1
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Zhang L, Yang H, Duan X, Li H, Xu S, Chen H, Wang J, Wang Y, Liu S. Modulation of autophagy affected tumorigenesis induced by the envelope glycoprotein of JSRV. Virology 2024; 594:110059. [PMID: 38518442 DOI: 10.1016/j.virol.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Ovine pulmonary adenocarcinoma (OPA), caused by the jaagsiekte sheep retrovirus (JSRV), is a chronic, progressive, and contagious lung tumor that seriously affects sheep production. It also represents a valuable animal model for several human lung adenocarcinomas. However, little is known about the role of autophagy in OPA tumorigenesis. Here, Western blotting combined with transmission electron microscopy examination and Cyto-ID dye staining was employed for evaluation of changes of autophagic levels. The results of the present study showed that expression of the autophagy marker proteins Beclin-1 and LC3 was decreased in OPA lung tissues, as well as in cells overexpressing the envelope glycoprotein of JSRV (JSRV Env). Reduced numbers of autophagosomes were also observed in cells overexpressing JSRV Env, although assessment of autophagic flux showed that JSRV Env overexpression did not block the formation of autophagosomes, suggesting increased degradation of autolysosomes. Last, mouse xenograft experiments indicated that inhibition of autophagy by 3-methyladenine suppressed both tumor growth and the epithelial-to-mesenchymal transition. In conclusion, JSRV, through JSRV Env, takes advantage of the autophagy process, leading to the development of OPA.
Collapse
Affiliation(s)
- Liang Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Hui Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Siriguleng Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Jinlin Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
3
|
Yuan X, Ye W, Chen L, Luo D, Zhou L, Qiu Y, Zhuo R, Zhao Y, Peng L, Yang L, Jin X, Zhou Y. URB597 exerts neuroprotective effects against transient brain ischemia injury in mice by regulating autophagic flux and necroptosis. Eur J Pharmacol 2023; 957:175982. [PMID: 37572942 DOI: 10.1016/j.ejphar.2023.175982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Ischemic stroke is a leading cause of death and disability, and medical treatments for ischemic stroke are very limited. URB597 is a potent and selective inhibitor of fatty acid amide hydrolase (FAAH). However, the effect of URB597 on ischemic stroke and the underlying molecular mechanisms remain little known. In this study, focal cerebral ischemia was induced by transient middle cerebral artery occlusion in mice. Our results showed that URB597 dose-dependently improved neurological function and reduced brain infarct volume and brain edema 24 h after brain ischemia. The most effective dose was 1 mg/kg and the therapeutic time window was within 3 h after ischemic stroke. To further investigate the underlying mechanism, necroptosis and autophagy flux were detected by Western blot and/or immunofluorescence staining with or without chloroquine, an autophagic flux inhibitor. Our results showed that URB597 promoted autophagic flux and reduced neuronal necroptosis after brain ischemia and these effects could be abolished by chloroquine. In addition, we found that peroxisome proliferator-activated receptor α (PPARα) antagonist GW6471 partly abolished the effect of URB597 against brain ischemia and URB597 upregulated the expressions of PPARα. In conclusion, URB597 exerts a neuroprotective effect in a dose- and time-dependent manner, and this effect may be related to its restoration of autophagic flux and inhibition of neuronal necroptosis. PPARα is involved in the neuroprotective effect of URB597. This study provides novel evidence that URB597 may be a promising agent for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqian Yuan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China.
| | - Wenxuan Ye
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Ling Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Doudou Luo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Li Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yan Qiu
- Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Rengong Zhuo
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yun Zhao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lu Peng
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lichao Yang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yu Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Shirono Y, Bilim V, Anraku T, Kuroki H, Kazama A, Murata M, Hiruma K, Tomita Y. Targeting Pro-Survival Autophagy Enhanced GSK-3β Inhibition-Induced Apoptosis and Retarded Proliferation in Bladder Cancer Cells. Curr Oncol 2023; 30:5350-5365. [PMID: 37366889 DOI: 10.3390/curroncol30060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced bladder cancer (BC) (local invasive and/or metastatic) is not curable even with cytotoxic chemotherapy, immune checkpoint inhibitors, and targeted treatment. Targeting GSK-3β is a promising novel approach in advanced BC. The induction of autophagy is a mechanism of secondary resistance to various anticancer treatments. Our objectives are to investigate the synergistic effects of GSK-3β in combination with autophagy inhibitors to evade GSK-3β drug resistance. Small molecule GSK-3β inhibitors and GSK-3β knockdown using siRNA promote the expression of autophagy-related proteins. We further investigated that GSK-3β inhibition induced the nucleus translocation of transcription factor EB (TFEB). Compared to the GSK-3β inhibition alone, its combination with chloroquine (an autophagy inhibitor) significantly reduced BC cell growth. These results suggest that targeting autophagy potentiates GSK-3β inhibition-induced apoptosis and retarded proliferation in BC cells.
Collapse
Affiliation(s)
- Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Tsutomu Anraku
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hiroo Kuroki
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of Urology, Sado General Hospital, Sado 952-1209, Japan
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Kaede Hiruma
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
5
|
Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS. Cell Mol Life Sci 2022; 79:565. [PMID: 36284011 PMCID: PMC9596570 DOI: 10.1007/s00018-022-04585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 12/09/2022]
Abstract
Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.
Collapse
|
6
|
Chan JCY, Gorski SM. Unlocking the gate to GABARAPL2. Biol Futur 2022; 73:157-169. [PMID: 35486231 DOI: 10.1007/s42977-022-00119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
GABARAPL2 was initially characterized for its involvement in protein transport and membrane fusion events, but has since gained notoriety for its role in autophagy. GABARAPL2 is frequently studied alongside its GABARAP subfamily members, GABARAP and GABARAPL1. Although functional redundancy exists among the subfamily members, a complex network of molecular interactions, physiological processes and pathologies can be primarily related to GABARAPL2. GABARAPL2 has a multifaceted role, ranging from cellular differentiation to intracellular degradation. Much of what we know about GABARAPL2 is gained through identifying its interacting partners-a list that is constantly growing. In this article, we review both the autophagy-dependent and autophagy-independent roles of GABARAPL2, and emphasize their implications for both health and disease.
Collapse
Affiliation(s)
- Jennifer C Y Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Sharon M Gorski
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
7
|
Mitochondria-Endoplasmic Reticulum Contacts: The Promising Regulators in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2531458. [PMID: 35450404 PMCID: PMC9017569 DOI: 10.1155/2022/2531458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
Abstract
Diabetic cardiomyopathy (DCM), as a serious complication of diabetes, causes structural and functional abnormalities of the heart and eventually progresses to heart failure. Currently, there is no specific treatment for DCM. Studies have proved that mitochondrial dysfunction and endoplasmic reticulum (ER) stress are key factors for the development and progression of DCM. The mitochondria-associated ER membranes (MAMs) are a unique domain formed by physical contacts between mitochondria and ER and mediate organelle communication. Under high glucose conditions, changes in the distance and composition of MAMs lead to abnormal intracellular signal transduction, which will affect the physiological function of MAMs, such as alter the Ca2+ homeostasis in cardiomyocytes, and lead to mitochondrial dysfunction and abnormal apoptosis. Therefore, the dysfunction of MAMs is closely related to the pathogenesis of DCM. In this review, we summarized the evidence for the role of MAMs in DCM and described that MAMs participated directly or indirectly in the regulation of the pathophysiological process of DCM via the regulation of Ca2+ signaling, mitochondrial dynamics, ER stress, autophagy, and inflammation. Finally, we discussed the clinical transformation prospects and technical limitations of MAMs-associated proteins (such as MFN2, FUNDC1, and GSK3β) as potential therapeutic targets for DCM.
Collapse
|
8
|
Pang L, Liu Z, Zhou K, Chen P, Pan E, Che Y, Qi X. ACE2 Rescues Impaired Autophagic Flux Through the PI3K/AKT Pathway After Subarachnoid Hemorrhage. Neurochem Res 2022; 47:601-612. [PMID: 34708340 PMCID: PMC8549811 DOI: 10.1007/s11064-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Subarachnoid hemorrhage (SAH) is one of the life-threatening neurosurgical diseases in central nervous system. Autophagy has been previously demonstrated to exert vital roles in SAH development. Angiotensin I converting enzyme 2 (ACE2) has been revealed as a regulator of autophagy in neurosurgical diseases. However, effect of ACE2 on autophagy in SAH progression has not been clarified. First, we explored the relationship between autophagy and SAH progression by establishing a mouse model of SAH under the administration of 3-MA (the autophagy inhibitor). Next, we examined ACE2 expression in the cerebral cortex of SAH mice ex vivo with RT-qPCR. Subsequently, we assessed the biological function of ACE2 on brain injury, the autophagic flux pathway and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling ex vivo via neurological scoring, TUNEL assay, western blot analysis and immunofluorescence staining assay. Finally, we carried out rescue assays under chloroquine (CQ, the autophagic flux inhibitor) and LY294002 (the PI3K/AKT signaling inhibitor) administration. 3-MA mitigated brain injury after SAH, and ACE2 was downregulated in cerebral cortex of SAH mice. Moreover, ACE2 elevation alleviated cell apoptosis, cerebral edema, and neurological deficits, ameliorated the autophagic flux pathway and activated the PI3K/AKT signaling in SAH mice. Furthermore, CQ and LY294002 neutralized the effects of overexpressed ACE2 on neuronal apoptosis, cerebral edema, and neurological deficits in SAH mice. Overall, ACE2 lessened neuronal injury via the autophagic flux and PI3K/AKT pathways. This research might provide a potential novel direction for clinical treatment of SAH.
Collapse
Affiliation(s)
- Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Zhao Liu
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Ke Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Peng Chen
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Enyu Pan
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China.
| | - Xin Qi
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, 214500, Jiangsu, China.
| |
Collapse
|
9
|
Wang Z, Wu Y, Pei C, Wang M, Wang X, Shi S, Huang D, Wang Y, Li S, Xiao W, He Y, Wang F. Astragaloside IV pre-treatment attenuates PM2.5-induced lung injury in rats: Impact on autophagy, apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153912. [PMID: 35026504 DOI: 10.1016/j.phymed.2021.153912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) with an aerodynamic diameter of less than 2.5 μm, exerts serious lung toxicity. At present, effective prevention measures and treatment modalities for pulmonary toxicity caused by PM2.5 are lacking. Astragaloside IV (AS-IV) is a natural product that has received increasing attention from researchers for its unique biological functions. PURPOSE To investigate the protective effects of AS-IV on PM2.5-induced pulmonary toxicity and identify its potential mechanisms. METHODS The rat model of PM2.5-induced lung toxicity was created by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with AS-IV or in combination with autophagic flux inhibitor (Chloroquine) or AMP-sensitive protein kinase (AMPK)-specific inhibitor (Compound C). Apoptosis was detected by terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting. Autophagy was detected by immunofluorescence staining, autophagic flux measurement, western blotting, and transmission electron microscopy. The AMPK/mTOR pathway was analyzed by western blotting. Inflammation was analyzed by western blotting and suspension array. RESULTS AS-IV prevented histopathological injury, inflammation, autophagy dysfunction, apoptosis, and changes in AMPK levels induced by PM2.5. AS-IV increased autophagic flux and inhibited apoptosis and inflammation by activating the AMPK/ mammalian target of rapamycin (mTOR) pathway. However, AS-IV had no protective effect on PM2.5-induced lung injury following treatment with Compound C or Chloroquine. CONCLUSION AS-IV prevented PM2.5-induced lung toxicity by restoring the balance among autophagy, apoptosis, and inflammation in rats by activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Wei Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
10
|
Jin H, Wu Q, Kroemer G, Kepp O. A Fluorescence-Microscopic System for Monitoring the Turnover of the Autophagic Substrate p62/SQSTM1. Methods Mol Biol 2022; 2543:71-82. [PMID: 36087260 DOI: 10.1007/978-1-0716-2553-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In conditions of cellular stress and nutrient shortage, macroautophagy (hereafter referred to as autophagy) assures the degradation of dysfunctional macromolecules and organelles as it liberates energy resources via the breakdown of dispensable cellular components. Morphologically, autophagy is characterized by the formation of double-membraned autophagosomes that facilitate the isolation of autophagic cargo for subsequent lysosomal degradation at low pH. Sequestosome-1 (SQSTM1, better known as ubiquitin-binding protein p62), is an autophagosomal cargo receptor that targets proteins for selective autophagic degradation. Indeed, the redistribution of tandem mCherry and enhanced green fluorescent protein (mCherry-EGFP)-conjugated p62 from the cytosol into nascent autophagosomes constitutes a phenotype applicable to microscopic analysis. Furthermore, the differential pH sensitivity of mCherry and EGFP allows the visualization of autophagic flux due to the selective decrease of the EGFP signal upon fusion of autophagosomes with lysosomes. Here, we describe a method employing automated confocal cellular imaging for the study of autophagic degradation that is amenable to systems biology approaches.
Collapse
Affiliation(s)
- Hongzhong Jin
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.
| |
Collapse
|
11
|
Tavčar Verdev P, Potokar M, Korva M, Resman Rus K, Kolenc M, Avšič Županc T, Zorec R, Jorgačevski J. In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cell Mol Life Sci 2022; 79:566. [PMID: 36283999 PMCID: PMC9596533 DOI: 10.1007/s00018-022-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.
Collapse
Affiliation(s)
- Petra Tavčar Verdev
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Miša Korva
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
12
|
Dent P. Cell Signaling and Translational Developmental Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC7538147 DOI: 10.1016/b978-0-12-820472-6.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The relationships between drug pharmacodynamics and subsequent changes in cellular signaling processes are complex. Many in vitro cell signaling studies often use drug concentrations above physiologically safe drug levels achievable in a patient's plasma. Drug companies develop agents to inhibit or modify the activities of specific target enzymes, often without a full consideration that their compounds have additional unknown targets. These two negative sequelae, when published together, become impediments against successful developmental therapeutics and translation because this data distorts our understanding of signaling mechanisms and reduces the probability of successfully translating drug-based concepts from the bench to the bedside. This article will discuss cellular signaling in isolation and as it relates to extant single and combined therapeutic drug interventions. This will lead to a hypothetical series standardized sequential approaches describing a rigorous concept to drug development and clinical translation.
Collapse
|
13
|
Nelfinavir Induces Cytotoxicity towards High-Grade Serous Ovarian Cancer Cells, Involving Induction of the Unfolded Protein Response, Modulation of Protein Synthesis, DNA Damage, Lysosomal Impairment, and Potentiation of Toxicity Caused by Proteasome Inhibition. Cancers (Basel) 2021; 14:cancers14010099. [PMID: 35008264 PMCID: PMC8750028 DOI: 10.3390/cancers14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) accounts for 70% of all ovarian-cancer-related deaths. Mainstay treatment with platinum-based drugs following surgery results in favorable outcomes in the majority of patients; however, in >80% of cases, the disease relapses with eventual drug resistance. As such, urgent development of improved alternative therapies is necessary for HGSOC patients with lower life expectancy. Rapid repurposing of market available drugs for cancer therapy is a cost-effective alternative to bypass the decade-long traditional drug development pipeline. Among potential drug-repurposing candidates, nelfinavir (NFV)—an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS)—has shown anti-cancer effects against diverse cancers; however, its remedial benefits against HGSOC are unknown. In this study, we explored how NFV targets HGSOC cells obtained from patients at platinum-sensitive and -resistant stages. We observed beneficial efficacy elicited by NFV against HGSOC in both disease conditions through multiple mechanistic avenues, suggesting positive drug-repurposing prospects. Abstract High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction in the HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction in clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of H2AX indicated NFV-mediated DNA damage, which was associated with decreased survival and proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2α, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.
Collapse
|
14
|
Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:1-53. [PMID: 34340765 DOI: 10.1016/bs.apcsb.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of molecular pathway activation is the recent instrument that helps to quantize activities of various intracellular signaling, structural, DNA synthesis and repair, and biochemical processes. This may have a deep impact in fundamental research, bioindustry, and medicine. Unlike gene ontology analyses and numerous qualitative methods that can establish whether a pathway is affected in principle, the quantitative approach has the advantage of exactly measuring the extent of a pathway up/downregulation. This results in emergence of a new generation of molecular biomarkers-pathway activation levels, which reflect concentration changes of all measurable pathway components. The input data can be the high-throughput proteomic or transcriptomic profiles, and the output numbers take both positive and negative values and positively reflect overall pathway activation. Due to their nature, the pathway activation levels are more robust biomarkers compared to the individual gene products/protein levels. Here, we review the current knowledge of the quantitative gene expression interrogation methods and their applications for the molecular pathway quantization. We consider enclosed bioinformatic algorithms and their applications for solving real-world problems. Besides a plethora of applications in basic life sciences, the quantitative pathway analysis can improve molecular design and clinical investigations in pharmaceutical industry, can help finding new active biotechnological components and can significantly contribute to the progressive evolution of personalized medicine. In addition to the theoretical principles and concepts, we also propose publicly available software for the use of large-scale protein/RNA expression data to assess the human pathway activation levels.
Collapse
|
15
|
Qiao S, Zhao WJ, Li HQ, Ao GZ, An JZ, Wang C, Zhang HL. Necrostatin-1 Analog DIMO Exerts Cardioprotective Effect against Ischemia Reperfusion Injury by Suppressing Necroptosis via Autophagic Pathway in Rats. Pharmacology 2021; 106:189-201. [PMID: 33621976 DOI: 10.1159/000510864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/25/2020] [Indexed: 11/19/2022]
Abstract
AIM It has been reported that necrostatin-1 (Nec-1) is a specific necroptosis inhibitor that could attenuate programmed cell death induced by myocardial ischemia/reperfusion (I/R) injury. This study aimed to observe the effect and mechanism of novel Nec-1 analog (Z)-5-(3,5-dimethoxybenzyl)-2-imine-1-methylimidazolin-4-1 (DIMO) on myocardial I/R injury. METHODS Male SD rats underwent I/R injury with or without different doses of DIMO (1, 2, or 4 mg/kg) treatment. Isolated neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment with or without DIMO (0.1, 1, 10, or 100 μM). Myocardial infarction was measured by TTC staining. Cardiomyocyte injury was assessed by lactate dehydrogenase assay (LDH) and flow cytometry. Receptor-interacting protein 1 kinase (RIP1K) and autophagic markers were detected by co-immunoprecipitation and Western blotting analysis. Molecular docking of DIMO into the ATP binding site of RIP1K was performed using GLIDE. RESULTS DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. However, the DIMO 4 mg/kg dose was ineffective. DIMO at the dose of 0.1 μM decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. I/R or OGD/R increased RIP1K expression and in its interaction with RIP3K, as well as impaired myocardial autophagic flux evidenced by an increase in LC3-II/I ratio, upregulated P62 and Beclin-1, and activated cathepsin B and L. In contrast, DIMO treatment reduced myocardial cell death and reversed the above mentioned changes in RIP1K and autophagic flux caused by I/R and OGD/R. DIMO binds to RIP1K and inhibits RIP1K expression in a homology modeling and ligand docking. CONCLUSION DIMO exerts cardioprotection against I/R- or OGD/R-induced injury, and its mechanisms may be associated with the reduction in RIP1K activation and restoration impaired autophagic flux.
Collapse
Affiliation(s)
- Shigang Qiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Wen-Jie Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Huan-Qiu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Jian-Zhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China,
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, China,
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Lin J, Wei J, Lv Y, Zhang X, Yi RF, Dai C, Zhang Q, Jia J, Zhang D, Huang Y. H(+)/Cl(‑) exchange transporter 7 promotes lysosomal acidification‑mediated autophagy in mouse cardiomyocytes. Mol Med Rep 2021; 23:222. [PMID: 33495814 PMCID: PMC7845584 DOI: 10.3892/mmr.2021.11861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Autophagy protects cardiomyocytes in various pathological and physiological conditions; however, the molecular mechanisms underlying its influence and the promotion of autophagic clearance are not completely understood. The present study aimed to explore the role of H(+)/Cl(−) exchange transporter 7 (CLC-7) in cardiomyocyte autophagy. In this study, rapamycin was used to induce autophagy in mouse cardiomyocytes, and the changes in CLC-7 were investigated. The expression levels of CLC-7 and autophagy-related proteins, such as microtubule associated protein 1 light chain 3, autophagy related 5 and Beclin 1, were detected using western blotting or immunofluorescence. Autolysosomes were observed and analyzed using transmission electron microscopy and immunofluorescence following CLC-7 silencing with small interfering RNAs. Cellular viability was assessed using Cell Counting Kit-8 and lactate dehydrogenase assays. Lysosomal acidification was measured using an acidification indicator. Increased CLC-7 co-localization with lysosomes was identified during autophagy. CLC-7 knockdown weakened the acidification of lysosomes, which are the terminal compartments of autophagy flux, and consequently impaired autophagy flux, ultimately resulting in cell injury. Collectively, the present study demonstrated that in cardiomyocytes, CLC-7 may contribute to autophagy via regulation of lysosomal acidification. These findings provide novel insights into the role of CLC-7 in autophagy and cytoprotection.
Collapse
Affiliation(s)
- Jiezhi Lin
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jinyu Wei
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanling Lv
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xingyue Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ruo Fan Yi
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chen Dai
- Orthopedics and Trauma Department, The 963rd (224th) Hospital of People's Liberation Army, 963rd Hospital of Joint Logistics Support Force of PLA, Jiamusi, Heilongjiang 154007, P.R. China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
17
|
The identification and characterisation of autophagy inhibitors from the published kinase inhibitor sets. Biochem J 2020; 477:801-814. [PMID: 32011652 PMCID: PMC7054748 DOI: 10.1042/bcj20190846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Autophagy is a critical cellular homeostatic mechanism, the dysfunction of which has been linked to a wide variety of disease states. It is regulated through the activity of specific kinases, in particular Unc-51 like autophagy activating kinase 1 (ULK1) and Phosphatidylinositol 3-kinase vacuolar protein sorting 34 (VPS34), which have both been suggested as potential targets for drug development. To identify new chemical compounds that might provide useful chemical tools or act as starting points for drug development, we screened each protein against the Published Kinase Inhibitor Set (PKIS), a library of known kinase inhibitors. In vitro screening and analysis of the published selectivity profiles of the hits informed the selection of three relatively potent ATP-competitive inhibitors against each target that presented the least number of off-target kinases in common. Cellular assays confirmed potent inhibition of autophagy in response to two of the ULK1 inhibitors and all three of the VPS34 inhibitors. These compounds represent not only a new resource for the study of autophagy but also potential chemical starting points for the validation or invalidation of these two centrally important autophagy kinases in disease models.
Collapse
|
18
|
Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch Pharm Res 2020; 43:475-488. [PMID: 32458284 DOI: 10.1007/s12272-020-01239-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a self-degradation process in which the cytoplasmic cargoes are delivered to the lysosomes for degradation. As the cargoes are degraded/recycled, the autophagy process maintains the cellular homeostasis. Anti-cancer therapies induce apoptosis and autophagy concomitantly, and the induced autophagy normally prevents stress responses that are being induced. In such cases, the inhibition of autophagy can be a reasonable strategy to enhance the efficacy of anti-cancer therapies. However, recent studies have shown that autophagy induced by anti-cancer drugs causes cell death/apoptosis induction, indicating a controversial role of autophagy in cancer cell survival or death/apoptosis. Therefore, in the present review, we aimed to assess the signaling mechanisms involved in autophagy and cell death/apoptosis induction during anti-cancer therapies. This review summarizes the process of autophagy, autophagy flux and its blockade, and measurement and interpretation of autophagy flux. Further, it describes the signaling pathways involved in the blockade of autophagy flux and the role of signaling molecules accumulated by autophagy blockade in cell death/apoptosis in various cancer cells during anti-cancer therapies. Altogether, it implies that factors such as types of cancer, drug therapies, and characteristics of autophagy should be evaluated before targeting autophagy for cancer treatment.
Collapse
|
19
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
20
|
Misaponin B Induces G2/M Arrest, Cytokinesis Failure and Impairs Autophagy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5925094. [PMID: 32090100 PMCID: PMC7029305 DOI: 10.1155/2020/5925094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
Saponins are a group of naturally occurring plant glycosides with the features of their strong foam-forming properties and multibiological effects such as antitumor activity. Though Misaponin B, one of the triterpenoid saponins from Madhuca longifolia, is known to have spermicidal and antioxidant activity, the other biological activities have been never reported so far. Thus, in the present study, the antitumor mechanism of Misaponin B was investigated in A549 and AsPC-1 cancer cells. Misaponin B exerted significant cytotoxicity in A549, H460, SKOV3, and AsPC-1 cancer cells. Among them, A549 and AsPC-1 cells were more susceptible to Misaponin B. Misaponin B induced G2/M arrest and cytokinesis failure and increased the expression of LC3B and p62 with autophagic vacuoles and GFP-LC3 punctae in A549 and AsPC-1 cells. Furthermore, Misaponin B suppressed autophagy flux in A549 cells transfected by GFP-mRFP-LC3 constructs by showing merged yellow color by autophagy flux assay. Overall, our findings provide evidences that Misaponin B induces G2M arrest and impairs autophagy in A549 and AsPC-1 cells.
Collapse
|
21
|
Borisov N, Sorokin M, Garazha A, Buzdin A. Quantitation of Molecular Pathway Activation Using RNA Sequencing Data. Methods Mol Biol 2020; 2063:189-206. [PMID: 31667772 DOI: 10.1007/978-1-0716-0138-9_15] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular molecular pathways (IMPs) control all major events in the living cell. IMPs are considered hotspots in biomedical sciences and thousands of IMPs have been discovered for humans and model organisms. Knowledge of IMPs activation is essential for understanding biological functions and differences between the biological objects at the molecular level. Here we describe the Oncobox system for accurate quantitative scoring activities of up to several thousand molecular pathways based on high throughput molecular data. Although initially designed for gene expression and mainly RNA sequencing data, Oncobox is now also applicable for quantitative proteomics, microRNA and transcription factor binding sites mapping data. The Oncobox system includes modules of gene expression data harmonization, aggregation and comparison and a recursive algorithm for automatic annotation of molecular pathways. The universal rationale of Oncobox enables scoring of signaling, metabolic, cytoskeleton, immunity, DNA repair, and other pathways in a multitude of biological objects. The Oncobox system can be helpful to all those working in the fields of genetics, biochemistry, interactomics, and big data analytics in molecular biomedicine.
Collapse
Affiliation(s)
- Nicolas Borisov
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
| | - Maxim Sorokin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Omicsway Corp., Walnut, CA, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Anton Buzdin
- Laboratory of Clinical Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
- Omicsway Corp., Walnut, CA, USA.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
22
|
Molecular Determinants of Cancer Therapy Resistance to HDAC Inhibitor-Induced Autophagy. Cancers (Basel) 2019; 12:cancers12010109. [PMID: 31906235 PMCID: PMC7016854 DOI: 10.3390/cancers12010109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylation inhibitors (HDACi) offer high potential for future cancer therapy as they can re-establish the expression of epigenetically silenced cell death programs. HDACi-induced autophagy offers the possibility to counteract the frequently present apoptosis-resistance as well as stress conditions of cancer cells. Opposed to the function of apoptosis and necrosis however, autophagy activated in cancer cells can engage in a tumor-suppressive or tumor-promoting manner depending on mostly unclarified factors. As a physiological adaption to apoptosis resistance in early phases of tumorigenesis, autophagy seems to resume a tumorsuppressive role that confines tumor necrosis and inflammation or even induces cell death in malignant cells. During later stages of tumor development, chemotherapeutic drug-induced autophagy seems to be reprogrammed by the cancer cell to prevent its elimination and support tumor progression. Consistently, HDACi-mediated activation of autophagy seems to exert a protective function that prevents the induction of apoptotic or necrotic cell death in cancer cells. Thus, resistance to HDACi-induced cell death is often encountered in various types of cancer as well. The current review highlights the different mechanisms of HDACi-elicited autophagy and corresponding possible molecular determinants of therapeutic resistance in cancer.
Collapse
|
23
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|
24
|
Dent P, Booth L, Poklepovic A, Hancock JF. Signaling alterations caused by drugs and autophagy. Cell Signal 2019; 64:109416. [PMID: 31520735 DOI: 10.1016/j.cellsig.2019.109416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionary conserved process that recycles cellular materials in times of nutrient restriction to maintain viability. In cancer therapeutics, the role of autophagy in response to multi-kinase inhibitors, alone or when combined with histone deacetylase (HDAC) inhibitors acts, generally, to facilitate the killing of tumor cells. Furthermore, the formation of autophagosomes and subsequent degradation of their contents can reduce the expression of HDAC proteins themselves as well as of other signaling regulatory molecules such as protein chaperones and mutated RAS proteins. Reduced levels of HDAC6 causes the acetylation and inactivation of heat shock protein 90, and, together with reduced expression of the chaperones HSP70 and GRP78, generates a strong endoplasmic reticulum (ER) stress response. Prolonged intense ER stress signaling causes tumor cell death. Reduced expression of HDACs 1, 2 and 3 causes the levels of programed death ligand 1 (PD-L1) to decline and the expression of Class I MHCA to increase which correlates with elevated immunogenicity of the tumor cells in vivo. This review will specifically focus on the downstream implications that result from autophagic-degradation of HDACs, RAS and protein chaperones.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Biochemistry and Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Chen G, Ding XF, Bouamar H, Pressley K, Sun LZ. Everolimus induces G 1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells. Am J Physiol Cell Physiol 2019; 317:C244-C252. [PMID: 31116586 PMCID: PMC6732424 DOI: 10.1152/ajpcell.00390.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Everolimus inhibits mammalian target of rapamycin complex 1 (mTORC1) and is known to cause induction of autophagy and G1 cell cycle arrest. However, it remains unknown whether everolimus-induced autophagy plays a critical role in its regulation of the cell cycle. We, for the first time, suggested that everolimus could stimulate autophagy-mediated cyclin D1 degradation in breast cancer cells. Everolimus-induced cyclin D1 degradation through the autophagy pathway was investigated in MCF-10DCIS.COM and MCF-7 cell lines upon autophagy inhibitor treatment using Western blot assay. Everolimus-stimulated autophagy and decrease in cyclin D1 were also tested in explant human breast tissue. Inhibiting mTORC1 with everolimus rapidly increased cyclin D1 degradation, whereas 3-methyladenine, chloroquine, and bafilomycin A1, the classic autophagy inhibitors, could attenuate everolimus-induced cyclin D1 degradation. Similarly, knockdown of autophagy-related 7 (Atg-7) also repressed everolimus-triggered cyclin D1 degradation. In addition, everolimus-induced autophagy occurred earlier than everolimus-induced G1 arrest, and blockade of autophagy attenuated everolimus-induced G1 arrest. We also found that everolimus stimulated autophagy and decreased cyclin D1 levels in explant human breast tissue. These data support the conclusion that the autophagy induced by everolimus in human mammary epithelial cells appears to cause cyclin D1 degradation resulting in G1 cell cycle arrest. Our findings contribute to our knowledge of the interplay between autophagy and cell cycle regulation mediated by mTORC1 signaling and cyclin D1 regulation.
Collapse
Affiliation(s)
- Guang Chen
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, China
| | - Xiao-Fei Ding
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Hakim Bouamar
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kyle Pressley
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
26
|
Xiao B, Hong L, Cai X, Mei S, Zhang P, Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncol Lett 2019; 18:2165-2172. [PMID: 31452719 PMCID: PMC6676529 DOI: 10.3892/ol.2019.10576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with cancer receiving doxorubicin-based chemotherapy often have to stop taking the drug due to its cardiotoxicity and therefore lose out on the beneficial effects of its potent antitumor activity. Doxorubicin has been demonstrated to damage cardiomyocytes via various mechanisms, including accumulation of reactive oxygen species (ROS), DNA damage and autophagy dysfunction. The present review focuses on autophagy, describing the general process of autophagy and the controversy surrounding its role in doxorubicin-induced cardiotoxicity. In addition, the associations between autophagy and apoptosis, ROS, DNA damage and inflammatory processes are discussed. In the future, it will be useful to further elucidate the process of autophagy and reveal its association with various pathological processes to develop effective strategies of preventing doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| | - Songbo Mei
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Medical Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China.,Jiang Xi Provincial Institute of Cardiovascular Diseases, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Molecular pathway activation – New type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol 2018; 53:110-124. [DOI: 10.1016/j.semcancer.2018.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
|
28
|
Sun Y, Chen D, Liu J, Xu Y, Shi X, Luo X, Pan Q, Yu J, Yang J, Cao H, Li L, Li L. Metabolic profiling associated with autophagy of human placenta-derived mesenchymal stem cells by chemical isotope labeling LC-MS. Exp Cell Res 2018; 372:52-60. [PMID: 30227120 DOI: 10.1016/j.yexcr.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Autophagy has been reported to have a pivotal role in maintaining stemness, regulating immunomodulation and enhancing the survival of mesenchymal stem cells (MSCs). However, the effect of autophagy on MSC metabolism is largely unknown. Here, we report a workflow for examining the impact of autophagy on human placenta-derived MSC (hPMSC) metabolome profiling with chemical isotope labeling (CIL) LC-MS. Rapamycin or 3-methyladenine was successfully used to induce or inhibit autophagy, respectively. Then, 12C- and 13C-dansylation labeling LC-MS were used to profile the amine/phenol submetabolome. A total of 935 peak pairs were detected and 50 metabolites were positively identified using the dansylation metabolite standards library, and 669 metabolites were putatively identified based on an accurate mass match in metabolome databases. 12C/13C-p-dimethylaminophenacyl bromide labeling LC-MS was used to analyze the carboxylic acid submetabolome; 4736 peak pairs were detected, among which 33 metabolites were positively identified in the dimethylaminophenacyl metabolite standards library, and 3007 metabolites were putatively identified. PCA/OPLS-DA analysis combined with volcano plots and Venn diagrams was used to determine the significant metabolites. Metabolites pathway analysis demonstrated that hPMSCs appeared to generate more ornithine with the arginine and proline metabolism pathway and utilized more pantothenic acid to synthesize acetyl-CoA in the beta-alanine metabolism pathway when autophagy was activated. Meanwhile, acetyl-CoA conversion to fatty acids led to accumulation in the fatty acid biosynthesis pathway. In contrast, when autophagy was suppressed, a reduction in metabolites demonstrated weakened metabolic activity in these metabolic pathways. Our research provides a more comprehensive understanding of hPMSC metabolism associated with autophagy.
Collapse
Affiliation(s)
- Yanni Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Xiaowei Shi
- Chu Kochen Honors College, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Jinfeng Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|