1
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
2
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Reddy JM, Raut NGR, Seifert JL, Hynds DL. Regulation of Small GTPase Prenylation in the Nervous System. Mol Neurobiol 2020; 57:2220-2231. [PMID: 31989383 DOI: 10.1007/s12035-020-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Mevalonate pathway inhibitors have been extensively studied for their roles in cholesterol depletion and for inhibiting the prenylation and activation of various proteins. Inhibition of protein prenylation has potential therapeutic uses against neurological disorders, like neural cancers, neurodegeneration, and neurotramatic lesions. Protection against neurodegeneration and promotion of neuronal regeneration is regulated in large part by Ras superfamily small guanosine triphosphatases (GTPases), particularly the Ras, Rho, and Rab subfamilies. These proteins are prenylated to target them to cellular membranes. Prenylation can be specifically inhibited through altering the function of enzymes of the mevalonate pathway necessary for isoprenoid production and attachment to target proteins to elicit a variety of effects on neural cells. However, this approach does not address how prenylation affects a specific protein. This review focuses on the regulation of small GTPase prenylation, the different techniques to inhibit prenylation, and how this inhibition has affected neural cell processes.
Collapse
Affiliation(s)
| | | | | | - DiAnna L Hynds
- Texas Woman's University, Denton, TX, USA.
- Woodcock Institute for the Advancement of Neurocognitive Research and Applied Practice, Texas Woman's University, PO Box 4525799, Denton, TX, 76204-5799, USA.
| |
Collapse
|
4
|
Inhibition of Protein Prenylation of GTPases Alters Endothelial Barrier Function. Int J Mol Sci 2019; 21:ijms21010002. [PMID: 31861297 PMCID: PMC6981884 DOI: 10.3390/ijms21010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023] Open
Abstract
The members of Rho family of GTPases, RhoA and Rac1 regulate endothelial cytoskeleton dynamics and hence barrier integrity. The spatial activities of these GTPases are regulated by post-translational prenylation. In the present study, we investigated the effect of prenylation inhibition on the endothelial cytoskeleton and barrier properties. The study was carried out in human umbilical vein endothelial cells (HUVEC) and protein prenylation is manipulated with various pharmacological inhibitors. Inhibition of either complete prenylation using statins or specifically geranylgeranylation but not farnesylation has a biphasic effect on HUVEC cytoskeleton and permeability. Short-term treatment inhibits the spatial activity of RhoA/Rho kinase (Rock) to actin cytoskeleton resulting in adherens junctions (AJ) stabilization and ameliorates thrombin-induced barrier disruption whereas long-term inhibition results in collapse of endothelial cytoskeleton leading to increased basal permeability. These effects are reversed by supplementing the cells with geranylgeranyl but not farnesyl pyrophosphate. Moreover, long-term inhibition of protein prenylation results in basal hyper activation of RhoA/Rock signaling that is antagonized by a specific Rock inhibitor or an activation of cAMP signaling. In conclusion, inhibition of geranylgeranylation in endothelial cells (ECs) exerts biphasic effect on endothelial barrier properties. Short-term inhibition stabilizes AJs and hence barrier function whereas long-term treatment results in disruption of barrier properties.
Collapse
|
5
|
Virtanen SS, Ishizu T, Sandholm JA, Löyttyniemi E, Väänänen HK, Tuomela JM, Härkönen PL. Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells. Oncotarget 2018; 9:32593-32608. [PMID: 30220968 PMCID: PMC6135693 DOI: 10.18632/oncotarget.25961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.
Collapse
Affiliation(s)
- Sanna S Virtanen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland.,Turku University of Applied Sciences, Health and Well-being, FI-20520 Turku, Finland
| | - Tamiko Ishizu
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Jouko A Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521 Turku, Finland
| | - Eliisa Löyttyniemi
- University of Turku, Department of Biostatistics, FI-20520 Turku, Finland
| | | | - Johanna M Tuomela
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| | - Pirkko L Härkönen
- University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland
| |
Collapse
|
6
|
Desai D, Zhang J, Sandholm J, Lehtimäki J, Grönroos T, Tuomela J, Rosenholm JM. Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo. Mol Pharm 2017; 14:3218-3227. [PMID: 28737925 DOI: 10.1021/acs.molpharmaceut.7b00519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zoledronic acid (ZOL) is a nitrogen-containing bisphosphonate used for the treatment of bone diseases and calcium metabolism. Anticancer activity of ZOL has been established, but its extraskeletal effects are limited due to its rapid uptake and accumulation to bone hydroxyapatite. In this work, we report on the development of tethered lipid bilayer-gated mesoporous silica nanocarriers (MSNs) for the incorporation, retention, and intracellular delivery of ZOL. The in vitro anticancer activity of ZOL-loaded nanocarriers was evaluated by cell viability assay and live-cell imaging. For in vivo delivery, the nanocarriers were tagged with folic acid to boost the affinity for breast cancer cells. Histological examination of the liver revealed no adverse off-target effects stemming from the nanocarriers. Importantly, nonspecific accumulation of ZOL within bone was not observed, which indicated in vivo stability of the tethered lipid bilayers. Further, the intravenously administered ZOL-loaded nanocarriers showed tumor growth suppression in breast cancer xenograft-bearing mice.
Collapse
Affiliation(s)
- Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Turku 20520, Finland
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University , Chongqing 400044, China
| | - Jouko Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University , Turku 20520, Finland
| | - Jaakko Lehtimäki
- Institute of Biomedicine, University of Turku , Turku 20520, Finland
| | - Tove Grönroos
- Medicity Research Laboratory, University of Turku , Turku 20520, Finland.,Turku PET Centre, University of Turku , Turku 20520, Finland
| | - Johanna Tuomela
- Institute of Biomedicine, University of Turku , Turku 20520, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Turku 20520, Finland
| |
Collapse
|
7
|
Gao S, Yu R, Zhou X. The Role of Geranylgeranyltransferase I-Mediated Protein Prenylation in the Brain. Mol Neurobiol 2015; 53:6925-6937. [DOI: 10.1007/s12035-015-9594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
8
|
Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A protein. PLoS One 2014; 9:e106685. [PMID: 25275544 PMCID: PMC4183487 DOI: 10.1371/journal.pone.0106685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease virus non-structural protein 3A plays important roles in virus replication, virulence and host-range; nevertheless little is known on the interactions that this protein can establish with different cell components. In this work, we have performed in vivo dynamic studies from cells transiently expressing the green fluorescent protein (GFP) fused to the complete 3A (GFP3A) and versions including different 3A mutations. The results revealed the presence of a mobile fraction of GFP3A, which was found increased in most of the mutants analyzed, and the location of 3A in a continuous compartment in the cytoplasm. A dual behavior was also observed for GFP3A upon cell fractionation, being the protein equally recovered from the cytosolic and membrane fractions, a ratio that was also observed when the insoluble fraction was further fractioned, even in the presence of detergent. Similar results were observed in the fractionation of GFP3ABBB, a 3A protein precursor required for initiating RNA replication. A nonintegral membrane protein topology of FMDV 3A was supported by the lack of glycosylation of versions of 3A in which each of the protein termini was fused to a glycosylation acceptor tag, as well as by their accessibility to degradation by proteases. According to this model 3A would interact with membranes through its central hydrophobic region exposing its N- and C- termini to the cytosol, where interactions between viral and cellular proteins required for virus replication are expected to occur.
Collapse
|
9
|
Uchino K, Takeshita F, Takahashi RU, Kosaka N, Fujiwara K, Naruoka H, Sonoke S, Yano J, Sasaki H, Nozawa S, Yoshiike M, Kitajima K, Chikaraishi T, Ochiya T. Therapeutic effects of microRNA-582-5p and -3p on the inhibition of bladder cancer progression. Mol Ther 2013; 21:610-9. [PMID: 23295946 DOI: 10.1038/mt.2012.269] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many reports have indicated that the abnormal expression of microRNAs (miRNAs) is associated with the progression of disease and have identified miRNAs as attractive targets for therapeutic intervention. However, the bifunctional mechanisms of miRNA guide and passenger strands in RNA interference (RNAi) therapy have not yet been clarified. Here, we show that miRNA (miR)-582-5p and -3p, which are strongly decreased in high-grade bladder cancer clinical samples, regulate tumor progression in vitro and in vivo. Significantly, the overexpression of miR-582-5p or -3p reduced the proliferation and invasion of UM-UC-3 human bladder cancer cells. Furthermore, transurethral injections of synthetic miR-582 molecule suppressed tumor growth and metastasis in an animal model of bladder cancer. Most interestingly, our study revealed that both strands of miR-582-5p and -3p suppressed the expression of the same set of target genes such as protein geranylgeranyltransferase type I beta subunit (PGGT1B), leucine-rich repeat kinase 2 (LRRK2) and DIX domain containing 1 (DIXDC1). Knockdown of these genes using small interfering RNA (siRNA) resulted in the inhibition of cell growth and invasiveness of UM-UC-3. These findings uncover the unique regulatory pathway involving tumor suppression by both strands of a single miRNA that is a potential therapeutic target in the treatment of invasive bladder cancer.
Collapse
Affiliation(s)
- Keita Uchino
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cantacessi C, Campbell BE, Gasser RB. Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012; 30:469-88. [DOI: 10.1016/j.biotechadv.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
12
|
CANTACESSI C, CAMPBELL BE, JEX AR, YOUNG ND, HALL RS, RANGANATHAN S, GASSER RB. Bioinformatics meets parasitology. Parasite Immunol 2012; 34:265-75. [DOI: 10.1111/j.1365-3024.2011.01304.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Synergistic Effect of Geranylgeranyltransferase Inhibitor, GGTI, and Docetaxel on the Growth of Prostate Cancer Cells. Prostate Cancer 2011; 2012:989214. [PMID: 22111007 PMCID: PMC3195320 DOI: 10.1155/2012/989214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/08/2011] [Indexed: 11/25/2022] Open
Abstract
Most advanced prostate cancers progress to castration resistant
prostate cancer (CRPC) after a few years of androgen deprivation
therapy and the prognosis of patients with CRPC is poor. Although
docetaxel and cabazitaxel can prolong the survival of patients
with CRPC, inevitable progression appears following those
treatments. It is urgently required to identify better or
alternative therapeutic strategies. The purpose of this study was
to confirm the anti-cancer activity of zoledronic acid (Zol) and
determine whether inhibition of geranylgeranylation in the
mevalonate pathway could be a molecular target of prostate cancer
treatment. We examined the growth inhibitory effect of Zol in
prostate cancer cells (LNCaP, PC3, DU145) and investigated a role
of geranylgeranylation in the anticancer activity of Zol. We,
then, evaluated the growth inhibitory effect of
geranylgeranyltransferase inhibitor (GGTI), and analyzed the
synergy of GGTI and docetaxel by combination index and
isobolographic analysis. Zol inhibited the growth of all prostate
cancer cell lines tested in a dose-dependent manner through
inhibition of geranylgeranylation. GGTI also inhibited the
prostate cancer cell growth and the growth inhibitory effect was
augmented by a combination with docetaxel. Synergism between GGTI
and docetaxel was observed across a broad range of concentrations.
In conclusion, our results demonstrated that GGTI can inhibit the
growth of prostate cancer cells and has synergistic effect with
docetaxel, suggesting its potential role in prostate cancer
treatment.
Collapse
|
14
|
Gasser RB, Cantacessi C, Campbell BE, Hofmann A, Otranto D. Major prospects for exploring canine vector borne diseases and novel intervention methods using 'omic technologies. Parasit Vectors 2011; 4:53. [PMID: 21489242 PMCID: PMC3095997 DOI: 10.1186/1756-3305-4-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/13/2011] [Indexed: 11/26/2022] Open
Abstract
Canine vector-borne diseases (CVBDs) are of major socioeconomic importance worldwide. Although many studies have provided insights into CVBDs, there has been limited exploration of fundamental molecular aspects of most pathogens, their vectors, pathogen-host relationships and disease and drug resistance using advanced, 'omic technologies. The aim of the present article is to take a prospective view of the impact that next-generation, 'omics technologies could have, with an emphasis on describing the principles of transcriptomic/genomic sequencing as well as bioinformatic technologies and their implications in both fundamental and applied areas of CVBD research. Tackling key biological questions employing these technologies will provide a 'systems biology' context and could lead to radically new intervention and management strategies against CVBDs.
Collapse
Affiliation(s)
- Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | - Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Domenico Otranto
- Dipartimento di Sanità Pubblica e Zootecnia, Facoltà di Medicina Veterinaria, Università di Bari, Str. prov. le per Casamassima Km 3, 70010, Valenzano, Bari, Italy
| |
Collapse
|