1
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
2
|
Miura Y, Ohkubo H, Nakano A, Bourke JE, Kanazawa S. Pathophysiological conditions induced by SARS-CoV-2 infection reduce ACE2 expression in the lung. Front Immunol 2022; 13:1028613. [PMID: 36405683 PMCID: PMC9673245 DOI: 10.3389/fimmu.2022.1028613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 04/03/2024] Open
Abstract
SARS-CoV-2 infection causes a variety of physiological responses in the lung, and understanding how the expression of SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), and its proteolytic activator, transmembrane serine protease 2 (TMPRSS2), are affected in patients with underlying disease such as interstitial pneumonia will be important in considering COVID-19 progression. We examined the expression of ACE2 and TMPRSS2 in an induced usual interstitial pneumonia (iUIP) mouse model and patients with IPF as well as the changes in whole-lung ACE2 and TMPRSS2 expression under physiological conditions caused by viral infection. Histopathological and biochemical characteristics were analyzed using human specimens from patients with IPF and precision-cut lung slices (PCLS) from iUIP mouse model showing UIP with honeycombing and severe fibrosis after non-specific interstitial pneumonia. ACE2 expression decreased with acute lung inflammation and increased in the abnormal lung epithelium of the iUIP mouse model. ACE2 is also expressed in metaplastic epithelial cells. Poly(I:C), interferons, and cytokines associated with fibrosis decreased ACE2 expression in PCLS in the iUIP model. Hypoxia also decreases ACE2 via HIF1α in PCLS. Antifibrotic agent, nintedanib attenuates ACE2 expression in invasive epithelial cells. Patients with IPF are at a higher risk of SARS-CoV-2 infection due to the high expression of ACE2. However, ACE2 and TMPRSS2 expression is decreased by immune intermediaries, including interferons and cytokines that are associated with viral infection and upon administration of antifibrotic agents, suggesting that most of the viral infection-induced pathophysiological responses aid the development of resistance against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akiko Nakano
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VA, Australia
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Han X, Peng C, Huang L, Luo X, Mao Q, Wu S, Zhang H. EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. Int J Mol Med 2021; 49:11. [PMID: 34841436 PMCID: PMC8691946 DOI: 10.3892/ijmm.2021.5066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Myocardial remodeling is a complex pathological process and its mechanism is unclear. The present study investigated whether epigallocatechin gallate (EGCG) prevents myocardial remodeling by regulating histone acetylation and explored the mechanisms underlying this effect in the heart of a mouse model of transverse aortic constriction (TAC). A TAC mouse model was created by partial thoracic aortic banding (TAB). Subsequently, TAC mice were injected with EGCG at a dose of 50 mg/kg/day for 12 weeks. The hearts of mice were collected for analysis 4, 8 and 12 weeks after TAC. Histopathological changes in the heart were observed by hematoxylin and eosin, Masson trichrome and wheat germ agglutinin staining. Protein expression levels were investigated using western blotting. Cardiac function of mice was detected by echocardiography. The level of histone acetylated lysine 27 on histone H3 (H3K27ac) first increased and then decreased in the hearts of mice at 4, 8 and 12 weeks after TAC. The expression levels of two genes associated with pathological myocardial remodeling, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), also increased initially but then decreased. The expression levels of histone deacetylase 5 (HDAC5) gradually increased in the hearts of mice at 4, 8 and 12 weeks after TAC. Furthermore, EGCG increased acetylation of H3K27ac by inhibiting HDAC5 in the heart of TAC mice treated with EGCG for 12 weeks. EGCG normalized the transcriptional activity of heart nuclear transcription factor myocyte enhancer factor 2A in TAC mice treated for 12 weeks. The low expression levels of myocardial remodeling‑associated genes (ANP and BNP) were reversed by EGCG treatment for 12 weeks in TAC mice. In addition, EGCG reversed cardiac enlargement and improved cardiac function and survival in TAC mice when treated with EGCG for 12 weeks. Modification of the HDAC5‑mediated imbalance in histone H3K27ac served a key role in pathological myocardial remodeling. The present results show that EGCG prevented and delayed myocardial remodeling in TAC mice by inhibiting HDAC5.
Collapse
Affiliation(s)
- Xiao Han
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qian Mao
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuqi Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Huanting Zhang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Flores-Monroy J, Lezama-Martínez D, Fonseca-Coronado S, Martínez-Aguilar L. Differences in the expression of the renin angiotensin system and the kallikrein-kinin system during the course of myocardial infarction in male and female Wistar rats. J Renin Angiotensin Aldosterone Syst 2021; 21:1470320319900038. [PMID: 32458737 PMCID: PMC7268575 DOI: 10.1177/1470320319900038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: There is some evidence that components of the renin-angiotensin system and
kallikrein-kinin system are not similarly regulated in both sexes. The aim
of this work was to analyze the expression of angiotensin-converting enzyme,
angiotensin-converting enzyme 2, angiotensin 1 receptor, angiotensin 2
receptor, beta-1 receptor, and beta-2 receptor during the evolution of
myocardial infarction. Methods: Thirty-six male and 36 female Wistar rats were used. Myocardial infarction
was induced. Six groups of both sexes were formed, (n=6):
(a) sham; (b) 48 h myocardial infarction; (c) one week myocardial
infarction; (d) two weeks myocardial infarction; (e) three weeks myocardial
infarction and (f) four weeks myocardial infarction. The expression was
evaluated by real-time polymerase chain reaction on the penumbra of left
ventricle. Results: The mRNA expression of most biomarkers was lower in females than in males.
During acute infarction, an increase of all protein expression was found in
female and at two weeks while in the male only biomarker changes occurred at
three weeks. In addition, in male biomarkers mRNA expression decreased
during chronic infarction while in females it did not. Conclusions: The renin-angiotensin system and kallikrein-kinin system biomarkers
expression occurs at earlier times in the female than in the male rat. In
addition, during chronic myocardial infarction these biomarkers remained
unchanged in females while in males they decreased.
Collapse
Affiliation(s)
- Jazmín Flores-Monroy
- Laboratorio de Farmacologia del Miocardio, Universidad Nacional Autonoma de Mexico, Mexico
| | - Diego Lezama-Martínez
- Laboratorio de Farmacologia del Miocardio, Universidad Nacional Autonoma de Mexico, Mexico
| | - Salvador Fonseca-Coronado
- Laboratorio de Inmunobiología de Enfermedades Infecciosas, Universidad Nacional Autonoma de Mexico, Mexico
| | - Luisa Martínez-Aguilar
- Laboratorio de Farmacologia del Miocardio, Universidad Nacional Autonoma de Mexico, Mexico
| |
Collapse
|
5
|
Ong SYQ, Flyamer IM, Bickmore WA, Biddie SC. From bedside to bench: regulation of host factors in SARS-CoV-2 infection. Exp Mol Med 2021; 53:483-494. [PMID: 33828231 PMCID: PMC8024942 DOI: 10.1038/s12276-021-00595-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
The zoonotic coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which causes COVID-19 (coronavirus disease-2019), has resulted in a pandemic. This has led to an urgent need to understand the molecular determinants of SARS-CoV-2 infection, factors associated with COVID-19 heterogeneity and severity, and therapeutic options for these patients. In this review, we discuss the role of host factors in SARS-CoV-2 infection and describe variations in host factor expression as mechanisms underlying the symptoms and severity of COVID-19. We focus on two host factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), implicated in SARS-CoV-2 infection. We also discuss genetic variants associated with COVID-19 severity revealed in selected patients and based on genome-wide association studies (GWASs). Furthermore, we highlight important advances in cell and chromatin biology, such as single-cell RNA and chromatin sequencing and chromosomal conformation assays, as methods that may aid in the discovery of viral-host interactions in COVID-19. Understanding how regulation of host factor genes varies in physiological and pathological states might explain the heterogeneity observed in SARS-CoV-2 infection, help identify pathways for therapeutic development, and identify patients most likely to progress to severe COVID-19.
Collapse
Affiliation(s)
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon C Biddie
- Intensive Care Medicine, NHS Lothian, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
6
|
Khoury EE, Knaney Y, Fokra A, Kinaneh S, Azzam Z, Heyman SN, Abassi Z. Pulmonary, cardiac and renal distribution of ACE2, furin, TMPRSS2 and ADAM17 in rats with heart failure: Potential implication for COVID-19 disease. J Cell Mol Med 2021; 25:3840-3855. [PMID: 33660945 PMCID: PMC8014258 DOI: 10.1111/jcmm.16310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Congestive heart failure (CHF) is often associated with kidney and pulmonary dysfunction. Activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid sodium retention, cardiac hypertrophy and oedema formation, including lung congestion. While the status of the classic components of RAAS such as renin, angiotensin converting enzyme (ACE), angiotensin II (Ang II) and angiotensin II receptor AT-1 is well studied in CHF, the expression of angiotensin converting enzyme-2 (ACE2), a key enzyme of angiotensin 1-7 (Ang 1-7) generation in the pulmonary, cardiac and renal systems has not been studied thoroughly in this clinical setting. This issue is of a special interest as Ang 1-7 counterbalance the vasoconstrictory, pro-inflammatory and pro-proliferative actions of Ang II. Furthermore, CHF predisposes to COVID-19 disease severity, while ACE2 also serves as the binding domain of SARS-CoV-2 in human host-cells, and acts in concert with furin, an important enzyme in the synthesis of BNP in CHF, in permeating viral functionality along TMPRSST2. ADAM17 governs ACE2 shedding from cell membranes. Therefore, the present study was designed to investigate the expression of ACE2, furin, TMPRSS2 and ADAM17 in the lung, heart and kidneys of rats with CHF to understand the exaggerated susceptibility of clinical CHF to COVID-19 disease. Heart failure was induced in male Sprague Dawley rats by the creation of a surgical aorto-caval fistula. Sham-operated rats served as controls. One week after surgery, the animals were subdivided into compensated and decompensated CHF according to urinary sodium excretion. Both groups and their controls were sacrificed, and their hearts, lungs and kidneys were harvested for assessment of tissue remodelling and ACE2, furin, TMPRSS2 and ADAM17 immunoreactivity, expression and immunohistochemical staining. ACE2 immunoreactivity and mRNA levels increased in pulmonary, cardiac and renal tissues of compensated, but not in decompensated CHF. Furin immunoreactivity was increased in both compensated and decompensated CHF in the pulmonary, cardiac tissues and renal cortex but not in the medulla. Interestingly, both the expression and abundance of pulmonary, cardiac and renal TMPRSS2 decreased in CHF in correlation with the severity of the disease. Pulmonary, cardiac and renal ADAM17 mRNA levels were also downregulated in decompensated CHF. Circulating furin levels increased in proportion to CHF severity, whereas plasma ACE2 remained unchanged. In summary, ACE2 and furin are overexpressed in the pulmonary, cardiac and renal tissues of compensated and to a lesser extent of decompensated CHF as compared with their sham controls. The increased expression of the ACE2 in heart failure may serve as a compensatory mechanism, counterbalancing the over-activity of the deleterious isoform, ACE. Downregulated ADAM17 might enhance membranal ACE2 in COVID-19 disease, whereas the suppression of TMPRSS2 in CHF argues against its involvement in the exaggerated susceptibility of CHF patients to SARS-CoV2.
Collapse
Affiliation(s)
- Emad E. Khoury
- Department of Physiology and BiophysicsRappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Yara Knaney
- Department of Physiology and BiophysicsRappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahmad Fokra
- Department of Physiology and BiophysicsRappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Safa Kinaneh
- Department of Physiology and BiophysicsRappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Zaher Azzam
- Department of Internal MedicineRambam Medical CenterHaifaIsrael
| | - Samuel N. Heyman
- Department of MedicineHadassah Hebrew University HospitalJerusalemIsrael
| | - Zaid Abassi
- Department of Physiology and BiophysicsRappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
- Laboratory MedicineRambam Medical CenterHaifaIsrael
| |
Collapse
|
7
|
Zhu H, Zhang L, Ma Y, Zhai M, Xia L, Liu J, Yu S, Duan W. The role of SARS-CoV-2 target ACE2 in cardiovascular diseases. J Cell Mol Med 2021; 25:1342-1349. [PMID: 33443816 PMCID: PMC7875924 DOI: 10.1111/jcmm.16239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the virus responsible for the global coronavirus disease (COVID-19) pandemic, attacks multiple organs of the human body by binding to angiotensin-converting enzyme 2 (ACE2) to enter cells. More than 20 million people have already been infected by the virus. ACE2 is not only a functional receptor of COVID-19 but also an important endogenous antagonist of the renin-angiotensin system (RAS). A large number of studies have shown that ACE2 can reverse myocardial injury in various cardiovascular diseases (CVDs) as well as is exert anti-inflammatory, antioxidant, anti-apoptotic and anticardiomyocyte fibrosis effects by regulating transforming growth factor beta, mitogen-activated protein kinases, calcium ions in cells and other major pathways. The ACE2/angiotensin-(1-7)/Mas receptor axis plays a decisive role in the cardiovascular system to combat the negative effects of the ACE/angiotensin II/angiotensin II type 1 receptor axis. However, the underlying mechanism of ACE2 in cardiac protection remains unclear. Some approaches for enhancing ACE2 expression in CVDs have been suggested, which may provide targets for the development of novel clinical therapies. In this review, we aimed to identify and summarize the role of ACE2 in CVDs.
Collapse
Affiliation(s)
- Hanzhao Zhu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Liyun Zhang
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Yubo Ma
- Department of Dermatology and VenereologyPeking University First HospitaBeijingChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Lin Xia
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Shiqiang Yu
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryThe First Affiliated HospitalThe Air Force Medical UniversityXi’anChina
| |
Collapse
|
8
|
Hao P, Liu Y, Guo H, Zhang Z, Chen Q, Hao G, Zhang C, Zhang Y. Prolylcarboxypeptidase Mitigates Myocardial Ischemia/Reperfusion Injury by Stabilizing Mitophagy. Front Cell Dev Biol 2020; 8:584933. [PMID: 33195231 PMCID: PMC7642202 DOI: 10.3389/fcell.2020.584933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The role of prolylcarboxypeptidase (PRCP) in myocardial ischemia/reperfusion (I/R) injury is unclear. Herein, we aimed to evaluate the protective effect of the PRCP-angiotensin-(1-7) [Ang-(1-7)]/bradykinin-(1-9) [BK-(1-9)] axis on myocardial I/R injury and identify the mechanisms involved. Plasma PRCP level and activity, as well as Ang-(1-7) and BK-(1-9) levels, were compared in healthy subjects, patients with unstable angina, and those with ST-segment-elevated acute myocardial infarction (AMI). Thereafter, the effects of PRCP overexpression and knockdown on left ventricular function, mitophagy, and levels of Ang-(1-7) and BK-(1-9) were examined in rats during myocardial I/R. Finally, the effects of Ang-(1-7) and BK-(1-9) on I/R-induced mitophagy and the signaling pathways involved were investigated in vitro in rat cardiomyocytes. AMI patients showed increased plasma level and activity of PRCP and levels of Ang-(1-7) and BK-(1-9) as compared with healthy subjects and those with unstable angina. PRCP protected against myocardial I/R injury in rats by paradoxical regulation of cardiomyocyte mitophagy during the ischemia and reperfusion phases, which was mediated by downstream Ang-(1-7) and BK-(1-9). We further depicted a possible role of activation of AMPK in mitophagy induction during ischemia and activation of Akt in mitophagy inhibition during reperfusion in the beneficial effects of Ang-(1-7) and BK-(1-9). Thus, the PRCP-Ang-(1-7)/BK-(1-9) axis may protect against myocardial I/R injury by paradoxical regulation of cardiomyocyte mitophagy during ischemia and reperfusion phases.
Collapse
Affiliation(s)
- Panpan Hao
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Liu
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Haipeng Guo
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Shandong University, Jinan, China
| | - Qingjie Chen
- First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Guoxiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Bautista-Vargas M, Bonilla-Abadía F, Cañas CA. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J Thromb Thrombolysis 2020; 50:479-483. [PMID: 32519164 PMCID: PMC7282470 DOI: 10.1007/s11239-020-02172-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In December 2019, a new and highly contagious infectious disease emerged in Wuhan, China. The etiologic agent was identified as a novel coronavirus, now known as Severe Acute Syndrome Coronavirus-2 (SARS-CoV-2). Recent research has revealed that virus entry takes place upon the union of the virus S surface protein with the type I transmembrane metallo-carboxypeptidase, angiotensin converting enzyme 2 (ACE-2) identified on epithelial cells of the host respiratory tract. Virus triggers the synthesis and release of pro-inflammatory cytokines, including IL-6 and TNF-α and also promotes downregulation of ACE-2, which promotes a concomitant increase in levels of angiotensin II (AT-II). Both TNF-α and AT-II have been implicated in promoting overexpression of tissue factor (TF) in platelets and macrophages. Additionally, the generation of antiphospholipid antibodies associated with COVID-19 may also promote an increase in TF. TF may be a critical mediator associated with the development of thrombotic phenomena in COVID-19, and should be a target for future study.
Collapse
Affiliation(s)
- Mario Bautista-Vargas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Avenida Simón Bolívar Cra.98 No.18-49, Cali, Colombia
| | - Fabio Bonilla-Abadía
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Avenida Simón Bolívar Cra.98 No.18-49, Cali, Colombia
| | - Carlos A Cañas
- Unit of Rheumatology, Fundación Valle del Lili, Universidad Icesi, Avenida Simón Bolívar Cra.98 No.18-49, Cali, Colombia.
| |
Collapse
|
10
|
Abstract
Purpose of Review Angiotensin-converting enzyme 2 (ACE2), a specific high-affinity angiotensin II-hydrolytic enzyme, is the vector that facilitates cellular entry of SARS-CoV-1 and the novel SARS-CoV-2 coronavirus. SARS-CoV-2, which crossed species barriers to infect humans, is highly contagious and associated with high lethality due to multi-organ failure, mostly in older patients with other co-morbidities. Recent Findings Accumulating clinical evidence demonstrates that the intensity of the infection and its complications are more prominent in men. It has been postulated that potential functional modulation of ACE2 by estrogen may explain the sex difference in morbidity and mortality. Summary We review here the evidence regarding the role of estrogenic hormones in ACE2 expression and regulation, with the intent of bringing to the forefront potential mechanisms that may explain sex differences in SARS-CoV-2 infection and COVID-19 outcomes, assist in management of COVID-19, and uncover new therapeutic strategies.
Collapse
|
11
|
Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Crit Rev Food Sci Nutr 2020; 61:2572-2586. [PMID: 32551837 DOI: 10.1080/10408398.2020.1781049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food protein-derived bioactive peptides, particularly antihypertensive peptides, are important constituents of functional foods or nutraceuticals. Most antihypertensive are identified as the inhibitors of angiotensin converting enzyme (ACE), a key enzyme responsible for the generation of angiotensin II (Ang II), which is a vasoconstricting peptide. Hence, ACE has long been used as a universal target to identify antihypertensive peptides. Angiotensin converting enzyme 2 (ACE2), is a homolog of ACE but uses Ang II as its key substrate to produce angiotensin (1-7), exerting vasodilatory activity via the mas receptor (MasR). Therefore, ACE2 functions in the opposite way as ACE and is an emerging novel target for cardiovascular therapy. The potential of food protein-derived bioactive peptides in targeting ACE2 has been rarely explored. While, recently we found that IRW, an egg white ovotransferrin-derived antihypertensive peptide, reduced blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/MasR axis, indicating a new mechanism of food protein-derived bioactive peptides in reducing blood pressure. The objectives of this review are to summarize the functions of the ACE2/Ang (1-7)/MasR axis and to examine its potential roles in the actions of food protein-derived antihypertensive peptides. The interaction between antihypertensive peptides and the ACE2/Ang (1-7)/MasR axis will also be discussed.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Abassi Z, Assady S, Khoury EE, Heyman SN. Letter to the Editor: Angiotensin-converting enzyme 2: an ally or a Trojan horse? Implications to SARS-CoV-2-related cardiovascular complications. Am J Physiol Heart Circ Physiol 2020; 318:H1080-H1083. [PMID: 32223552 PMCID: PMC7191629 DOI: 10.1152/ajpheart.00215.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mount Scopus, Jerusalem, Israel
| |
Collapse
|
13
|
The Association of Ascorbic Acid, Deferoxamine and N-Acetylcysteine Improves Cardiac Fibroblast Viability and Cellular Function Associated with Tissue Repair Damaged by Simulated Ischemia/Reperfusion. Antioxidants (Basel) 2019; 8:antiox8120614. [PMID: 31817022 PMCID: PMC6943610 DOI: 10.3390/antiox8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction is one of the leading causes of death worldwide and thus, an extensively studied disease. Nonetheless, the effects of ischemia/reperfusion injury elicited by oxidative stress on cardiac fibroblast function associated with tissue repair are not completely understood. Ascorbic acid, deferoxamine, and N-acetylcysteine (A/D/N) are antioxidants with known cardioprotective effects, but the potential beneficial effects of combining these antioxidants in the tissue repair properties of cardiac fibroblasts remain unknown. Thus, the aim of this study was to evaluate whether the pharmacological association of these antioxidants, at low concentrations, could confer protection to cardiac fibroblasts against simulated ischemia/reperfusion injury. To test this, neonatal rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion in the presence or absence of A/D/N treatment added at the beginning of simulated reperfusion. Cell viability was assessed using trypan blue staining, and intracellular reactive oxygen species (ROS) production was assessed using a 2′,7′-dichlorofluorescin diacetate probe. Cell death was measured by flow cytometry using propidium iodide. Cell signaling mechanisms, differentiation into myofibroblasts and pro-collagen I production were determined by Western blot, whereas migration was evaluated using the wound healing assay. Our results show that A/D/N association using a low concentration of each antioxidant increased cardiac fibroblast viability, but that their separate administration did not provide protection. In addition, A/D/N association attenuated oxidative stress triggered by simulated ischemia/reperfusion, induced phosphorylation of pro-survival extracellular-signal-regulated kinases 1/2 (ERK1/2) and PKB (protein kinase B)/Akt, and decreased phosphorylation of the pro-apoptotic proteins p38- mitogen-activated protein kinase (p38-MAPK) and c-Jun-N-terminal kinase (JNK). Moreover, treatment with A/D/N also reduced reperfusion-induced apoptosis, evidenced by a decrease in the sub-G1 population, lower fragmentation of pro-caspases 9 and 3, as well as increased B-cell lymphoma-extra large protein (Bcl-xL)/Bcl-2-associated X protein (Bax) ratio. Furthermore, simulated ischemia/reperfusion abolished serum-induced migration, TGF-β1 (transforming growth factor beta 1)-mediated cardiac fibroblast-to-cardiac myofibroblast differentiation, and angiotensin II-induced pro-collagen I synthesis, but these effects were prevented by treatment with A/D/N. In conclusion, this is the first study where a pharmacological combination of A/D/N, at low concentrations, protected cardiac fibroblast viability and function after simulated ischemia/reperfusion, and thereby represents a novel therapeutic approach for cardioprotection.
Collapse
|
14
|
Dörr K, Kammer M, Reindl-Schwaighofer R, Lorenz M, Loewe C, Marculescu R, Erben R, Oberbauer R. Effect of etelcalcetide on cardiac hypertrophy in hemodialysis patients: a randomized controlled trial (ETECAR-HD). Trials 2019; 20:601. [PMID: 31651370 PMCID: PMC6813957 DOI: 10.1186/s13063-019-3707-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/06/2019] [Indexed: 02/15/2023] Open
Abstract
Background Fibroblast growth factor 23 (FGF23) is associated with left ventricular hypertrophy (LVH) in patients with chronic kidney disease, and calcimimetic therapy reduces plasma concentrations of FGF23. It remains unknown whether treatment with the calcimimetic etelcalcetide (ETL) reduces LVH in patients on hemodialysis. Methods/design This single-blinded randomized trial of 12 months duration will test the effects of ETL compared with alfacalcidol on LVH and cardiac fibrosis in maintenance hemodialysis patients with secondary hyperparathyroidism. Both treatment regimens will be titrated to equally suppress secondary hyperparathyroidism while alfacalcidol treatment causes an increase and ETL a decrease in FGF23, respectively. Patients treated thrice weekly with hemodialysis for ≥ 3 months and ≤ 3 years with parathyroid hormone levels ≥ 300 pg/ml and LVH will be enrolled in the study. The primary study endpoint is change from baseline to 12 months in left ventricular mass index (LVMI; g/m2) measured by cardiac magnetic resonance imaging. Sample size calculations showed that 62 randomized patients will be necessary to detect a difference in LVMI of at least 20 g/m2 between the two groups at 12 months. Due to the strong association of volume overload and LVH, randomization will be stratified by residual kidney function, and regular body composition monitoring will be performed to control the volume status of patients. Study medication will be administered intravenously by the dialysis nurses after every hemodialysis session, thus omitting adherence issues. Secondary study endpoints are cardiac parameters measured by echocardiography, biomarker concentrations of bone metabolism (FGF23, vitamin D, parathyroid hormone, calcium, phosphate, s-Klotho), cardiac markers (pro-brain natriuretic peptide, pre- and postdialysis troponin T) and metabolites of the renin–angiotensin–aldosterone cascade (angiotensin I (Ang I), Ang II, Ang-(1–7), Ang-(1–5), Ang-(1–9), and aldosterone). Discussion The causal inference and pathophysiology of LVH regression by FGF23 reduction using calcimimetic treatment has not yet been shown. This intervention study has the potential to discover a new strategy for the treatment of cardiac hypertrophy and fibrosis in patients on maintenance hemodialysis. It might be speculated that successful treatment of cardiac morphology will also reduce the risk of cardiac death in this population. Trial registration European Clinical Trials Database, EudraCT number 2017-000222-35; ClinicalTrials.gov, NCT03182699. Registered on
Collapse
Affiliation(s)
- Katharina Dörr
- Department of Nephrology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michael Kammer
- Department of Nephrology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.,Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Section for Clinical Biometrics, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | | | - Matthias Lorenz
- Vienna Dialysis Center, Kapellenweg 37, 1220, Vienna, Austria
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Intervention, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Rodrig Marculescu
- Laboratory Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Reinhold Erben
- Physiology, Pathophysiology, and Experimental Endocrinology, VetMed Vienna, Veterinärplatz 1, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
16
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Zhang YY, Yu Y, Yu C. Antifibrotic Roles of RAAS Blockers: Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:671-691. [PMID: 31399990 PMCID: PMC7121580 DOI: 10.1007/978-981-13-8871-2_33] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The rennin-angiotensin-aldosterone system (RAAS) has been well documented in regulating blood pressure, fluid volume, and sodium balance. Overactivity of RAAS promotes both systemic and regional glomerular capillary hypertension, which could induce hemodynamic injury to the glomerulus, leading to kidney damage and renal fibrosis via profibrotic and proinflammatory pathway. Therefore, the use of RAAS inhibitors (i.e., ACEIs, ARBs, and MRAs) as the optional therapy has been demonstrated to prevent proteinuria, and kidney fibrosis and slow the decline of renal function effectively in the process of kidney disease during the last few decades. Recently, several new components of the RAAS have been discovered, including ACE2 and the corresponding ACE2/Ang (1-7)/Mas axis, which are also present in the kidney. Besides the classic RAAS inhibitors target the angiotensin-AT1-aldosterone axis, with the expanding knowledge about RAAS, a number of potential therapeutic targets in this system is emerging. Newer agents that are more specific are being developed. The present chapter outlines the insights of the RAAS agents (classic RAAS antagonists/the new RAAS drugs), and discusses its clinical application in the combat of renal fibrosis.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Abstract
Classic and nonclassic renin-angiotensin systems (RAS) are 2 sides of an ubiquitous endocrine/paracrine cascade regulating blood pressure and homeostasis. Angiotensin II and angiotensin-converting enzyme (ACE) levels are associated with severity of disease in the critically ill, and are central to the physiology and the pathogenesis of circulatory shock. Angiotensin (1-7) and ACE2 act as an endogenous counterregulatory arm to the angiotensin II/ACE axis. The tissue-based RAS has paracrine effects dissociated from those of the circulating RAS. Exogenous angiotensin II or ACE2 may improve the outcome of septic shock and acute respiratory distress syndrome, respectively.
Collapse
Affiliation(s)
- Laurent Bitker
- Department of Intensive Care, ICU Research Office, Austin Hospital, 145 Studley Road, Heidelberg, Victoria 3084, Australia.
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Austin Health, Austin Hospital, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
19
|
Lu CC, Ma KL, Ruan XZ, Liu BC. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int J Med Sci 2018; 15:816-822. [PMID: 30008592 PMCID: PMC6036087 DOI: 10.7150/ijms.25543] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/14/2018] [Indexed: 02/07/2023] Open
Abstract
Considerable interest nowadays has focused on gut microbiota owing to their pleiotropic roles in human health and diseases. This intestinal community can arouse a variety of activities in the host and function as "a microbial organ" by generating bioactive metabolites and participating in a series of metabolism-dependent pathways. Alternations in the composition of gut microbiota, referred to as intestinal dysbiosis, are reportedly associated with several diseases, especially diabetes mellitus and its complications. Here we focus on the relationship between gut microbiota and diabetic nephropathy (DN), as the latter is one of the major causes of chronic kidney diseases. The activation of renin angiotensin system (RAS) is a critical factor to the onset of DN, and emerging data has demonstrated a provoking and mediating role of gut microbiota for this system in the context of metabolic diseases. The purpose of the current review is to highlight some research updates about the underlying interplay between gut microbiota, their metabolites, and the development and progression of DN, along with exploring innovative approaches to targeting this intestinal community as a therapeutic perspective in clinical management of DN patients.
Collapse
Affiliation(s)
- Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
20
|
Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. J Am Coll Cardiol 2017; 68:2652-2666. [PMID: 27978950 PMCID: PMC5158000 DOI: 10.1016/j.jacc.2016.09.946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
Background Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). Objectives The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. Methods C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. Results Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A–dependent mechanism. Conclusions Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A–dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.
Collapse
Affiliation(s)
- Caroline Fattah
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica Flores-Munoz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; Universidad Veracruzana, Xalapa, Mexico
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
21
|
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res 2016; 118:1313-26. [PMID: 27081112 DOI: 10.1161/circresaha.116.307708] [Citation(s) in RCA: 592] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.
Collapse
Affiliation(s)
- Vaibhav B Patel
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Jiu-Chang Zhong
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Maria B Grant
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Gavin Y Oudit
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.).
| |
Collapse
|
22
|
Kovesdy CP, Quarles LD. FGF23 from bench to bedside. Am J Physiol Renal Physiol 2016; 310:F1168-74. [PMID: 26864938 DOI: 10.1152/ajprenal.00606.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
There is a strong association between elevated circulating fibroblast growth factor-23 (FGF23) levels and adverse outcomes in patients with chronic kidney disease (CKD) of all stages. Initially discovered as a regulator of phosphate and vitamin D homeostasis, FGF23 has now been implicated in several pathophysiological mechanisms that may negatively impact the cardiovascular and renal systems. FGF23 is purported to have direct (off-target) effects in the myocardium, as well as canonical effects on FGF receptor/α-klotho receptor complexes in the kidney to activate the renin-angiotensin-aldosterone system, modulate soluble α-klotho levels, and increase sodium retention, to cause left ventricular hypertrophy (LVH). Conversely, FGF23 could be an innocent bystander produced in response to chronic inflammation or other processes associated with CKD that cause LVH and adverse cardiovascular outcomes. Further exploration of these complex mechanisms is needed before modulation of FGF23 can become a legitimate clinical target in CKD.
Collapse
Affiliation(s)
- Csaba P Kovesdy
- University of Tennessee Health Science Center, Memphis, Tennessee; and Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - L Darryl Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
23
|
Zhao P, Li F, Gao W, Wang J, Fu L, Chen Y, Huang M. Angiotensin1-7 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress by preventing ROS-associated mitochondrial dysfunction and activating the Akt signaling pathway. Acta Histochem 2015; 117:803-10. [PMID: 26251197 DOI: 10.1016/j.acthis.2015.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/12/2023]
Abstract
Angiotensin1-7 (Ang1-7) is a biologically active member of the renin-angiotensin system, which has been reported to exhibit protective effect in myocardial ischemia reperfusion-induced injury. However, the molecular basis of this effect is not well understood. It has been proposed that oxidative stress-induced cardiomyocyte apoptosis is a major consequence of hypoxia/reoxygenation (H/R) injury. This study investigates the protective effect of Ang1-7 against H/R-induced oxidative stress in rat H9C2 cells. Our results showed that Ang1-7 (80nM) treatment significantly protected cells from H/R-induced oxidative injury via improving cell viability and reducing cell apoptosis. The protective effect of Ang1-7 was associated with the inhibition of ROS-associated mitochondrial dysfunction as well as the induction of Akt phosphorylation. These findings may significantly contribute to better understanding the protective effect of Ang1-7, particularly in hypoxia/reoxygenation-induced heart diseases and form the basis in the therapeutic development in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Pengjun Zhao
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Fen Li
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China.
| | - Wei Gao
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Jing Wang
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Lijun Fu
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Yiwei Chen
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| | - Meirong Huang
- Department of Cardiology, Children's Medical Center Affiliated to Shanghai Jiao Tong University Medical College, Shanghai 200127, China
| |
Collapse
|
24
|
Wysocki J, Wilsbacher L, Batlle D. Angiotensins and the heart: is angiotensin-(1-7) cardioprotective? Hypertension 2015; 66:260-2. [PMID: 26077564 DOI: 10.1161/hypertensionaha.115.05093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jan Wysocki
- From the Division of Nephrology and Hypertension (J.W., D.B.) and Division of Cardiology and Feinberg Cardiovascular Research Institute (L.W.), Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lisa Wilsbacher
- From the Division of Nephrology and Hypertension (J.W., D.B.) and Division of Cardiology and Feinberg Cardiovascular Research Institute (L.W.), Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Batlle
- From the Division of Nephrology and Hypertension (J.W., D.B.) and Division of Cardiology and Feinberg Cardiovascular Research Institute (L.W.), Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
25
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
26
|
Wang J, Li N, Gao F, Song R, Zhu S, Geng Z. Balance between angiotensin converting enzyme and angiotensin converting enzyme 2 in patients with chronic heart failure. J Renin Angiotensin Aldosterone Syst 2015; 16:553-8. [PMID: 25869724 DOI: 10.1177/1470320315576257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/10/2015] [Indexed: 11/16/2022] Open
Abstract
AIM It has been reported that angiotensin converting enzyme 2 (ACE2) is an endogenous counter-regulator of the renin-angiotensin-aldosterone system. However, angiotensin converting enzyme (ACE)/ACE2 balance in the development of human heart failure is not well established. METHODS Here we evaluated the expression of ACE and ACE2 at the mRNA and protein levels in the myocardium of 78 patients with mild or moderate to severe heart failure and in 13 cases with normal myocardium. RESULTS In the myocardium of patients with dilated or ischemic cardiomyopathy, ACE and ACE2 expression at the mRNA and protein levels was significantly increased compared with those in normal myocardium (P<0.01, P<0.01, respectively). The ratios of ACE/ACE2 mRNA and ACE/ACE2 were lower in the myocardium of patients with mild heart failure than those in normal myocardium but higher than those in patients with moderate to severe heart failure. CONCLUSIONS ACE and ACE2 expression at the mRNA and protein levels are significantly increased in the myocardium of patients with heart failure. The compensatory mechanism of patients with mild heart may cause the decreased ACE/ACE2 ratio. However, increased ACE/ACE2 ratios may induce angiotensin II over-activation and accelerate cardiac remodeling in patients with moderate to severe heart failure.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| | - Nan Li
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| | - Feng Gao
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| | - Rong Song
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| | - Shanjun Zhu
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| | - Zhaohua Geng
- Department of Cardiology, Xinqiao Hospital, the Third Military Medical University, China
| |
Collapse
|
27
|
Cofre C, Acuña MJ, Contreras O, Morales MG, Riquelme C, Cabello-Verrugio C, Brandan E. Transforming growth factor type-β inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. Biofactors 2015; 41:111-20. [PMID: 25809912 DOI: 10.1002/biof.1208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/26/2015] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy is a genetic disorder characterized by myofiber degeneration, muscle weakness, and increased fibrosis. Transforming growth factor type-β (TGF-β), a central mediator of fibrosis, is upregulated in fibrotic diseases. Angiotensin-(1-7) [Ang-(1-7)] is a peptide with actions that oppose those of angiotensin-II (Ang II). Ang-(1-7) effects are mediated by the Mas receptor. Treatment with Ang-(1-7) produce positive effects in the mdx mouse, normalizing skeletal muscle architecture, decreasing local fibrosis, and fibroblasts, and improving muscle function. Mdx mice deficient for the Mas receptor showed the opposite effects. To identify the cell type(s) responsible for Mas receptor expression, and to characterize whether profibrotic effectors had any effect on its expression, we determined the effect of profibrotic agents on Mas expression. TGF-β, but not connective tissue growth factor or Ang-II, reduced the expression of Mas receptor in fibroblasts isolated from skeletal muscle cells and fibroblasts from two established cell lines. In contrast, no effects were observed in myoblasts and differentiated myotubes. This inhibition was mediated by the Smad-dependent (canonical) and the PI3K and MEK1/2 (noncanonical) TGF-β signaling pathways. When both canonical and noncanonical inhibitors of the TGF-β-dependent pathways were added together, the inhibitory effect of TGF-β on Mas expression was lost. The decrease in Mas receptor induced by TGF-β in fibroblasts reduced the Ang-(1-7) mediated stimulation of phosphorylation of AKT pathway proteins. These results suggest that reduction of Mas receptor in fibroblasts, by TGF-β, could increase the fibrotic phenotype observed in dystrophic skeletal muscle decreasing the beneficial effect of Ang-(1-7).
Collapse
MESH Headings
- Angiotensin I/pharmacology
- Angiotensin II/pharmacology
- Animals
- Cell Line
- Disease Models, Animal
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Gene Expression Regulation
- MAP Kinase Kinase 1/genetics
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/genetics
- MAP Kinase Kinase 2/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myoblasts/pathology
- Organ Specificity
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Primary Cell Culture
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Catalina Cofre
- Center for Aging and Regeneration, CARE Chile-UC and Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
28
|
Sevá Pessôa B, Becher PM, Van Veghel R, De Vries R, Tempel D, Sneep S, Van Beusekom H, Van Der Velden VHJ, Westermann D, Danser AHJ, Roks AJM. Effect of a stable Angiotensin-(1-7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction. J Am Heart Assoc 2015; 4:jah3823. [PMID: 25655571 PMCID: PMC4345874 DOI: 10.1161/jaha.114.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Angiotensin‐(1–7) improves cardiac function and remodeling after myocardial infarction (MI). This may involve recruitment of hematopoietic progenitor cells that support angiogenesis. However, angiotensin‐(1–7) is rapidly metabolized in plasma and tissue. The authors investigated in mice the effect of a metabolically stable angiotensin‐(1–7) analogue, cyclic angiotensin‐(1–7), on progenitor cell recruitment and on the heart post MI, when given in the angiogenesis phase of remodeling. Methods and Results Angiogenic progenitor cell recruitment was measured by using flow cytometry 24 and 72 hours after a daily bolus injection of cyclic angiotensin‐(1–7) in healthy C57BL/6 mice. Further, mice underwent MI or sham surgery and subsequently received saline or 2 different doses of cyclic angiotensin‐(1–7) for 3 or 9 weeks. Cyclic angiotensin‐(1–7) increased circulating hematopoietic progenitor cells at 24 hours but not 72 hours. Post MI, cyclic angiotensin‐(1–7) diminished cardiomyocyte hypertrophy and reduced myogenic tone, without altering cardiovascular function or cardiac histology at 9 weeks. Importantly, cyclic angiotensin‐(1–7)–treated mice had reduced cardiac capillary density at 3 weeks after MI but not after 9 weeks. Finally, cyclic angiotensin‐(1–7) decreased tube formation by cultured human umbilical vein endothelial cells. Conclusions Our results suggest that cyclic angiotensin‐(1–7), when given early after MI, recruits progenitor cells but does not lead to improved angiogenesis, most likely because it simultaneously exerts antiangiogenic effect in adult endothelial cells. Apparently, optimal treatment with cyclic angiotensin‐(1–7) depends on the time point of onset of application after MI.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Peter Moritz Becher
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - Richard Van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - René De Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Dennie Tempel
- Division of Cardiology and Pulmonology, Department of Interventional Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (D.T.)
| | - Stefan Sneep
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Heleen Van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Vincent H J Van Der Velden
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (V.J.V.D.V.)
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| |
Collapse
|
29
|
Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension 2014; 64:1368-1375. [PMID: 25225202 PMCID: PMC4231883 DOI: 10.1161/hypertensionaha.114.03743] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/24/2014] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of angiotensin II (Ang-II) to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contributes to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 downregulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Furthermore, coimmunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes, and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism.
Collapse
Affiliation(s)
- Matthew R. Deshotels
- Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Huijing Xia
- Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Srinivas Sriramula
- Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Catalin M. Filipeanu
- Department of Pharmacology & Experimental Therapeutics and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Pharmacology, College of Medicine, Howard University Washington, DC, USA
| |
Collapse
|
30
|
Abstract
The renin-angiotensin system (RAS) plays a major role in the pathophysiology of cardiovascular disorders. Angiotensin II (Ang-II), the final product of this pathway, is known for its vasoconstrictive and proliferative effects. Angiotensin-converting enzyme 2 (ACE2), a newly discovered homolog of ACE, plays a key role as the central negative regulator of the RAS. It diverts the generation of vasoactive Ang-II into the vasodilatory and growth inhibiting peptide angiotensin(1-7) [Ang(1-7)], thereby providing counter-regulatory responses to neurohormonal activation. There is substantial experimental evidence evaluating the role of ACE2/Ang(1-7) in hypertension, heart failure, and atherosclerosis. In this review, we aim to focus on the conceptual facts of the ACE2-Ang(1-7) axis with regards to clinical implications and therapeutic targets in cardiovascular disorders, with emphasis on the potential therapeutic role in cardiovascular diseases.
Collapse
|
31
|
Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421. Clin Sci (Lond) 2014; 127:243-9. [PMID: 24564768 DOI: 10.1042/cs20130420] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.
Collapse
|
32
|
Shao Z, Shrestha K, Borowski AG, Kennedy DJ, Epelman S, Thomas JD, Tang WHW. Increasing serum soluble angiotensin-converting enzyme 2 activity after intensive medical therapy is associated with better prognosis in acute decompensated heart failure. J Card Fail 2014; 19:605-10. [PMID: 24054336 DOI: 10.1016/j.cardfail.2013.06.296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) is an endogenous counterregulator of the renin-angiotensin system that has been recently identified in circulating form. We aimed to investigate the relationship among changes in soluble ACE2 (sACE2) activity, myocardial performance, and long-term clinical outcomes in patients with acute decompensated heart failure (ADHF). We hypothesized that increasing sACE2 activity levels during intensive medical treatment are associated with improved myocardial performance and long-term clinical outcomes. METHODS AND RESULTS In 70 patients admitted to the intensive care unit with ADHF, serum sACE2 activity levels, echocardiographic data, and hemodynamic variables were collected within 12 hours of admission (n = 70) and 48-72 hours after intensive medical treatment (n = 57). The median [interquartile range] baseline and 48-72-hour serum sACE2 activity levels were 32 [23-43] ng/mL and 40 [28-60] ng/mL, respectively. Baseline serum sACE2 activity levels correlated with surrogate measures of right ventricular diastolic dysfunction, including right atrial volume index (RAVi; r = 0.31; P = .010), tricuspid E/A ratio (r = 0.39; P = .007), and B-type natriuretic peptide (r = 0.32; P = .008). However, there were no correlations between serum sACE2 and left ventricular systolic or diastolic dysfunction. After intensive medical therapy, a 50% increase in baseline serum sACE2 levels predicted a significant reduction in risk of death, cardiac transplantation, or ADHF rehospitalization, including after adjustment for baseline age, RAVi, and BNP levels (hazard ratio 0.35, 95% confidence interval 0.12-0.84; P = .018). CONCLUSIONS In patients admitted with ADHF, increasing serum sACE2 activity levels during intensive medical therapy predict improved outcomes independently from underlying cardiac indices.
Collapse
Affiliation(s)
- Zhili Shao
- Center for Cardiovascular Diagnostics and Prevention, Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
33
|
Riquelme C, Acuña MJ, Torrejón J, Rebolledo D, Cabrera D, Santos RA, Brandan E. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis. PLoS One 2014; 9:e93449. [PMID: 24695436 PMCID: PMC3973684 DOI: 10.1371/journal.pone.0093449] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease and is characterized by absence of the cytoskeletal protein dystrophin, muscle wasting, and fibrosis. We previously demonstrated that systemic infusion or oral administration of angiotensin-(1-7) (Ang-(1-7)), a peptide with opposing effects to angiotensin II, normalized skeletal muscle architecture, decreased local fibrosis, and improved muscle function in mdx mice, a dystrophic model for DMD. In this study, we investigated the presence, activity, and localization of ACE2, the enzyme responsible for Ang-(1-7) production, in wild type (wt) and mdx skeletal muscle and in a model of induced chronic damage in wt mice. All dystrophic muscles studied showed higher ACE2 activity than wt muscle. Immunolocalization studies indicated that ACE2 was localized mainly at the sarcolemma and, to a lesser extent, associated with interstitial cells. Similar results were observed in the model of chronic damage in the tibialis anterior (TA) muscle. Furthermore, we evaluated the effect of ACE2 overexpression in mdx TA muscle using an adenovirus containing human ACE2 sequence and showed that expression of ACE2 reduced the fibrosis associated with TA dystrophic muscles. Moreover, we observed fewer inflammatory cells infiltrating the mdx muscle. Finally, mdx gastrocnemius muscles from mice infused with Ang-(1-7), which decreases fibrosis, contain less ACE2 associated with the muscle. This is the first evidence supporting ACE2 as an important therapeutic target to improve the dystrophic skeletal muscle phenotype.
Collapse
Affiliation(s)
- Cecilia Riquelme
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | - María José Acuña
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | - Javiera Torrejón
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | - Daniela Rebolledo
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | - Daniel Cabrera
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | - Robson A. Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, INCT Nanobio-far, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enrique Brandan
- Center for Aging and Regeneration, CARE Chile UC and Department Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
34
|
Karpe PA, Tikoo K. Heat shock prevents insulin resistance-induced vascular complications by augmenting angiotensin-(1-7) signaling. Diabetes 2014; 63:1124-39. [PMID: 24270982 DOI: 10.2337/db13-1267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have investigated the role of heat shock (HS) in preventing insulin resistance-induced endothelial dysfunction. To the best of our knowledge, we report here for the first time that insulin resistance inhibits vascular HS protein (HSP) 72 expression. HS treatment (41 °C for 20 min) restored the HSP72 expression. High-fat diet (HFD)-fed, insulin-resistant rats show attenuated angiotensin (ANG)-(1-7)-induced vasodilator effect, endothelial nitric oxide synthase (eNOS) phosphorylation, AMP-activated protein kinase phosphorylation, and sirtuin 1 (SIRT1) expression. Interestingly, HS prevented this attenuation. We also provide the first evidence that HFD-fed rats show increased vascular DNA methyltransferase 1 (DNMT1) expression and that HS prevented this increase. Our data show that in HFD-fed rats HS prevented loss in the expression of ANG-(1-7) receptor Mas and ACE2, which were responsible for vascular complications. Further, the inhibition of eNOS (l-N(G)-nitro-L-arginine methyl ester), Mas (A-779), and SIRT1 (nicotinamide) prevented the favorable effects of HS. This suggests that HS augmented ANG-(1-7) signaling via the Mas/eNOS/SIRT1 pathway. Our study, for the first time, suggests that induction of intracellular HSP72 alters DNMT1 expression, and may function as an epigenetic regulator of SIRT1 and eNOS expression. We propose that induction of HSP72 is a novel approach to prevent insulin resistance-induced vascular complications.
Collapse
Affiliation(s)
- Pinakin Arun Karpe
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, India
| | | |
Collapse
|
35
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
36
|
Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. ACTA ACUST UNITED AC 2014; 9:e141-e148. [PMID: 32362932 PMCID: PMC7185729 DOI: 10.1016/j.ddstr.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure is increasing in prevalence associated with a huge economic burden. ACE2 is a negative regulator of the renin–angiotensin system. Elevated ACE2 activity is a biomarker in heart failure. Enhancing ACE2 action may have unique therapeutic effects in patients with heart failure.
Angiotensin converting enzyme 2 (ACE2), is a monocarboxypeptidase which metabolizes several peptides including the degradation of Ang II, a peptide with vasoconstrictive/proliferative/effects, to generate Ang 1–7, which acting through its receptor Mas exerts vasodilatory/anti-proliferative actions. The classical pathway of the RAS involving the ACE-Ang II-AT1 receptor axis is antagonized by the second arm constituted by the ACE2-Ang 1–7/Mas receptor axis. Loss of ACE2 enhances the adverse pathological remodeling susceptibility to pressure-overload and myocardial infarction. Human recombinant ACE2 is also a negative regulator of Ang II-induced myocardial hypertrophy, fibrosis and diastolic dysfunction and suppresses pressure-overload induced heart failure. Due to its characteristics, the ACE2-Ang 1–7/Mas axis may represent new possibilities for developing novel therapeutic strategies for the treatment of heart failure. Human recombinant ACE2 has been safely administered to healthy human volunteers intravenously resulting in sustained lowering of plasma Ang II levels. In this review, we will summarize the beneficial effects of ACE2 in heart disease and the potential use of human recombinant ACE2 as a novel therapy for heart failure.
Collapse
|
37
|
Wu H, Li Y, Wang Y, Xu D, Li C, Liu M, Sun X, Li Z. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis in rats. Int J Med Sci 2014; 11:578-86. [PMID: 24782646 PMCID: PMC4003542 DOI: 10.7150/ijms.8365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/08/2014] [Indexed: 12/31/2022] Open
Abstract
Pulmonary fibrosis (PF) is a common complication in those interstitial lung diseases patients, which will result in poor prognosis and short survival. Traditional therapeutic methods such as glucocorticoid and cytotoxic drugs are insufficient for treating PF and may cause severe side effects. Recent studies showed that traditional Chinese herbal abstraction such as Tanshinone IIA (TIIA) was displayed significant anti-PF effects in animal models. However, the exact mechanisms underlying the protective effects of TIIA were not fully understood. Here we further investigated the protective effects of TIIA and its mechanisms underlying. PF models of rat were induced by bleomycin (BLM); TIIA was administered subsequently. The PF changes were identified by histopathological analyses. The results showed that BLM resulted in severe PF and alveolar inflammation; together with significant elevation of transforming growth factor-β 1 (TGF-β1). Angiotensin-converting enzyme 2 (ACE-2) together with angiotensin-(1-7) [ANG-(1-7)] were both greatly reduced after BLM administration. TIIA treatment notably attenuated BLM induced PF and inflammation, decreased expression of TGF-β1 and reversed ACE-2 and ANG-(1-7) production in rat lungs. Thus we may draw the conclusion that TIIA may exert protective effects on BLM induced PF in rats, and the ACE-2/ANG-(1-7) axis may ascribe to those protective effects.
Collapse
Affiliation(s)
- Huajie Wu
- 1. Department of Pediatrics of Xijing Hospital, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| | - Yan Li
- 4. Medical Examination Center of Beijing Military General Hospital
| | - Yanxia Wang
- 2. Department of Pathophysiology, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| | - Dunquan Xu
- 2. Department of Pathophysiology, Fourth Military Medical University
| | - Congcong Li
- 5. Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University
| | - Manling Liu
- 2. Department of Pathophysiology, Fourth Military Medical University
| | - Xin Sun
- 1. Department of Pediatrics of Xijing Hospital, Fourth Military Medical University
| | - Zhichao Li
- 2. Department of Pathophysiology, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| |
Collapse
|
38
|
Abstract
SIGNIFICANCE The renin-angiotensin system (RAS) plays an important role in the normal control of cardiovascular and renal function in the healthy state and is a contributing factor in the development and progression of various types of cardiovascular diseases (CVD), including hypertension, diabetes, and heart failure. RECENT ADVANCES Evidence suggests that a balance between activation of the ACE/Ang II/AT1 receptor axis and the ACE2/Ang-(1-7)/Mas receptor axis is important for the function of the heart, kidney, and autonomic nervous system control of the circulation in the normal healthy state. An imbalance in these opposing pathways toward the ACE/Ang II/AT1 receptor axis is associated with CVD. The key component of this imbalance with respect to neural control of the circulation is the negative interaction between oxidative and NO• mechanisms, which leads to enhanced sympathetic tone and activation in disease conditions such as hypertension and heart failure. CRITICAL ISSUES The key mechanisms that disrupt normal regulation of Ang II and Ang-(1-7) signaling and promote pathogenesis of CVD at all organ levels remain poorly understood. The reciprocal relation between ACE and ACE2 expression and function suggests they are controlled interdependently at pre- and post-translational levels. Insights from neural studies suggest that an interaction between oxidative and nitrosative pathways may be key. FUTURE DIRECTIONS The role of redox mechanisms in the control of expression and activity of RAS enzymes and Ang receptors may provide important insight into the function of local tissue RAS in health and disease.
Collapse
Affiliation(s)
- Kaushik P Patel
- 1 Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | | |
Collapse
|
39
|
Chen J, Xiao X, Chen S, Zhang C, Chen J, Yi D, Shenoy V, Raizada MK, Zhao B, Chen Y. Angiotensin-converting enzyme 2 priming enhances the function of endothelial progenitor cells and their therapeutic efficacy. Hypertension 2012; 61:681-9. [PMID: 23266545 DOI: 10.1161/hypertensionaha.111.00202] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a lately discovered enzyme catalyzing Angiotensin II into Angiotensin 1-7. Angiotensin II has been reported to impair endothelial progenitor cell (EPC) function and is detrimental to stroke. Here, we studied the role of ACE2 in regulating EPC function in vitro and in vivo. EPCs were cultured from human renin and angiotensinogen transgenic (R+A+) mice and their controls (R-A-). In in vitro experiments, EPCs were transduced with lentivirus-ACE2 or lentivirus-green fluorescence protein. The effects of ACE2 overexpression on EPC function and endothelial NO synthase (eNOS)/nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression were determined. ACE2, eNOS, and Nox inhibitors were used for pathway validation. In in vivo studies, the therapeutic efficacy of EPCs overexpressing ACE2 was determined at day 7 after ischemic stroke induced by middle cerebral artery occlusion. We found that (1) lentivirus-ACE2 transduction resulted in a 4-fold increase of ACE2 expression in EPCs. This was accompanied with an increase in eNOS expression and NO production, and a decrease in Nox2 and -4 expression and reactive oxygen species production. (2) ACE2 overexpression improved the abilities of EPC migration and tube formation, which were impaired in R+A+ mice. These effects were inhibited by ACE2 or eNOS inhibitor and further enhanced by Nox inhibitor. (3) Transfusion of lentivirus-ACE2-primed EPCs reduced cerebral infarct volume and neurological deficits, and increased cerebral microvascular density and angiogenesis. Our data demonstrate that ACE2 improves EPC function, via regulating eNOS and Nox pathways, and enhances the efficacy of EPC-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Ji Chen
- Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
El Azreq MA, Naci D, Aoudjit F. Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner. Mol Biol Cell 2012; 23:3473-84. [PMID: 22787275 PMCID: PMC3431945 DOI: 10.1091/mbc.e12-02-0132] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Collagen/β1 integrin/extracellular signal-regulated kinase signaling up-regulates the expression and function of ABCC1 transporter. This suggests that its activation could represent an important pathway in cancer chemoresistance. The mechanisms by which β1 integrins regulate chemoresistance of cancer cells are still poorly understood. In this study, we report that collagen/β1 integrin signaling inhibits doxorubicin-induced apoptosis of Jurkat and HSB2 leukemic T-cells by up-regulating the expression and function of the ATP-binding cassette C 1 (ABCC1) transporter, also known as multidrug resistance–associated protein 1. We find that collagen but not fibronectin reduces intracellular doxorubicin content and up-regulates the expression levels of ABCC1. Inhibition and knockdown studies show that up-regulation of ABCC1 is necessary for collagen-mediated reduction of intracellular doxorubicin content and collagen-mediated inhibition of doxorubicin-induced apoptosis. We also demonstrate that activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signaling pathway is involved in collagen-induced reduction of intracellular doxorubicin accumulation, collagen-induced up-regulation of ABCC1 expression levels, and collagen-mediated cell survival. Finally, collagen-mediated up-regulation of ABCC1 expression and function also requires actin polymerization. Taken together, our results indicate for the first time that collagen/β1 integrin/ERK signaling up-regulates the expression and function of ABCC1 and suggest that its activation could represent an important pathway in cancer chemoresistance. Thus simultaneous targeting of collagen/β1 integrin and ABCC1 may be more efficient in preventing drug resistance than targeting each pathway alone.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | | | | |
Collapse
|
41
|
Clarke NE, Fisher MJ, Porter KE, Lambert DW, Turner AJ. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PLoS One 2012; 7:e34747. [PMID: 22523556 PMCID: PMC3327712 DOI: 10.1371/journal.pone.0034747] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/08/2012] [Indexed: 12/22/2022] Open
Abstract
The angiotensin converting enzymes (ACEs) are the key catalytic components of the renin-angiotensin system, mediating precise regulation of blood pressure by counterbalancing the effects of each other. Inhibition of ACE has been shown to improve pathology in cardiovascular disease, whilst ACE2 is cardioprotective in the failing heart. However, the mechanisms by which ACE2 mediates its cardioprotective functions have yet to be fully elucidated. Here we demonstrate that both ACE and ACE2 bind integrin subunits, in an RGD-independent manner, and that they can act as cell adhesion substrates. We show that cellular expression of ACE2 enhanced cell adhesion. Furthermore, we present evidence that soluble ACE2 (sACE2) is capable of suppressing integrin signalling mediated by FAK. In addition, sACE2 increases the expression of Akt, thereby lowering the proportion of the signalling molecule phosphorylated Akt. These results suggest that ACE2 plays a role in cell-cell interactions, possibly acting to fine-tune integrin signalling. Hence the expression and cleavage of ACE2 at the plasma membrane may influence cell-extracellular matrix interactions and the signalling that mediates cell survival and proliferation. As such, ectodomain shedding of ACE2 may play a role in the process of pathological cardiac remodelling.
Collapse
Affiliation(s)
- Nicola E. Clarke
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin J. Fisher
- Department of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Karen E. Porter
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Daniel W. Lambert
- Oral Disease Research Group, University of Sheffield, Sheffield, United Kingdom
| | - Anthony J. Turner
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
McCollum LT, Gallagher PE, Tallant EA. Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts. Peptides 2012; 34:380-8. [PMID: 22326709 PMCID: PMC3326596 DOI: 10.1016/j.peptides.2012.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/16/2022]
Abstract
Previous studies showed that angiotensin-(1-7) [Ang-(1-7)] attenuates cardiac remodeling by reducing both interstitial and perivascular fibrosis. Although a high affinity binding site for Ang-(1-7) was identified on cardiac fibroblasts, the molecular mechanisms activated by the heptapeptide hormone were not identified. We isolated cardiac fibroblasts from neonatal rat hearts to investigate signaling pathways activated by Ang-(1-7) that participate in fibroblast proliferation. Ang-(1-7) reduced (3)H-thymidine, -leucine and -proline incorporation into cardiac fibroblasts stimulated with serum or the mitogen endothelin-1 (ET-1), demonstrating that the heptapeptide hormone decreases DNA, protein and collagen synthesis. The reduction in DNA synthesis by Ang-(1-7) was blocked by the AT((1-7)) receptor antagonist [d-Ala(7)]-Ang-(1-7), showing specificity of the response. Treatment of cardiac fibroblasts with Ang-(1-7) reduced the Ang II- or ET-1-stimulated increase in phospho-ERK1 and -ERK2. In contrast, Ang-(1-7) increased dual-specificity phosphatase DUSP1 immunoreactivity and mRNA, suggesting that the heptapeptide hormone increases DUSP1 to reduce MAP kinase phosphorylation and activity. Incubation of cardiac fibroblasts with ET-1 increased cyclooxygenase 2 (COX-2) and prostaglandin synthase (PGES) mRNAs, while Ang-(1-7) blocked the increase in both enzymes, suggesting that the heptapeptide hormone alters the concentration and the balance between the proliferative and anti-proliferative prostaglandins. Collectively, these results indicate that Ang-(1-7) participates in maintaining cardiac homeostasis by reducing proliferation and collagen production by cardiac fibroblasts in association with up-regulation of DUSP1 to reduce MAP kinase activities and attenuation of the synthesis of mitogenic prostaglandins. Increased Ang-(1-7) or agents that enhance production of the heptapeptide hormone may prevent abnormal fibrosis that occurs during cardiac pathologies.
Collapse
Affiliation(s)
- LaTronya T McCollum
- The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1032, USA
| | | | | |
Collapse
|
43
|
Wang K, Hu X, Du C, Tu S, Zhang F, Xie X. Angiotensin-(1-7) suppresses the number and function of the circulating fibrocytes by upregulating endothelial nitric oxide synthase expression. Mol Cell Biochem 2012; 365:19-27. [DOI: 10.1007/s11010-012-1223-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 01/04/2012] [Indexed: 02/06/2023]
|
44
|
Singh K, Sharma K, Singh M, Sharma PL. Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats. J Renin Angiotensin Aldosterone Syst 2012; 13:334-40. [PMID: 22345112 DOI: 10.1177/1470320311435534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HYPOTHESIS This study was designed to investigate the cardio-renal protective effect of AVE-0991, a non-peptide Mas-receptor agonist, and A-779, a Mas-receptor antagonist, in diabetic rats. MATERIALS AND METHODS Wistar rats treated with streptozotocin (50 mg/kg, i.p., once), developed diabetes mellitus after 1 week. After 8 weeks, myocardial functions were assessed by measuring left ventricular developed pressure (LVDP), rate of left ventricular pressure development (dp/dt (max)), rate of left ventricular pressure decay (dp/dt (min)) and left ventricular end diastolic pressure (LVEDP) on an isolated Langendorff's heart preparation. Further, mean arterial blood pressure (MABP) was measured by using the tail-cuff method. Assessment of renal functions and lipid profile was carried out using a spectrophotometer. RESULTS The administration of streptozotocin to rats produced persistent hyperglycaemia, dyslipidaemia and hypertension which consequently produced cardiac and renal dysfunction in 8 weeks. AVE0991 treatment produced cardio-renal protective effects, as evidenced by a significant increase in LVDP, dp/dt (max), dp/dt (min) and a significant decrease in LVEDP, BUN, and protein urea. Further, AVE-0991 treatment for the first time has been shown to reduce dyslipidaemia and produced antihyperglycaemic activity in streptozotocin-treated rats. However, MABP and creatinine clearance remained unaffected with AVE-0991 treatment. CONCLUSIONS AVE-0991 produced cardio-renal protection possibly by improving glucose and lipid metabolism in diabetic rats, independent of its blood pressure lowering action.
Collapse
|
45
|
Burrell LM, Burchill L, Dean RG, Griggs K, Patel SK, Velkoska E. Chronic kidney disease: cardiac and renal angiotensin-converting enzyme (ACE) 2 expression in rats after subtotal nephrectomy and the effect of ACE inhibition. Exp Physiol 2011; 97:477-85. [PMID: 22198016 DOI: 10.1113/expphysiol.2011.063156] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Renin-angiotensin system blockade slows but does not prevent the cardiovascular complications of chronic kidney disease (CKD). Angiotensin-converting enzyme (ACE) 2 is differentially regulated in acute kidney injury, with increased cardiac ACE2 but decreased kidney ACE2 levels. This study investigated the effect of long-term ACE inhibition on cardiac and renal ACE2 in rats with CKD induced by subtotal nephrectomy (STNx). Sprague-Dawley rats had sham (control) or STNx surgery. Control rats received vehicle (n = 9) and STNx rats ramipril (1 mg kg(-1) day(-1); n = 10) or vehicle (n = 10) for 28 days. Subtotal nephrectomy resulted in impaired creatinine clearance (P < 0.05), proteinuria (P < 0.05), renal fibrosis (P < 0.05) and reduced renal cortical ACE2 mRNA (P < 0.05) and activity (P < 0.05). In rats with CKD, ramipril improved creatinine clearance (P < 0.05) and was associated with an increase in cortical but not medullary ACE2 activity (P < 0.05). Compared with control rats, STNx rats were hypertensive (P < 0.01), with increased left ventricular end-diastolic pressure (LVEDP; P < 0.01), left ventricular hypertrophy (LVH; P < 0.05) and interstitial (P < 0.05) and perivascular fibrosis (P < 0.01). In rats with CKD, ramipril decreased blood pressure (P < 0.001) and reduced LVEDP (P < 0.01), LVH (P < 0.01) and perivascular fibrosis (P < 0.05) but did not significantly reduce interstitial fibrosis. There was no change in cardiac ACE2 in rats with CKD compared with control rats. In rats with CKD, ACE inhibition had major benefits to reduce blood pressure and cardiac hypertrophy and to improve creatinine clearance, but did not significantly impact on cardiac ACE2, cardiac interstitial fibrosis, renal fibrosis or proteinuria. Thus, in rats with CKD, renal ACE2 deficiency and lack of activation of cardiac ACE2 may contribute to the progression of cardiac and renal tissue injury. As long-term ACE inhibition only partly ameliorated the adverse cardio-renal effects of CKD, adjunctive therapies that lead to further increases in ACE2 activity may be needed to combat the cardio-renal complications of CKD.
Collapse
Affiliation(s)
- L M Burrell
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2011; 2012:307315. [PMID: 22121476 PMCID: PMC3216391 DOI: 10.1155/2012/307315] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/25/2011] [Indexed: 12/25/2022] Open
Abstract
The renin-angiotensin system (RAS) is a critical regulator of hypertension, primarily through the actions of the vasoactive peptide Ang II, which is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in blood pressure. The discovery of ACE2, which primarily metabolises Ang II into the vasodilatory Ang-(1-7), has added a new dimension to the traditional RAS. As a result there has been huge interest in ACE2 over the past decade as a potential therapeutic for lowering blood pressure, especially elevation resulting from excess Ang II. Studies focusing on ACE2 have helped to reveal other actions of Ang-(1-7), outside vasodilation, such as antifibrotic and antiproliferative effects. Moreover, investigations focusing on ACE2 have revealed a variety of roles not just catalytic but also as a viral receptor and amino acid transporter. This paper focuses on what is known about ACE2 and its biological roles, paying particular attention to the regulation of ACE2 expression. In light of the entrance of human recombinant ACE2 into clinical trials, we discuss the potential use of ACE2 as a therapeutic and highlight some pertinent questions that still remain unanswered about ACE2.
Collapse
|
47
|
Qi Y, Li H, Shenoy V, Li Q, Wong F, Zhang L, Raizada MK, Sumners C, Katovich MJ. Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol 2011; 97:89-101. [PMID: 21967903 DOI: 10.1113/expphysiol.2011.060673] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We hypothesized that moderate cardiac-selective overexpression of the angiotensin II type 2 receptor (AT2R) would protect the myocardium from ischaemic injury after a myocardial infarction (MI) induced by coronary artery ligation. For in vitro studies, adenoviral vector expressing genomic DNA of AT2R and enhanced green fluorescence protein (EGFP) was used to overexpress AT2R in rat neonatal cardiac myocytes. Expression of AT2R, measured by real-time PCR and immunostaining, demonstrated efficient transduction of AT2R in a dose-dependent pattern. The AT2R constitutively induced apoptosis in rat neonatal cardiac myocytes in dose-dependent patterns. For in vivo studies, 4 × 10(10) vector genomes (vg) of recombinant adeno-associated virus serotype 9 (rAAV9)-chicken β actin promoter-AT2R was injected into the left ventricle of 5-day-old Sprague-Dawley rats. At 6 weeks of age, hearts were harvested and expression of AT2R determined by real-time PCR and Western blotting. Expression was increased onefold over control hearts, and no apoptosis was detected. Two subsequent in vivo studies were performed. In a prevention study, 4 × 10(10) vg of rAAV9-CBA-AT2R was injected into the left ventricle of 5-day-old Sprague-Dawley rats and MI was induced at 6 weeks of age. For a post-treatment study, 4 × 10(10) vg of rAAV9-CBA-AT2R was administrated to the peri-infarcted myocardium area immediately after MI in 6-week-old animals. For both in vivo studies, cardiac functions were assessed using echocardiography and haemodynamic measurements 4 weeks after coronary artery ligation. In the in vivo studies, the rats subjected to MI showed significant decreases in fractional shortening and rate of change of left ventricular pressure, with increased left ventricular end-diastolic pressure and ventricular hypertrophy. For the prevention study, the moderate cardiac-selective overexpression of AT2R attenuated these MI-induced impairments and also caused a decrease in ventricular wall thinning. In the post-treatment study, the overexpression of AT2R partly reversed the MI-induced cardiac dysfunction. Myocardial infarction also induced the upregulation of angiotensin II type 1 receptor, angiotensin-converting enzyme and collagen I mRNA expression, all of which were attenuated by the overexpression of AT2R. It is concluded that moderate cardiac-selective overexpression of AT2R protects heart function from ischaemic injury, which may be mediated, at least in part, through modulation of components of the cardiac renin-angiotensin system and collagen levels in the myocardium.
Collapse
Affiliation(s)
- Yanfei Qi
- Department of Pharmacodynamics, University of Florida, SW 1600 Archer Road, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Skipworth JRA, Szabadkai G, Olde Damink SWM, Leung PS, Humphries SE, Montgomery HE. Review article: pancreatic renin-angiotensin systems in health and disease. Aliment Pharmacol Ther 2011; 34:840-52. [PMID: 21851372 DOI: 10.1111/j.1365-2036.2011.04810.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In addition to the circulating (endocrine) renin-angiotensin system (RAS), local renin-angiotensin systems are now known to exist in diverse cells and tissues. Amongst these, pancreatic renin-angiotensin systems have recently been identified and may play roles in the physiological regulation of pancreatic function, as well as being implicated in the pathogenesis of pancreatic diseases including diabetes, pancreatitis and pancreatic cancer. AIM To review and summarise current knowledge of pancreatic renin-angiotensin systems. METHODS We performed an extensive PubMed, Medline and online review of all relevant literature. RESULTS Pancreatic RAS appear to play various roles in the regulation of pancreatic physiology and pathophysiology. Ang II may play a role in the development of pancreatic ductal adenocarcinoma, via stimulation of angiogenesis and prevention of chemotherapy toxicity, as well as in the initiation and propagation of acute pancreatitis (AP); whereas, RAS antagonism is capable of preventing new-onset diabetes and improving glycaemic control in diabetic patients. Current evidence for the roles of pancreatic RAS is largely based upon cell and animal models, whilst definitive evidence from human studies remains lacking. CONCLUSIONS The therapeutic potential for RAS antagonism, using cheap and widely available agents, and may be untapped and such roles are worthy of active investigation in diverse pancreatic disease states.
Collapse
Affiliation(s)
- J R A Skipworth
- Department of Surgery and Interventional Science, UCL, London, UK.
| | | | | | | | | | | |
Collapse
|
49
|
Zheng H, Liu X, Patel KP. Angiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H2402-12. [PMID: 21963832 DOI: 10.1152/ajpheart.00330.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) in the PVN. We investigated ACE2 and nNOS expression within the PVN of rats with CHF. We then determined the effects of ACE2 gene transfer in the PVN on the contribution of NO-mediated sympathoinhibition in rats with CHF. The results showed that there were decreased expressions for ACE2, the ANG-(1-7) receptor, and nNOS within the PVN of rats with CHF. After the application of adenovirus vectors encoding ACE2 (AdACE2) into the PVN, the increased expression of ACE2 in the PVN was confirmed by Western blot analysis. AdACE2 transfection significantly increased nNOS protein levels (change of 50 ± 5%) in the PVN of CHF rats. In anesthetized rats, AdACE2 treatment attenuated the responses of renal sympathetic nerve activity (RSNA), mean arterial pressure, and heart rate to the NOS inhibitor N-monomethyl-L-arginine in rats with CHF (RSNA: 28 ± 3% vs. 16 ± 3%, P < 0.05) compared with CHF + AdEGFP group. Furthermore, neuronal NG-108 cells incubated with increasing doses of AdACE2 showed a dose-dependent increase in nNOS protein expression (60% at the highest dose). Taken together, our data highlight the importance of increased expression and subsequent interaction of ACE2 and nNOS within the PVN, leading to a reduction in sympathetic outflow in the CHF condition.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | | | |
Collapse
|
50
|
Angiotensin-(1-7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-L-arginine methyl ester. J Cardiovasc Pharmacol 2011; 57:559-67. [PMID: 21326110 DOI: 10.1097/fjc.0b013e31821324b6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHRs) chronically treated with the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (SHR-l). NG-nitro-L-arginine methyl ester (80 mg/L) administration for 3 weeks increased mean arterial pressure (MAP) from 196 ± 6 to 229 ± 3 mm Hg (P < 0.05). Treatment of SHR-l with Ang-(1-7) antagonist [d-Ala7]-Ang-(1-7) (A779; 744 μg·kg(-1)·d(-1) ip) further elevated MAP to 253 ± 6 mm Hg (P < 0.05 vs SHR-l or SHR). Moreover, A779 treatment attenuated the reduction in MAP and proteinuria by either captopril (300 mg/L in drinking water) or hydralazine (1.5 mg·kg(-1)·d(-1) ip). In isolated perfused hearts, the recovery of left ventricular function from global ischemia was enhanced by captopril or hydralazine treatment and was exacerbated with A779. The Ang-(1-7) antagonist attenuated the beneficial effects of captopril and hydralazine on cardiac function. Recovery from global ischemia was also improved in isolated SHR-l hearts acutely perfused with captopril during both the perfusion and reperfusion periods. The acute administration of A779 reduced the beneficial actions of captopril to improve recovery after ischemia. We conclude that during periods of reduced nitric oxide availability, endogenous Ang-(1-7) plays a protective role in effectively buffering the increase in blood pressure and renal injury and the recovery from cardiac ischemia. Moreover, Ang-(1-7) contributes to the blood pressure lowering and tissue protective actions of captopril and hydralazine in a model of severe hypertension and end-organ damage.
Collapse
|