term extension suggested that it could hold phosphate-binding properties. Our results question the involvement of these AA9 proteins in the degradation of plant cell wall and open new avenues as to the divergence of function of some AA9 members.
Collapse
Affiliation(s)
- Jean-Lou Reyre
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Sacha Grisel
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Mireille Haon
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France
| | - Ruite Xiang
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, 30200, Bagnols-Sur-Cèze, France
| | - Victor Guallar
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Simon Arragain
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
- INRAE, Aix Marseille University, 3PE Platform, 13009, Marseille, France.
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, 13009, Marseille, France.
| |
Collapse
|
18
|
Batth TS, Simonsen JL, Hernández-Rollán C, Brander S, Morth JP, Johansen KS, Nørholm MHH, Hoof JB, Olsen JV. A seven-transmembrane methyltransferase catalysing N-terminal histidine methylation of lytic polysaccharide monooxygenases. Nat Commun 2023; 14:4202. [PMID: 37452022 PMCID: PMC10349129 DOI: 10.1038/s41467-023-39875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes that help break down lignocellulose, making them highly attractive for improving biomass utilization in industrial biotechnology. The catalytically essential N-terminal histidine (His1) of LPMOs is post-translationally modified by methylation in filamentous fungi to protect them from auto-oxidative inactivation, however, the responsible methyltransferase enzyme is unknown. Using mass-spectrometry-based quantitative proteomics in combination with systematic CRISPR/Cas9 knockout screening in Aspergillus nidulans, we identify the N-terminal histidine methyltransferase (NHMT) encoded by the gene AN4663. Targeted proteomics confirm that NHMT was solely responsible for His1 methylation of LPMOs. NHMT is predicted to encode a unique seven-transmembrane segment anchoring a soluble methyltransferase domain. Co-localization studies show endoplasmic reticulum residence of NHMT and co-expression in the industrial production yeast Komagataella phaffii with LPMOs results in His1 methylation of the LPMOs. This demonstrates the biotechnological potential of recombinant production of proteins and peptides harbouring this specific post-translational modification.
Collapse
Affiliation(s)
- Tanveer S Batth
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark.
| | - Jonas L Simonsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katja S Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jakob B Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Jesper V Olsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Denmark, Copenhagen, Denmark.
| |
Collapse
|
19
|
Chemin M, Kansou K, Cahier K, Grellier M, Grisel S, Novales B, Moreau C, Villares A, Berrin JG, Cathala B. Optimized Lytic Polysaccharide Monooxygenase Action Increases Fiber Accessibility and Fibrillation by Releasing Tension Stress in Cellulose Cotton Fibers. Biomacromolecules 2023. [PMID: 37327397 DOI: 10.1021/acs.biomac.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lytic polysaccharide monooxygenase (LPMO) enzymes have recently shaken up our knowledge of the enzymatic degradation of biopolymers and cellulose in particular. This unique class of metalloenzymes cleaves cellulose and other recalcitrant polysaccharides using an oxidative mechanism. Despite their potential in biomass saccharification and cellulose fibrillation, the detailed mode of action of LPMOs at the surface of cellulose fibers still remains poorly understood and highly challenging to investigate. In this study, we first determined the optimal parameters (temperature, pH, enzyme concentration, and pulp consistency) of LPMO action on the cellulose fibers by analyzing the changes in molar mass distribution of solubilized fibers using high performance size exclusion chromatography (HPSEC). Using an experimental design approach with a fungal LPMO from the AA9 family (PaLPMO9H) and cotton fibers, we revealed a maximum decrease in molar mass at 26.6 °C and pH 5.5, with 1.6% w/w enzyme loading in dilute cellulose dispersions (100 mg of cellulose at 0.5% w/v). These optimal conditions were used to further investigate the effect of PaLPMO9H on the cellulosic fiber structure. Direct visualization of the fiber surface by scanning electron microscopy (SEM) revealed that PaLPMO9H created cracks on the cellulose surface while it attacked tension regions that triggered the rearrangement of cellulose chains. Solid-state NMR indicated that PaLPMO9H increased the lateral fibril dimension and created novel accessible surfaces. This study confirms the LPMO-driven disruption of cellulose fibers and extends our knowledge of the mechanism underlying such modifications. We hypothesize that the oxidative cleavage at the surface of the fibers releases the tension stress with loosening of the fiber structure and peeling of the surface, thereby increasing the accessibility and facilitating fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Sacha Grisel
- INRAE, Aix Marseille Univ., UMR BBF, F-13009 Marseille, France
- INRAE, Aix Marseille Univ., 3PE platform, F-13009 Marseille, France
| | - Bruno Novales
- INRAE, BIBS Facility, PROBE Infrastructure, F-44316 Nantes, France
| | | | | | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., UMR BBF, F-13009 Marseille, France
- INRAE, Aix Marseille Univ., 3PE platform, F-13009 Marseille, France
| | | |
Collapse
|
20
|
Liu Y, Ma W, Fang X. The Role of the Residue at Position 2 in the Catalytic Activity of AA9 Lytic Polysaccharide Monooxygenases. Int J Mol Sci 2023; 24:ijms24098300. [PMID: 37176008 PMCID: PMC10179388 DOI: 10.3390/ijms24098300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
AA9 lytic polysaccharide monooxygenases (LPMOs) are copper-dependent metalloenzymes that play a major role in cellulose degradation and plant infection. Understanding the AA9 LPMO mechanism would facilitate the improvement of plant pathogen control and the industrial application of LPMOs. Herein, via point mutation, we investigated the role of glycine 2 residue in cellulose degradation by Thermoascus aurantiacus AA9 LPMOs (TaAA9). A computational simulation showed that increasing the steric properties of this residue by replacing glycine with threonine or tyrosine altered the H-bonding network of the copper center and copper coordination geometry, decreased the surface charge of the catalytic center, weakened the TaAA9-substrate interaction, and enhanced TaAA9-product binding. Compared with wild-type TaAA9, G2T-TaAA9 and G2Y-TaAA9 variants showed attenuated copper affinity, reduced oxidative product diversity and decreased substrate Avicel binding, as determined using ITC, MALDI-TOF/TOF MS and cellulose binding analyses, respectively. Consistently, the enzymatic activity and synergy with cellulase of the G2T-TaAA9 and G2Y-TaAA9 variants were lower than those of TaAA9. Hence, the investigated residue crucially affects the catalytic activity of AA9 LPMOs, and we propose that the electropositivity of copper may correlate with AA9 LPMO activity. Thus, the relationship among the amino acid at position 2, surface charge and catalytic activity may facilitate an understanding of the proteins in AA9 LPMOs.
Collapse
Affiliation(s)
- Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
21
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
22
|
Ipsen JØ, Johansen KS, Brander S. A fast, sensitive and fluorescent LPMO activity assay. Front Microbiol 2023; 14:1128470. [PMID: 36998406 PMCID: PMC10043361 DOI: 10.3389/fmicb.2023.1128470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are industrially relevant enzymes that utilize a copper co-factor and an oxygen species to break down recalcitrant polysaccharides. These enzymes are secreted by microorganisms and are used in lignocellulosic refineries. As such, they are interesting from both the ecological/biological and industrial perspectives. Here we describe the development of a new fluorescence-based kinetic LPMO activity assay. The assay is based on the enzymatic production of fluorescein from its reduced counterpart. The assay can detect as little as 1 nM LPMO with optimized assay conditions. Furthermore, the reduced fluorescein substrate can also be used to identify peroxidase activity as seen by the formation of fluorescein by horseradish peroxidase. The assay was shown to work well at relatively low H2O2 and dehydroascorbate concentrations. The applicability of the assay was demonstrated.
Collapse
Affiliation(s)
| | | | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Smuts IE, Blakeway NJ, Rose SH, den Haan R, Viljoen-Bloom M, van Zyl WH. Supplementation of recombinant cellulases with LPMOs and CDHs improves consolidated bioprocessing of cellulose. Enzyme Microb Technol 2023; 164:110171. [PMID: 36549094 DOI: 10.1016/j.enzmictec.2022.110171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The increased demand for energy has sparked a global search for renewable energy sources that could partly replace fossil fuel resources and help mitigate climate change. Cellulosic biomass is an ideal feedstock for renewable bioethanol production, but the process is not currently economically feasible due to the high cost of pretreatment and enzyme cocktails to release fermentable sugars. Lytic polysaccharide monooxygenases (LPMOs) and cellobiose dehydrogenases (CDHs) are auxiliary enzymes that can enhance cellulose hydrolysis. In this study, four LPMO and two CDH genes were subcloned and expressed in the Saccharomyces cerevisiae Y294 laboratory strain. SDS-PAGE analysis confirmed the extracellular production of the LPMOs and CDHs in the laboratory S. cerevisiae Y294 strain. A rudimentary cellulase cocktail (cellobiohydrolase 1 and 2, endoglucanase and β-glucosidase) was expressed in the commercial CelluX™ 4 strain and extracellular production of the individual cellulases was confirmed by SDS-PAGE analysis. In vitro cooperation of the CDHs and LPMOs with the rudimentary cellulases produced by strain CelluX™ 4[F4-1] was demonstrated on Whatman filter paper. The significant levels of soluble sugars released from this crystalline cellulose substrate indicated that these auxiliary enzymes could be important components of the CBP yeast cellulolytic system.
Collapse
Affiliation(s)
- Ivy E Smuts
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nicole J Blakeway
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
24
|
Hansen LD, Eijsink VGH, Horn SJ, Várnai A. H 2 O 2 feeding enables LPMO-assisted cellulose saccharification during simultaneous fermentative production of lactic acid. Biotechnol Bioeng 2023; 120:726-736. [PMID: 36471631 DOI: 10.1002/bit.28298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H2 O2 at low concentrations. In this study, we build on this concept and investigate the potential of using externally added H2 O2 to sustain oxidative cellulose depolymerization by LPMOs during an SSF process for lactic acid production. The results of bioreactor experiments with 100 g/L cellulose clearly show that continuous addition of small amounts of H2 O2 (at a rate of 80 µM/h) during SSF enables LPMO activity and improves lactic acid production. While further process optimization is needed, the present proof-of-concept results show that modern LPMO-containing cellulase cocktails such as Cellic CTec2 can be used in SSF setups, without sacrificing the LPMO activity in these cocktails.
Collapse
Affiliation(s)
- Line D Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| |
Collapse
|
25
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
26
|
Zhang H, Zhou H, Zhao Y, Li T, Yin H. Comparative studies of two AA10 family lytic polysaccharide monooxygenases from Bacillus thuringiensis. PeerJ 2023; 11:e14670. [PMID: 36684673 PMCID: PMC9851047 DOI: 10.7717/peerj.14670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Bacillus thuringiensis, known to be one of the most important biocontrol microorganisms, contains three AA10 family lytic polysaccharide monooxygenases (LPMOs) in its genome. In previous reports, two of them, BtLPMO10A and BtLPMO10B, have been preliminarily characterized. However, some important biochemical features and substrate preference, as well as their potential applications in chitin degradation, still deserve further investigation. Results from present study showed that both BtLPMO10A and BtLPMO10B exhibit similar catalytic domains as well as highly conserved substrate-binding planes. However, unlike BtLPMO10A, which has comparable binding ability to both crystalline and amorphous form of chitins, BtLPMO10B exhibited much stronger binding ability to colloidal chitin, which mainly attribute to its carbohydrate-binding module-5 (CBM5). Interestingly, the relative high binding ability of BtLPMO10B to colloidal chitin does not lead to high catalytic activity of the enzyme. In contrast, the enzyme exhibited higher activity on β-chitin. Further experiments showed that the binding of BtLPMO10B to colloidal chitin was mainly non-productive, indicating a complicated role for CBM5 in LPMO activity. Furthermore, synergistic experiments demonstrated that both LPMOs boosted the activity of the chitinase, and the higher efficiency of BtLPMO10A can be overridden by BtLPMO10B.
Collapse
Affiliation(s)
- Huiyan Zhang
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Zhao
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tang Li
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
27
|
Tandrup T, Lo Leggio L, Meilleur F. Joint X-ray/neutron structure of Lentinus similis AA9_A at room temperature. Acta Crystallogr F Struct Biol Commun 2023; 79:1-7. [PMID: 36598350 PMCID: PMC9813973 DOI: 10.1107/s2053230x22011335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes which cleave polysaccharides oxidatively and are important in pathogen biology, carbon cycling and biotechnology. The Lentinus similis family AA9 isoform A (LsAA9_A) has been extensively studied as a model system because its activity towards smaller soluble saccharide substrates has allowed detailed structural characterization of its interaction with a variety of substrates by X-ray crystallography at high resolution. Here, the joint X-ray/neutron room-temperature crystallographic structure of carbohydrate-free LsAA9_A in the copper(II) resting state refined against X-ray and neutron data at 2.1 and 2.8 Å resolution, respectively, is presented. The results provide an experimental determination of the protonation states of the copper(II)-coordinating residues and second-shell residues in LsAA9_A, paving the way for future neutron crystallographic studies of LPMO-carbohydrate complexes.
Collapse
Affiliation(s)
- Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
28
|
Schwaiger L, Zenone A, Csarman F, Ludwig R. Continuous photometric activity assays for lytic polysaccharide monooxygenase-Critical assessment and practical considerations. Methods Enzymol 2022; 679:381-404. [PMID: 36682872 DOI: 10.1016/bs.mie.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a monocopper-dependent enzyme that cleaves glycosidic bonds by using an oxidative mechanism. In nature, they act in concert with cellobiohydrolases to facilitate the efficient degradation of lignocellulosic biomass. After more than a decade of LPMO research, it has become evident that LPMOs are abundant in all domains of life and fulfill a diverse range of biological functions. Independent of their biological function and the preferred polysaccharide substrate, studying and characterizing LPMOs is tedious and so far mostly relied on the discontinuous analysis of the solubilized reaction products by HPLC/MS-based methods. In the absence of appropriate substrates, LPMOs can engage in two off-pathway reactions, i.e., an oxidase and a peroxidase-like activity. These futile reactions have been exploited to set up easy-to-use continuous spectroscopic assays. As the natural substrates of newly discovered LPMOs are often unknown, widely applicable, simple, reliable, and robust spectroscopic assays are required to monitor LPMO expression and to perform initial biochemical characterizations, e.g., thermal stability measurements. Here we provide detailed descriptions and practical protocols to perform continuous photometric assays using either 2,6-dimethoxyphenol (2,6-DMP) or hydrocoerulignone as colorimetric substrates as a broadly applicable assay for a range of LPMOs. In addition, a turbidimetric measurement is described as the currently only method available to continuously monitor LPMOs acting on amorphous cellulose.
Collapse
Affiliation(s)
- Lorenz Schwaiger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
29
|
Tandrup T, Muderspach SJ, Banerjee S, Santoni G, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Johansen KS, Meilleur F, Lo Leggio L. Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding. IUCRJ 2022; 9:666-681. [PMID: 36071795 PMCID: PMC9438499 DOI: 10.1107/s2052252522007175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti-acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 × 104 Gy, while the Cu+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa-coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θT. Thus, the θ2 and θ3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θT parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the θT increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.
Collapse
Affiliation(s)
- Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| | - Gianluca Santoni
- ESRF, Structural Biology Group, 71 avenue des Martyrs, 38027 Grenoble cedex, France
| | - Johan Ø. Ipsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800-DK, Kgs. Lyngby, Denmark
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958-DK, Frederiksberg, Denmark
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100-DK, Copenhagen, Denmark
| |
Collapse
|
30
|
Detomasi TC, Rico-Ramírez AM, Sayler RI, Gonçalves AP, Marletta MA, Glass NL. A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. eLife 2022; 11:e80459. [PMID: 36040303 PMCID: PMC9550227 DOI: 10.7554/elife.80459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organisms require the ability to differentiate themselves from organisms of different or even the same species. Allorecognition processes in filamentous fungi are essential to ensure identity of an interconnected syncytial colony to protect it from exploitation and disease. Neurospora crassa has three cell fusion checkpoints controlling formation of an interconnected mycelial network. The locus that controls the second checkpoint, which allows for cell wall dissolution and subsequent fusion between cells/hyphae, cwr (cell wall remodeling), encodes two linked genes, cwr-1 and cwr-2. Previously, it was shown that cwr-1 and cwr-2 show severe linkage disequilibrium with six different haplogroups present in N. crassa populations. Isolates from an identical cwr haplogroup show robust fusion, while somatic cell fusion between isolates of different haplogroups is significantly blocked in cell wall dissolution. The cwr-1 gene encodes a putative polysaccharide monooxygenase (PMO). Herein we confirm that CWR-1 is a C1-oxidizing chitin PMO. We show that the catalytic (PMO) domain of CWR-1 was sufficient for checkpoint function and cell fusion blockage; however, through analysis of active-site, histidine-brace mutants, the catalytic activity of CWR-1 was ruled out as a major factor for allorecognition. Swapping a portion of the PMO domain (V86 to T130) did not switch cwr haplogroup specificity, but rather cells containing this chimera exhibited a novel haplogroup specificity. Allorecognition to mediate cell fusion blockage is likely occurring through a protein-protein interaction between CWR-1 with CWR-2. These data highlight a moonlighting role in allorecognition of the CWR-1 PMO domain.
Collapse
Affiliation(s)
- Tyler C Detomasi
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Richard I Sayler
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Michael A Marletta
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
31
|
Jakhesara, Tulsani NJ, Hinsu AT, Jyotsana B, Dafale NA, Patil NV, Purohit HJ, Joshi CG. Genome analysis and CAZy repertoire of a novel fungus Aspergillus sydowii C6d with lignocellulolytic ability isolated from camel rumen. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
32
|
Serra I, Piccinini D, Paradisi A, Ciano L, Bellei M, Bortolotti CA, Battistuzzi G, Sola M, Walton PH, Di Rocco G. Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida. Protein Sci 2022; 31:591-601. [PMID: 34897841 PMCID: PMC8862430 DOI: 10.1002/pro.4255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward β-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.
Collapse
Affiliation(s)
- Ilenia Serra
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly,Present address:
BIMEF Laboratory, Department of ChemistryUniversity of AntwerpAntwerpBelgium
| | - Daniele Piccinini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alessandro Paradisi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly,Department of ChemistryUniversity of YorkYorkUK
| | - Luisa Ciano
- Department of Chemistry and GeologyUniversity of Modena and Reggio EmiliaModenaItaly,Present address:
School of ChemistryUniversity of NottinghamNottinghamUK
| | - Marzia Bellei
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | | | - Marco Sola
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Giulia Di Rocco
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
33
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
34
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
35
|
Comparison of six lytic polysaccharide monooxygenases from Thermothielavioides terrestris shows that functional variation underlies the multiplicity of LPMO genes in filamentous fungi. Appl Environ Microbiol 2022; 88:e0009622. [PMID: 35080911 PMCID: PMC8939357 DOI: 10.1128/aem.00096-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here, we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six T. terrestris AA9 (TtAA9) LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. TtLPMO9A and TtLPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, TtLPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. TtLPMO9A, TtLPMO9E, TtLPMO9G, and TtLPMO9T could degrade tamarind xyloglucan and, with the exception of TtLPMO9T, beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs, as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates. IMPORTANCE The discovery of LPMOs in 2010 has revolutionized the industrial biotechnology field, mainly by increasing the efficiency of cellulolytic enzyme cocktails. Nonetheless, the biological purpose of the multiplicity of LPMO-encoding genes in filamentous fungi has remained an open question. Here, we address this point by showing that six AA9 LPMOs from a single fungal strain have various substrate preferences and activities on tested cellulosic and hemicellulosic substrates, including several native xylan substrates. Importantly, several of these activities could only be detected when using copolymeric substrates that likely resemble plant cell walls more than single fractionated polysaccharides do. Our results suggest that LPMOs have evolved to contribute to the degradation of different complex structures in plant cell walls where different biomass polymers are closely associated. This knowledge together with the elucidated novel xylanolytic activities could aid in further optimization of enzymatic cocktails for efficient degradation of lignocellulosic substrates and more.
Collapse
|
36
|
Banerjee S, Muderspach SJ, Tandrup T, Frandsen KEH, Singh RK, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Bjerrum MJ, Johansen KS, Lo Leggio L. Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules 2022; 12:194. [PMID: 35204695 PMCID: PMC8961595 DOI: 10.3390/biom12020194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.
Collapse
Affiliation(s)
- Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Kristian Erik Høpfner Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
| | - Raushan K. Singh
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Johan Ørskov Ipsen
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten J. Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Katja Salomon Johansen
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| |
Collapse
|
37
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
38
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
39
|
Cleveland ME, Mathieu Y, Ribeaucourt D, Haon M, Mulyk P, Hein JE, Lafond M, Berrin JG, Brumer H. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases. Cell Mol Life Sci 2021; 78:8187-8208. [PMID: 34738149 PMCID: PMC11072238 DOI: 10.1007/s00018-021-03981-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
Collapse
Affiliation(s)
- Maria E Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620, Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
40
|
Rieder L, Stepnov AA, Sørlie M, Eijsink VG. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Biochemistry 2021; 60:3633-3643. [PMID: 34738811 PMCID: PMC8638258 DOI: 10.1021/acs.biochem.1c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/27/2021] [Indexed: 11/28/2022]
Abstract
The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.
Collapse
Affiliation(s)
- Lukas Rieder
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Anton A. Stepnov
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| |
Collapse
|
41
|
Chromatographic analysis of oxidized cello-oligomers generated by lytic polysaccharide monooxygenases using dual electrolytic eluent generation. J Chromatogr A 2021; 1662:462691. [PMID: 34894418 DOI: 10.1016/j.chroma.2021.462691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Research on oligosaccharides, including the complicated product mixtures generated by lytic polysaccharide monooxygenases (LPMOs), is growing at a rapid pace. LPMOs are gaining major interest, and the ability to efficiently and accurately separate and quantify their native and oxidized products chromatographically is essential in furthering our understanding of these oxidative enzymes. Here we present a novel set of methods based on dual electrolytic eluent generation, where the conventional sodium acetate/sodium hydroxide (NaOAc/NaOH) eluents in high-performance anion-exchange chromatography (HPAEC) are replaced by electrolytically-generated potassium methane sulfonate/potassium hydroxide (KMSA/KOH). The new methods separate all compounds of interest within 24-45 min and with high sensitivity; limits of detection and quantification were in the range of 0.0001-0.0032 mM and 0.0002-0.0096 mM, respectively. In addition, an average of 3.5 times improvement in analytical CV was obtained. This chromatographic platform overcomes drawbacks associated with manual preparation of eluents and offers simplified operation and rapid method optimization, with increased precision for less abundant LPMO-derived products.
Collapse
|
42
|
Filiatrault-Chastel C, Heiss-Blanquet S, Margeot A, Berrin JG. From fungal secretomes to enzymes cocktails: The path forward to bioeconomy. Biotechnol Adv 2021; 52:107833. [PMID: 34481893 DOI: 10.1016/j.biotechadv.2021.107833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Bioeconomy is seen as a way to mitigate the carbon footprint of human activities by reducing at least part of the fossil resources-based economy. In this new paradigm of sustainable development, the use of enzymes as biocatalysts will play an increasing role to provide services and goods. In industry, most of multicomponent enzyme cocktails are of fungal origin. Filamentous fungi secrete complex enzyme sets called "secretomes" that can be utilized as enzyme cocktails to valorize different types of bioresources. In this review, we highlight recent advances in the study of fungal secretomes using improved computational and experimental secretomics methods, the progress in the understanding of industrially important fungi, and the discovery of new enzymatic mechanisms and interplays to degrade renewable resources rich in polysaccharides (e.g. cellulose). We review current biotechnological applications focusing on the benefits and challenges of fungal secretomes for industrial applications with some examples of commercial cocktails of fungal origin containing carbohydrate-active enzymes (CAZymes) and we discuss future trends.
Collapse
Affiliation(s)
- Camille Filiatrault-Chastel
- INRAE, Aix Marseille Univ., Biodiversité et Biotechnologie Fongiques, UMR1163, Marseille, France; IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Senta Heiss-Blanquet
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ., Biodiversité et Biotechnologie Fongiques, UMR1163, Marseille, France.
| |
Collapse
|
43
|
Dai L, Qu Y, Hu Y, Min J, Yu X, Chen CC, Huang JW, Guo RT. Catalytically inactive lytic polysaccharide monooxygenase PcAA14A enhances the enzyme-mediated hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2021; 190:456-462. [PMID: 34499955 DOI: 10.1016/j.ijbiomac.2021.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
The massive accumulation of polyethylene terephthalate (PET) in the global ecosystem is a growing environmental crisis. Development of environmental friendly strategies to achieve enzyme-catalyzed PET degradation has attracted tremendous attention. In this study, we demonstrated the synergistic effects of combining a specific PET-degrading enzyme IsPETaseEHA variant from PET-assimilating bacterium Ideonella sakaiensis and a lytic polysaccharide monooxygenase from a white-rot fungus Pycnoporus coccineus (PcAA14A) in PET degradation. We found that the presence of PcAA14A alone did not result in PET hydrolysis, but its presence could stimulate IsPETaseEHA-mediated hydrolytic efficiency by up to 1.3-fold. Notably, the stimulatory effects of PcAA14A on IsPETaseEHA-catalyzed PET hydrolysis were found to be independent of monooxygenase activity. Dose-effects of IsPETaseEHA and PcAA14A on PET hydrolysis were observed, with the optimal concentrations being determined to 25 μg/mL and 0.25 μg/mL, respectively. In the 5-day PET hydrolysis experiment, 1097 μM hydrolysis products were produced by adding the optimized concentrations of IsPETaseEHA and PcAA14A, which was 27.7% higher than those were produced by IsPETaseEHA alone. Our study reports the first time that PcAA14A could stimulate the IsPETaseEHA-mediated PET hydrolysis through a monooxygenase activity independent manner.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yingying Qu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
44
|
Agrawal D, Tsang A, Chadha BS. Economizing the lignocellulosic hydrolysis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and β-xylosidase (GH43) derived from thermophilic fungi Scytalidium thermophilum. BIORESOURCE TECHNOLOGY 2021; 339:125603. [PMID: 34293687 DOI: 10.1016/j.biortech.2021.125603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Two lignocellulolytic accessory enzymes, feruloyl esterase D (FAED_SCYTH) and β-xylosidase (XYL43B_SCYTH) were cloned and produced in the Pichia pastoris X33 as host. The molecular weight of recombinant enzymes FAED_SCYTH and XYL43B_SCYTH were ~ 31 and 40 kDa, respectively. FAED_SCYTH showed optimal activity at pH 6.0, 60 °C; and XYL43B_SCYTH at pH 7.0, 50 °C. FAED_SCYTH and XYL43B_SCYTH exhibited t1/2: 4 and 0.5 h, respectively (50 °C, pH 5.0). The β-xylosidase was bi-functional with pronounced activity against pNP-α-arabinofuranoside besides being highly xylose tolerant (retaining ~ 97% activity in the presence of 700 mM xylose). Cocktails prepared using these enzymes along with AA9 protein (PMO9D_SCYTH) and commercial cellulase CellicCTec2, showed improved hydrolysis of the pre-treated lignocellulosic biomass. Priming of pre-treated lignocellulosic biomass with these accessory enzymes was found to further enhance the hydrolytic potential of CellicCTec2 promising to reduce the enzyme load and cost required for obtaining sugars from biorefinery relevant pre-treated substrates.
Collapse
Affiliation(s)
- Dhruv Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
45
|
Brander S, Tokin R, Ipsen JØ, Jensen PE, Hernández-Rollán C, Nørholm MHH, Lo Leggio L, Dupree P, Johansen KS. Scission of Glucosidic Bonds by a Lentinus similis Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H2O2 while the Oxidation of Saccharide Products Depends on O2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Søren Brander
- Department of Geosciences and Natural Resource Management, Copenhagen University, DK-1958 Frederiksberg, Denmark
| | - Radina Tokin
- Department of Plant and Environmental Sciences, Copenhagen University, DK-1871 Frederiksberg, Denmark
| | - Johan Ø. Ipsen
- Department of Plant and Environmental Sciences, Copenhagen University, DK-1871 Frederiksberg, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, CB2 1QW Cambridge, U.K
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, Copenhagen University, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
46
|
Kuusk S, Väljamäe P. Kinetics of H 2O 2-driven catalysis by a lytic polysaccharide monooxygenase from the fungus Trichoderma reesei. J Biol Chem 2021; 297:101256. [PMID: 34597668 PMCID: PMC8528726 DOI: 10.1016/j.jbc.2021.101256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/17/2023] Open
Abstract
Owing to their ability to break glycosidic bonds in recalcitrant crystalline polysaccharides such as cellulose, the catalysis effected by lytic polysaccharide monooxygenases (LPMOs) is of major interest. Kinetics of these reductant-dependent, monocopper enzymes is complicated by the insoluble nature of the cellulose substrate and parallel, enzyme-dependent, and enzyme-independent side reactions between the reductant and oxygen-containing cosubstrates. Here, we provide kinetic characterization of cellulose peroxygenase (oxidative cleavage of glycosidic bonds in cellulose) and reductant peroxidase (oxidation of the reductant) activities of the LPMO TrAA9A of the cellulose-degrading model fungus Trichoderma reesei. The catalytic efficiency (kcat/Km(H2O2)) of the cellulose peroxygenase reaction (kcat = 8.5 s−1, and Km(H2O2)=30μM) was an order of magnitude higher than that of the reductant (ascorbic acid) peroxidase reaction. The turnover of H2O2 in the ascorbic acid peroxidase reaction followed the ping-pong mechanism and led to irreversible inactivation of the enzyme with a probability of 0.0072. Using theoretical analysis, we suggest a relationship between the half-life of LPMO, the values of kinetic parameters, and the concentrations of the reactants.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
47
|
Loureiro PEG, Cadete SMS, Tokin R, Evtuguin DV, Lund H, Johansen KS. Enzymatic Fibre Modification During Production of Dissolving Wood Pulp for Regenerated Cellulosic Materials. FRONTIERS IN PLANT SCIENCE 2021; 12:717776. [PMID: 34650579 PMCID: PMC8505740 DOI: 10.3389/fpls.2021.717776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The production of regenerated cellulosic fibres, such as viscose, modal and lyocell, is based mainly on the use of dissolving wood pulp as raw material. Enzymatic processes are an excellent alternative to conventional chemical routes in the production of dissolving pulp, in terms of energy efficiency, reagent consumption and pulp yield. The two main characteristics of a dissolving pulp are the cellulose purity and the molecular weight, both of which can be controlled with the aid of enzymes. A purification process for paper-grade kraft pulp has been proposed, based on the use of xylanases in combination with hot and cold caustic extraction, without the conventional pre-hydrolysis step before kraft pulping. This enzyme aided purification allowed the production of a dissolving pulp that met the specifications for the manufacture of viscose, < 3% xylan, > 92% ISO brightness and 70% Fock's reactivity. Endoglucanases (EGs) can efficiently reduce the average molecular weight of the cellulose while simultaneously increasing the pulp reactivity for viscose production. It is shown in this study that lytic polysaccharide monooxygenases act synergistically with EGs in the modification of bleached dissolving pulp.
Collapse
Affiliation(s)
- Pedro E. G. Loureiro
- Technical Industries – Forest Products Application Research, Novozymes A/S, Copenhagen, Denmark
| | - Sonia M. S. Cadete
- Technical Industries – Forest Products Application Research, Novozymes A/S, Copenhagen, Denmark
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Radina Tokin
- Department of Geosciences and Natural Resource Management, Copenhagen University, Copenhagen, Denmark
| | - Dmitry V. Evtuguin
- Technical Industries – Forest Products Application Research, Novozymes A/S, Copenhagen, Denmark
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Henrik Lund
- Technical Industries – Forest Products Application Research, Novozymes A/S, Copenhagen, Denmark
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
48
|
Rieder L, Petrović D, Väljamäe P, Eijsink VG, Sørlie M. Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. ACS Catal 2021; 11:11685-11695. [PMID: 34567832 PMCID: PMC8453653 DOI: 10.1021/acscatal.1c03344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Indexed: 12/23/2022]
Abstract
![]()
Enzymes known as
lytic polysaccharide monooxygenases (LPMOs) are
recognized as important contributors to aerobic enzymatic degradation
of recalcitrant polysaccharides such as chitin and cellulose. LPMOs
are remarkably abundant in nature, with some fungal species possessing
more than 50 LPMO genes, and the biological implications of this diversity
remain enigmatic. For example, chitin-active LPMOs have been encountered
in biological niches where chitin conversion does not seem to take
place. We have carried out an in-depth kinetic characterization of
a putatively chitin-active LPMO from Aspergillus fumigatus (AfAA11B), which, as we show here, has multiple
unusual properties, such as a low redox potential and high oxidase
activity. Furthermore, AfAA11B is hardly active on
chitin, while being very active on soluble oligomers of N-acetylglucosamine. In the presence of chitotetraose, the enzyme
can withstand considerable amounts of H2O2,
which it uses to efficiently and stoichiometrically convert this substrate.
The unique properties of AfAA11B allowed experiments
showing that it is a strict peroxygenase and does not catalyze a monooxygenase
reaction. This study shows that nature uses LPMOs for breaking glycosidic
bonds in non-polymeric substrates in reactions that depend on H2O2. The quest for the true substrates of these
enzymes, possibly carbohydrates in the cell wall of the fungus or
its competitors, will be of major interest.
Collapse
Affiliation(s)
- Lukas Rieder
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Dejan Petrović
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 50090, Estonia
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| |
Collapse
|
49
|
Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv 2021; 54:107809. [PMID: 34333091 DOI: 10.1016/j.biotechadv.2021.107809] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022]
Abstract
Development and deployment of commercial biorefineries based on conversion of lignocellulosic biomass into biofuels and bioproducts faces many challenges that must be addressed before they are commercially viable. One of the biggest challenges faced is the efficient and scalable valorization of lignin, one of the three major components of the plant cell wall. Lignin is the most abundant aromatic biopolymer on earth, and its presence hinders the extraction of cellulose and hemicellulose that is essential to biochemical conversion of lignocellulose to fuels and chemicals. There has been a significant amount of work over the past 20 years that has sought to develop innovative processes designed to extract and recycle lignin into valuable compounds and help reduce the overall costs of the biorefinery process. Due to the complex matrix of lignin, which is essential for plant survival, the development of a reliable and efficient lignin conversion technology has been difficult to achieve. One approach that has received significant interest relies on the use of enzymes, notably laccases, a class of multi‑copper green oxidative enzymes that catalyze bond breaking in lignin to produce smaller oligomers. In this review, we first assess the different innovations of lignin valorization using laccases within the context of a biorefinery process, and then assess the latest economical advances that these innovations offered. Finally, we review laccase characterization and optimization, as well as the prospects and bottlenecks of this class of enzymes within the industrial and biorefining sectors.
Collapse
|
50
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|