1
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
2
|
Lata K, Anderluh G, Chattopadhyay K. Entangling roles of cholesterol-dependent interaction and cholesterol-mediated lipid phase heterogeneity in regulating listeriolysin O pore-formation. Biochem J 2024; 481:1349-1377. [PMID: 39268843 DOI: 10.1042/bcj20240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Cholesterol-dependent cytolysins (CDCs) are the distinct class of β-barrel pore-forming toxins (β-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane β-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19 1000 Ljubljana, Slovenia
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Liguori F, Pellicciotta N, Milanetti E, Xi Windemuth S, Ruocco G, Di Leonardo R, Danino T. Dynamic Gene Expression Mitigates Mutational Escape in Lysis-Driven Bacteria Cancer Therapy. BIODESIGN RESEARCH 2024; 6:0049. [PMID: 39301524 PMCID: PMC11411163 DOI: 10.34133/bdr.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024] Open
Abstract
Engineered bacteria have the potential to deliver therapeutic payloads directly to tumors, with synthetic biology enabling precise control over therapeutic release in space and time. However, it remains unclear how to optimize therapeutic bacteria for durable colonization and sustained payload release. Here, we characterize nonpathogenic Escherichia coli expressing the bacterial toxin Perfringolysin O (PFO) and dynamic strategies that optimize therapeutic efficacy. While PFO is known for its potent cancer cell cytotoxicity, we present experimental evidence that expression of PFO causes lysis of bacteria in both batch culture and microfluidic systems, facilitating its efficient release. However, prolonged expression of PFO leads to the emergence of a mutant population that limits therapeutic-releasing bacteria in a PFO expression level-dependent manner. We present sequencing data revealing the mutant takeover and employ molecular dynamics to confirm that the observed mutations inhibit the lysis efficiency of PFO. To analyze this further, we developed a mathematical model describing the evolution of therapeutic-releasing and mutant bacteria populations revealing trade-offs between therapeutic load delivered and fraction of mutants that arise. We demonstrate that a dynamic strategy employing short and repeated inductions of the pfo gene better preserves the original population of therapeutic bacteria by mitigating the effects of mutational escape. Altogether, we demonstrate how dynamic modulation of gene expression can address mutant takeovers giving rise to limitations in engineered bacteria for therapeutic applications.
Collapse
Affiliation(s)
- Filippo Liguori
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Nicola Pellicciotta
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sophia Xi Windemuth
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Roberto Di Leonardo
- Department of Physics, Sapienza University of Rome, Rome, Italy
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Rome, Italy
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Nagel AS, Vetrova OS, Rudenko NV, Karatovskaya AP, Zamyatina AV, Andreeva-Kovalevskaya ZI, Salyamov VI, Egorova NA, Siunov AV, Ivanova TD, Boziev KM, Brovko FA, Solonin AS. A High-Homology Region Provides the Possibility of Detecting β-Barrel Pore-Forming Toxins from Various Bacterial Species. Int J Mol Sci 2024; 25:5327. [PMID: 38791367 PMCID: PMC11120785 DOI: 10.3390/ijms25105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three β-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these β-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.
Collapse
Affiliation(s)
- Alexey S. Nagel
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| | - Olesya S. Vetrova
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Natalia V. Rudenko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Anna P. Karatovskaya
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Anna V. Zamyatina
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Zhanna I. Andreeva-Kovalevskaya
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| | - Vadim I. Salyamov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| | - Nadezhda A. Egorova
- Federal State Budgetary Educational Institution of Higher Education “Ryazan State University Named for S.A. Yesenin”, 46 st. Svobody, 390000 Ryazan, Ryazan Region, Russia;
| | - Alexander V. Siunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| | - Tatiana D. Ivanova
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| | - Khanafi M. Boziev
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Fedor A. Brovko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (O.S.V.); (A.P.K.); (A.V.Z.); (K.M.B.); (F.A.B.)
| | - Alexander S. Solonin
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.S.N.); (Z.I.A.-K.); (V.I.S.); (A.V.S.); (T.D.I.); (A.S.S.)
| |
Collapse
|
7
|
Schmidt G. Some Examples of Bacterial Toxins as Tools. Toxins (Basel) 2024; 16:202. [PMID: 38787054 PMCID: PMC11125981 DOI: 10.3390/toxins16050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic bacteria produce diverse protein toxins to disturb the host's defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to enter mammalian cells, where they catalyze the modification of cellular proteins. The enzymatic activity is diverse and ranges from ribosyl- or glycosyl-transferase activity, the deamidation of proteins, and adenylate-cyclase activity to proteolytic cleavage. Protein toxins are highly active enzymes often with tight specificity for an intracellular protein or a protein family coupled with the intrinsic capability of entering mammalian cells. A broad understanding of their molecular mechanisms established bacterial toxins as powerful tools for cell biology. Both the enzymatic part and the pore-forming/protein transport capacity are currently used as tools engineered to study signaling pathways or to transport cargo like labeled compounds, nucleic acids, peptides, or proteins directly into the cytosol. Using several representative examples, this review is intended to provide a short overview of the state of the art in the use of bacterial toxins or parts thereof as tools.
Collapse
Affiliation(s)
- Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Verma P, Chauhan A, Thakur R, Lata K, Sharma A, Chattopadhyay K, Mukhopadhaya A. Vibrio parahaemolyticus thermostable direct haemolysin induces non-classical programmed cell death despite caspase activation. Mol Microbiol 2023; 120:845-873. [PMID: 37818865 DOI: 10.1111/mmi.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Thermostable direct haemolysin (TDH) is the key virulence factor secreted by the human gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin. It evokes potent cytotoxicity, the mechanism of which still remains under-explored. Here, we have elucidated the mechanistic details of cell death response elicited by TDH. Employing Caco-2 intestinal epithelial cells and THP-1 monocytic cells, we show that TDH induces some of the hallmark features of apoptosis-like programmed cell death. TDH triggers caspase-3 and 7 activations in the THP-1 cells, while caspase-7 activation is observed in the Caco-2 cells. Interestingly, TDH appears to induce caspase-independent cell death. Higher XIAP level and lower Smac/Diablo level upon TDH intoxication provide plausible explanation for the functional inability of caspases in the THP-1 cells, in particular. Further exploration reveals that mitochondria play a central role in the TDH-induced cell death. TDH triggers mitochondrial damage, resulting in the release of AIF and endonuclease G, responsible for the execution of caspase-independent cell death. Among the other critical mediators of cell death, ROS is found to play an important role in the THP-1 cells, while PARP-1 appears to play a critical role in the Caco-2 cells. Altogether, our work provides critical new insights into the mechanism of cell death induction by TDH, showing a common central theme of non-classical programmed cell death. Our study also unravels the interplay of crucial molecules in the underlying signalling processes. Our findings add valuable insights into the role of TDH in the context of the host-pathogen interaction processes.
Collapse
Affiliation(s)
- Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Reena Thakur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
9
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Shetty SV, Mazzucco MR, Winokur P, Haigh SV, Rumah KR, Fischetti VA, Vartanian T, Linden JR. Clostridium perfringens Epsilon Toxin Binds to and Kills Primary Human Lymphocytes. Toxins (Basel) 2023; 15:423. [PMID: 37505692 PMCID: PMC10467094 DOI: 10.3390/toxins15070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.
Collapse
Affiliation(s)
- Samantha V. Shetty
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Michael R. Mazzucco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Paige Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-Endocrinology Rockefeller University, New York, NY 10065, USA
| | - Sylvia V. Haigh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Kareem Rashid Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| | - Jennifer R. Linden
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA (T.V.)
| |
Collapse
|
11
|
Bian X, Si Z, Wang Q, Liu L, Shi Z, Tian C, Lee W, Zhang Y. IgG Fc-binding protein positively regulates the assembly of pore-forming protein complex βγ-CAT evolved to drive cell vesicular delivery and transport. J Biol Chem 2023; 299:104717. [PMID: 37068610 DOI: 10.1016/j.jbc.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. βγ-CAT, a complex of pore-forming protein (PFP) BmALP1 (two βγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intra- or extra- cellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the βγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for βγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the βγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of βγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a PFP machine evolved to drive cell vesicular delivery and transport.
Collapse
Affiliation(s)
- Xianling Bian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ziru Si
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhihong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
12
|
Escartín-Gutiérrez JR, Ponce-Figueroa M, Torres-Vega MÁ, Aguilar-Faisal L, Figueroa-Arredondo P. Transcriptional Activation of a Pro-Inflammatory Response (NF-κB, AP-1, IL-1β) by the Vibrio cholerae Cytotoxin (VCC) Monomer through the MAPK Signaling Pathway in the THP-1 Human Macrophage Cell Line. Int J Mol Sci 2023; 24:ijms24087272. [PMID: 37108435 PMCID: PMC10139130 DOI: 10.3390/ijms24087272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
This study describes, to some extent, the VCC contribution as an early stimulation of the macrophage lineage. Regarding the onset of the innate immune response caused by infection, the β form of IL-1 is the most important interleukin involved in the onset of the inflammatory innate response. Activated macrophages treated in vitro with VCC induced the activation of the MAPK signaling pathway in a one-hour period, with the activation of transcriptional regulators for a surviving and pro-inflammatory response, suggesting an explanation inspired and supported by the inflammasome physiology. The mechanism of IL-1β production induced by VCC has been gracefully outlined in murine models, using bacterial knockdown mutants and purified molecules; nevertheless, the knowledge of this mechanism in the human immune system is still under study. This work shows the soluble form of 65 kDa of the Vibrio cholerae cytotoxin (also known as hemolysin), as it is secreted by the bacteria, inducing the production of IL-1β in the human macrophage cell line THP-1. The mechanism involves triggering the early activation of the signaling pathway MAPKs pERK and p38, with the subsequent activation of (p50) NF-κB and AP-1 (cJun and cFos), determined by real-time quantitation. The evidence shown here supports that the monomeric soluble form of the VCC in the macrophage acts as a modulator of the innate immune response, which is consistent with the assembly of the NLRP3 inflammasome actively releasing IL-1β.
Collapse
Affiliation(s)
- Julio Rodrigo Escartín-Gutiérrez
- Doctorate Program in Medical Research, Research Department, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Mariana Ponce-Figueroa
- Masters in Health Sciences, Postgraduate Studies and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Miguel Ángel Torres-Vega
- Departament of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Leopoldo Aguilar-Faisal
- Doctorate Program in Medical Research, Research Department, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Masters in Health Sciences, Postgraduate Studies and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Paula Figueroa-Arredondo
- Doctorate Program in Medical Research, Research Department, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Masters in Health Sciences, Postgraduate Studies and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| |
Collapse
|
13
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
14
|
Kaur D, Verma P, Singh M, Sharma A, Lata K, Mukhopadhaya A, Chattopadhyay K. Pore formation-independent cell death induced by a β-barrel pore-forming toxin. FASEB J 2022; 36:e22557. [PMID: 36125006 DOI: 10.1096/fj.202200788r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). It exhibits potent hemolytic activity against erythrocytes that appears to be a direct outcome of its pore-forming functionality. However, VCC-mediated cell-killing mechanism is more complicated in the case of nucleated mammalian cells. It induces apoptosis in the target nucleated cells, mechanistic details of which are still unclear. Furthermore, it has never been explored whether the ability of VCC to trigger programmed cell death is stringently dependent on its pore-forming activity. Here, we show that VCC can evoke hallmark features of the caspase-dependent apoptotic cell death even in the absence of the pore-forming ability. Our study demonstrates that VCC mutants with abortive pore-forming hemolytic activity can trigger apoptotic cell death responses and cytotoxicity, similar to those elicited by the wild-type toxin. VCC as well as its pore formation-deficient mutants display prominent propensity to translocate to the target cell mitochondria and cause mitochondrial membrane damage. Therefore, our results for the first time reveal that VCC, despite being an archetypical β-PFT, can kill target nucleated cells independent of its pore-forming functionality. These findings are intriguing for a β-PFT, whose destination is generally expected to remain limited on the target cell membranes, and whose mode of action is commonly attributed to the membrane-damaging pore-forming ability. Taken together, our study provides critical new insights regarding distinct implications of the two important virulence functionalities of VCC for the V. cholerae pathogenesis process: hemolytic activity for iron acquisition and cytotoxicity for tissue damage by the bacteria.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
15
|
Russell CM, Schaefer KG, Dixson A, Gray ALH, Pyron RJ, Alves DS, Moore N, Conley EA, Schuck RJ, White TA, Do TD, King GM, Barrera FN. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells. eLife 2022; 11:e75490. [PMID: 36173096 PMCID: PMC9522247 DOI: 10.7554/elife.75490] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Andrew Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Amber LH Gray
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Robert J Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Nicholas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Tommi A White
- Department of Biochemistry, University of MissouriColumbiaUnited States
- Electron Microscopy Core, University of MissouriColumbiaUnited States
| | - Thanh D Do
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Gavin M King
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| |
Collapse
|
16
|
Mondal AK, Sengupta N, Singh M, Biswas R, Lata K, Lahiri I, Dutta S, Chattopadhyay K. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. J Biol Chem 2022; 298:102441. [PMID: 36055404 PMCID: PMC9520032 DOI: 10.1016/j.jbc.2022.102441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging β-barrel pore-forming toxin (β-PFT). Upon binding to the target membranes, VCC monomers first assemble into oligomeric pre-pore intermediates, and subsequently transform into transmembrane β-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane β-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals wild type-like oligomeric β-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature as compared to that of the wild type toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the pre-pore-like intermediate state that is hindered from converting into the functional β-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| |
Collapse
|
17
|
Involvement of Pore Formation and Osmotic Lysis in the Rapid Killing of Gamma Interferon-Pretreated C166 Endothelial Cells by Rickettsia prowazekii. Trop Med Infect Dis 2022; 7:tropicalmed7080163. [PMID: 36006255 PMCID: PMC9415803 DOI: 10.3390/tropicalmed7080163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rickettsia prowazekii, the bacterial cause of epidemic typhus in humans, proliferates mainly within the microvascular endothelial cells. Previous studies have shown that murine macrophage-like RAW264.7 cells are rapidly damaged if they are pretreated with gamma interferon (IFN-γ) and then infected with R. prowazekii. In the present study, the effects of IFN-γ and R. prowazekii on murine C166 endothelial cells were evaluated. In the IFN-γ-pretreated R. prowazekii-infected endothelial cell cultures, evidence of cell damage was observed within several hours after addition of the rickettsiae. Considerable numbers of the cells became permeable to trypan blue dye and ethidium bromide, and substantial amounts of lactate dehydrogenase (LDH) were released from the cells. Such evidence of cellular injury was not observed in the untreated infected cultures or in any of the mock-infected cultures. Polyethylene glycols (PEGs) of different nominal average molecular weights were used to assess the possible involvement of pore formation and osmotic lysis in this cellular injury. PEG 8000 dramatically suppressed LDH release, PEG 4000 partially inhibited it, and PEGs 2000 and 1450 had no effect. Despite its inhibition of LDH release, PEG 8000 did not prevent the staining of the IFN-γ-pretreated infected endothelial cells by ethidium bromide. These findings suggest that the observed cellular injury involves the formation of pores in the endothelial cell membranes, followed by osmotic lysis of the cells.
Collapse
|
18
|
Sun L, Pan F, Li S. Self-Assembly of Lipid Mixtures in Solutions: Structures, Dynamics Processes and Mechanical Properties. MEMBRANES 2022; 12:membranes12080730. [PMID: 35893448 PMCID: PMC9394357 DOI: 10.3390/membranes12080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
The self-assembly of lipid mixtures in aqueous solution was investigated by dissipative particle dynamics simulation. Two types of lipid molecules were modelled, where three mixed structures, i.e., the membrane, perforated membrane and vesicle, were determined in the self-assembly processes. Phase behaviour was investigated by using the phase diagrams based on the tail chain lengths for the two types of lipids. Several parameters, such as chain number and average radius of gyration, were employed to explore the structural formations of the membrane and perforated membrane in the dynamic processes. Interface tension was used to demonstrate the mechanical properties of the membrane and perforated membrane in the equilibrium state and dynamics processes. Results help us to understand the self-assembly mechanism of the biomolecule mixtures, which has a potential application for designing the lipid molecule-based bio-membranes in solutions.
Collapse
Affiliation(s)
| | - Fan Pan
- Correspondence: (F.P.); (S.L.)
| | | |
Collapse
|
19
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
20
|
Lata K, Singh M, Chatterjee S, Chattopadhyay K. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins. J Membr Biol 2022; 255:161-173. [PMID: 35305136 DOI: 10.1007/s00232-022-00227-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
21
|
Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation. Acta Pharm Sin B 2022; 12:4235-4248. [DOI: 10.1016/j.apsb.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
|
22
|
Nadeem A, Berg A, Pace H, Alam A, Toh E, Ådén J, Zlatkov N, Myint SL, Persson K, Gröbner G, Sjöstedt A, Bally M, Barandun J, Uhlin BE, Wai SN. Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae. eLife 2022; 11:73439. [PMID: 35131030 PMCID: PMC8824476 DOI: 10.7554/elife.73439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
Collapse
Affiliation(s)
- Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hudson Pace
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Athar Alam
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Eric Toh
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Ådén
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Nikola Zlatkov
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Gerhard Gröbner
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Marta Bally
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Singh M, Rupesh N, Pandit SB, Chattopadhyay K. Curcumin Inhibits Membrane-Damaging Pore-Forming Function of the β-Barrel Pore-Forming Toxin Vibrio cholerae Cytolysin. Front Microbiol 2022; 12:809782. [PMID: 35140698 PMCID: PMC8818996 DOI: 10.3389/fmicb.2021.809782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). Upon encountering the target cells, VCC forms heptameric β-barrel pores and permeabilizes the cell membranes. Structure-function mechanisms of VCC have been extensively studied in the past. However, the existence of any natural inhibitor for VCC has not been reported yet. In the present study, we show that curcumin can compromise the membrane-damaging activity of VCC. Curcumin is known to modulate a wide variety of biological processes and functions. However, the application of curcumin in the physiological scenario often gets limited due to its extremely poor solubility in the aqueous environment. Interestingly, we find that VCC can associate with the insoluble fraction of curcumin in the aqueous medium and thus gets separated from the solution phase. This, in turn, reduces the availability of VCC to attack the target membranes and thus blocks the membrane-damaging action of the toxin. We also observe that the soluble aqueous extract of curcumin, generated by the heat treatment, compromises the pore-forming activity of VCC. Interestingly, in the presence of such soluble extract of curcumin, VCC binds to the target membranes and forms the oligomeric assembly. However, such oligomers appear to be non-functional, devoid of the pore-forming activity. The ability of curcumin to bind to VCC and neutralize its membrane-damaging activity suggests that curcumin has the potential to act as an inhibitor of this potent bacterial β-PFT.
Collapse
|
24
|
Scott-Fordsmand JJ, Amorim MJB. The Curious Case of Earthworms and COVID-19. BIOLOGY 2021; 10:biology10101043. [PMID: 34681142 PMCID: PMC8533077 DOI: 10.3390/biology10101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Earthworms have been used for centuries in traditional medicine, and more than a century ago were praised by Charles Darwin as one of the most important organisms in the history of the world. These worms are well-studied with a wealth of information available, for example on the genome, the gene expression, the immune system, the general biology, and ecology. These worms live in many habitats, and they had to find solutions for severe environmental challenges. The common compost worm, Eisenia fetida, has developed a unique mechanism to deal with intruding (nano)materials, bacteria, and viruses. It deals with the intruders by covering these with a defence toxin (lysenin) targeted to kill the intruder. We outline how this mechanism probably can be used as a therapeutic model for human COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) and other corona viruses. Abstract Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm Eisenia fetida have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm Eisenia fetida is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs). A non-toxic version of this protein is available, and we hypothesize that it is possible to use the earthworm’s PFPs based anti-viral mechanism as a therapeutic model for human SARS-CoV-2 and other corona viruses. The proteins can be used as a drug, for example, delivered with a nanoparticle in a similar way to the current COVID-19 vaccines. Obviously, careful consideration should be given to the potential risk of toxicity elicited by lysenin for in vivo usage. We aim to share this view to activate its exploration by the wider scientific community while promoting a potential therapeutic development.
Collapse
Affiliation(s)
- Janeck J. Scott-Fordsmand
- Department of Biosciences, Aarhus University, 8600 Silkeborg, Denmark
- Correspondence: ; Tel.: +45-4025-6803
| | - Monica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
25
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
26
|
Verma P, Chattopadhyay K. Current Perspective on the Membrane-Damaging Action of Thermostable Direct Hemolysin, an Atypical Bacterial Pore-forming Toxin. Front Mol Biosci 2021; 8:717147. [PMID: 34368235 PMCID: PMC8343067 DOI: 10.3389/fmolb.2021.717147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Thermostable direct hemolysin (TDH) is the major virulence determinant of the gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin (PFT). TDH shares remarkable structural similarity with the actinoporin family of eukaryotic PFTs produced by the sea anemones. Unlike most of the PFTs, it exists as tetramer in solution, and such assembly state is crucial for its functionality. Although the structure of the tetrameric assembly of TDH in solution is known, membrane pore structure is not available yet. Also, the specific membrane-interaction mechanisms of TDH, and the exact role of any receptor(s) in such process, still remain unclear. In this mini review, we discuss some of the unique structural and physicochemical properties of TDH, and their implications for the membrane-damaging action of the toxin. We also present our current understanding regarding the membrane pore-formation mechanism of this atypical bacterial PFT.
Collapse
Affiliation(s)
- Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|