1
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|
2
|
Sun H, Wang J, Bi W, Zhang F, Chi K, Shi L, Yuan T, Ma K, Gao X. Sulforaphane Ameliorates Limb Ischemia/Reperfusion-Induced Muscular Injury in Mice by Inhibiting Pyroptosis and Autophagy via the Nrf2-ARE Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4653864. [PMID: 35600947 PMCID: PMC9117032 DOI: 10.1155/2022/4653864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Background Limb ischemia/reperfusion (I/R) injury, as a life-threatening syndrome, is commonly caused by skeletal muscle damage resulting from oxidative stress. Additionally, inflammation-induced pyroptosis and dysregulated autophagy are vital factors contributing to the aggravation of I/R injury. Of note, sulforaphane (SFN) is a natural antioxidant, but whether it worked in limb I/R injury and the possible mechanism behind its protection for skeletal muscle has not been clearly established. Methods Effects of SFN on limb I/R-injured skeletal muscle were assessed by HE staining, followed by assessment of wet weight/dry weight (W/D) ratio of muscle tissues. Next, ELISA and biochemical tests were used to measure the inflammatory cytokine production and oxidative stress. Immunofluorescent analysis and Western blot were adopted to examine the level of pyroptosis- and autophagy-related proteins in vivo. Moreover, protein levels of Nrf2-ARE pathway-related factors were also examined using Western blot. Results SFN treatment could protect skeletal muscle against limb I/R injury, as evidenced by diminished inflammation, pyroptosis, autophagy, and oxidative stress in skeletal muscles of mice. Further mechanistic exploration confirmed that antioxidative protection of SFN was associated with the Nrf2-ARE pathway activation. Conclusions SFN activates the Nrf2-ARE pathway, and thereby inhibits pyroptosis and autophagy and provides a novel therapeutic strategy for the limb I/R-induced muscle tissue damage.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Long Shi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Tao Yuan
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Ma
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| |
Collapse
|
3
|
Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol 2021; 9:702974. [PMID: 34595164 PMCID: PMC8476872 DOI: 10.3389/fcell.2021.702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and are central to sensing chemical perturbations that can lead to oxidative stress. The degree of stress is correlated with divergent phenotypes such as quiescence, cell death, or senescence. Each possible cell fate is relevant for a different aspect of endothelial function, and hence, the regulation of cell fate decisions is critically important in maintaining vascular health. This study examined the oxidative stress response (OSR) in human ECs at the boundary of cell survival and death through longitudinal measurements, including cellular, gene expression, and perturbation measurements. 0.5 mM hydrogen peroxide (HP) produced significant oxidative stress, placed the cell at this junction, and provided a model to study the effectors of cell fate. The use of systematic perturbations and high-throughput measurements provide insights into multiple regimes of the stress response. Using a systems approach, we decipher molecular mechanisms across these regimes. Significantly, our study shows that heme oxygenase-1 (HMOX1) acts as a gatekeeper of cell fate decisions. Specifically, HP treatment of HMOX1 knockdown cells reversed the gene expression of about 51% of 2,892 differentially expressed genes when treated with HP alone, affecting a variety of cellular processes, including anti-oxidant response, inflammation, DNA injury and repair, cell cycle and growth, mitochondrial stress, metabolic stress, and autophagy. Further analysis revealed that these switched genes were highly enriched in three spatial locations viz., cell surface, mitochondria, and nucleus. In particular, it revealed the novel roles of HMOX1 on cell surface receptors EGFR and IGFR, mitochondrial ETCs (MTND3, MTATP6), and epigenetic regulation through chromatin modifiers (KDM6A, RBBP5, and PPM1D) and long non-coding RNA (lncRNAs) in orchestrating the cell fate at the boundary of cell survival and death. These novel aspects suggest that HMOX1 can influence transcriptional and epigenetic modulations to orchestrate OSR affecting cell fate decisions.
Collapse
Affiliation(s)
- Sindhushree Raghunandan
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Eugene Ke
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, United States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X, Yu M. Ironing Out the Details: How Iron Orchestrates Macrophage Polarization. Front Immunol 2021; 12:669566. [PMID: 34054839 PMCID: PMC8149954 DOI: 10.3389/fimmu.2021.669566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.
Collapse
Affiliation(s)
- Yaoyao Xia
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Miao Yu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
6
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
7
|
Gas Signaling Molecules and Mitochondrial Potassium Channels. Int J Mol Sci 2018; 19:ijms19103227. [PMID: 30340432 PMCID: PMC6214077 DOI: 10.3390/ijms19103227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
Collapse
|
8
|
Icariside II alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 cell oxidative injury by activating Nrf2/SIRT3 signaling pathway. Biomed Pharmacother 2018; 103:9-17. [PMID: 29635133 DOI: 10.1016/j.biopha.2018.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a key contributing factor to the pathogenic mechanisms involved in ischemic stroke. The present study was designed to explore the effects of icariside II (ICS II) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced PC12 cell oxidative injury. The results showed that ICS II ameliorated OGD/R-induced PC12 cell injury at the concentrations of 12.5, 25, and 50 μM, as evidenced by both the increase of cell viability and the decrease of LDH leakage from 33.96% ± 0.48% to 16.78% ± 0.78%, 13.12% ± 0.17%, 12.96% ± 0.10%, respectively. Moreover, ICS II not only attenuated the reactive oxygen species (ROS) from 212.2% ± 5.45%, 168.6% ± 5.29%, 148.7% ± 9.37%, 142.7% ± 7.76%, respectively, but also decreased the overproduction of mitochondrial ROS, as well as recovered the mitochondrial membrane potential (MMP) from 60.68% ± 7.90% to 76.71% ± 2.87%, 93.69% ± 4.41%, 95.92% ± 3.97%, respectively. Furthermore, OGD/R accelerated neuronal oxidative injury and apoptosis along with reduced nucleus-Nrf2, NQO-1, HO-1, Bcl-2 protein expressions, and increased Keap1, Bax and cleaved caspase-3 contents, whereas ICS II significantly reversed the abovementioned changes. Interestingly, ICS II also restrained the OGD/R-induced decrease in SIRT3 and IDH2 expressions. In conclusion, this study indicates that ICS II alleviates OGD/R-induced oxidative injury in PC12 cells, and its underlying mechanisms are due to the regulation of Nrf2/SIRT3 signaling pathway.
Collapse
|
9
|
Segersvärd H, Lakkisto P, Hänninen M, Forsten H, Siren J, Immonen K, Kosonen R, Sarparanta M, Laine M, Tikkanen I. Carbon monoxide releasing molecule improves structural and functional cardiac recovery after myocardial injury. Eur J Pharmacol 2017; 818:57-66. [PMID: 29055786 DOI: 10.1016/j.ejphar.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Carbon monoxide (CO), produced by heme oxygenase-1 (HO-1), is an endogenous paracrine factor involved in the regulation of cardiovascular structure and function. We studied the effects of a synthetic CO releasing molecule (CORM-3) on cardiac recovery and myocardial microRNA expression after myocardial infarction (MI). Male Wistar rats with MI (n = 75) or sham-operated controls (n = 75) were treated from day 4 to day 14 after MI either with synthetic CORM-3 or with inactive iCORM and killed 2, 4 or 8 weeks post-MI. Infarct size, vascular and capillary densities, the amount of cardiomyocytes in the infarct area, and cardiomyocyte proliferation and apoptosis were determined. PCR was used for microRNA and mRNA quantification, western blotting to evaluate protein expression and echocardiography to assess cardiac structure and function. CORM-3 treatment increased vascular density (P< 0.05 vs. iCORM) and the proportion of cardiomyocytes (P< 0.05 vs. iCORM) in the infarct area. Ejection fraction improved (P< 0.05) and left ventricular volumes decreased (P< 0.05) in CORM-3 treated MI groups compared to iCORM treatment. CORM-3 treatment decreased the amount of proliferating Ki67 positive cardiomyocytes in the infarct/border area at week 2 after MI compared to iCORM treatment, whereas the amount of apoptotic cardiomyocytes did not differ between CORM-3 and iCORM groups. Compared to iCORM treatment, CORM-3 decreased expression on miR-206 in the remote area at week 2 after MI. The CO releasing molecule CORM-3 improved structural and functional cardiac recovery after MI. Modulation of HO-1-CO axis may prove novel drug targets to facilitate cardiac recovery after myocardial injury.
Collapse
Affiliation(s)
- Heli Segersvärd
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland.
| | - Päivi Lakkisto
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Hänninen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Hanna Forsten
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Juuso Siren
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Katariina Immonen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | - Riikka Kosonen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland
| | | | - Mika Laine
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Institute for Medical Research, Biomedicum 2U Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat Commun 2017; 8:75. [PMID: 28706202 PMCID: PMC5509677 DOI: 10.1038/s41467-017-00138-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients. Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.
Collapse
|
11
|
Cebová M, Košútová M, Pecháňová O. Cardiovascular effects of gasotransmitter donors. Physiol Res 2017; 65:S291-S307. [PMID: 27775418 DOI: 10.33549/physiolres.933441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gasotransmitters represent a subfamily of the endogenous gaseous signaling molecules that include nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H(2)S). These particular gases share many common features in their production and function, but they fulfill their physiological tasks in unique ways that differ from those of classical signaling molecules found in tissues and organs. These gasotransmitters may antagonize or potentiate each other's cellular effects at the level of their production, their downstream molecular targets and their direct interactions. All three gasotransmitters induce vasodilatation, inhibit apoptosis directly or by increasing the expression of anti-apoptotic genes, and activate antioxidants while inhibiting inflammatory actions. NO and CO may concomitantly participate in vasorelaxation, anti-inflammation and angiogenesis. NO and H(2)S collaborate in the regulation of vascular tone. Finally, H(2)S may upregulate the heme oxygenase/carbon monoxide (HO/CO) pathway during hypoxic conditions. All three gasotransmitters are produced by specific enzymes in different cell types that include cardiomyocytes, endothelial cells and smooth muscle cells. As translational research on gasotransmitters has exploded over the past years, drugs that alter the production/levels of the gasotransmitters themselves or modulate their signaling pathways are now being developed. This review is focused on the cardiovascular effects of NO, CO, and H(2)S. Moreover, their donors as drug targeting the cardiovascular system are briefly described.
Collapse
Affiliation(s)
- M Cebová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
12
|
Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases. Sci Rep 2017; 7:42870. [PMID: 28225026 PMCID: PMC5320491 DOI: 10.1038/srep42870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment.
Collapse
|
13
|
Dong Z, Shang H, Chen YQ, Pan LL, Bhatia M, Sun J. Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7864150. [PMID: 27847555 PMCID: PMC5101394 DOI: 10.1155/2016/7864150] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP.
Collapse
Affiliation(s)
- Zhaojun Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haixiao Shang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University School of Medicine, Wuxi 214122, China
| | - Li-Long Pan
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiangnan University School of Medicine, Wuxi 214122, China
| |
Collapse
|
14
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
16
|
Perepechaeva ML, Kolosova NG, Stefanova NA, Fursova AZ, Grishanova AY. The influence of changes in expression of redox-sensitive genes on the development of retinopathy in rats. Exp Mol Pathol 2016; 101:124-32. [PMID: 27466007 DOI: 10.1016/j.yexmp.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 01/24/2023]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease of the elderly, with unclear pathogenesis; AMD is the leading cause of blindness. One of the destructive processes in AMD is oxidative stress, which leads to an imbalance in the processes responsible for production and detoxification of reactive oxygen species. The aryl hydrocarbon receptor (AhR) signaling pathway can participate in the development of oxidative stress, but the main regulator of antioxidant defense is nuclear factor, erythroid derived 2 (Nrf2). AhR-dependent oxidative stress can be attenuated by activation of Nrf2, and defects in the Nrf2 signaling pathway can increase sensitivity of the cell to oxidative stress. Our aim was to determine the role of the pro-oxidant (AhR-dependent) and antioxidant (Nrf2-dependent) systems in the pathogenesis of AMD using rats of OXYS strain and of OXYSb substrain with signs of AMD-like retinopathy of varying severity. We compared the retinal levels of mRNA expression of Nrf2- and AhR-dependent redox-sensitive systems between 1-, 3-, and 12- month-old senescence-accelerated OXYS rats (have been shown to be a valid experimental model of AMD) and the rat substrain OXYSb, which shows low morbidity of AMD. We uncovered interstrain differences in the expression of Nrf2 and Nrf2-dependent genes (glutathione S-reductase [Gsr] and heme oxygenase 1 [Hmox1]), in the expression of AhR-dependent genes (cytochrome P450 1A2 [Cyp1a2] and cytochrome P450 1B1 [Cyp1b1]), and in the NADPH-quinone oxidoreductase (Nqo1) expression, which is controlled by both AhR and Nrf2. Binding of AhR and Nrf2 proteins to the regulatory regions of AhR and Nrf2 genes, respectively, was detected by chromatin immunoprecipitation in the retina of 1-, 3-, and 12-month-old OXYS, OXYSb, and Wistar (control) rats. We compared the strength of DNA-protein interactions of AhR and Nrf2 with regulatory sequences and found that the level of autoupregulation of the AhR gene was higher in the retina of 1-month-old OXYSb rats in comparison with OXYS rats. An imbalance between pro-oxidant (AhR-dependent) and antioxidant (Nrf2-dependent) systems may play a crucial role in the onset and/or progression of AMD.
Collapse
Affiliation(s)
- M L Perepechaeva
- Institute of Molecular Biology and Biophysics, Timakova Str. 2/12, Novosibirsk 630117, Russia.
| | - N G Kolosova
- Institute of Molecular Biology and Biophysics, Timakova Str. 2/12, Novosibirsk 630117, Russia; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| | - N A Stefanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia.
| | - A Zh Fursova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia.
| | - A Y Grishanova
- Institute of Molecular Biology and Biophysics, Timakova Str. 2/12, Novosibirsk 630117, Russia.
| |
Collapse
|
17
|
Ghio AJ, Schreinemachers DM. Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers. Biomark Insights 2016; 11:49-54. [PMID: 27199547 PMCID: PMC4863832 DOI: 10.4137/bmi.s36226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/05/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirmed such participation of HO in iron homeostasis of humans. Carbon monoxide produced through HO activity will bind to hemoglobin in circulating erythrocytes, and therefore, blood carboxyhemoglobin (COHb) can be used as an index of HO activity. Using the second National Health and Nutrition Examination Survey, we tested the postulate that HO activity correlates with serum indices of iron homeostasis in healthy nonsmokers. The investigation included 844 lifetime nonsmokers (586 females) 18 years of age and older in the study population. Significant correlations were demonstrated between COHb and several indices of iron homeostasis including serum levels of both ferritin and iron and percentage iron saturation of transferrin. There was no significant association between COHb and hemoglobin, the largest repository of heme in the human body, which functions as the substrate for HO. We conclude that HO activity contributes to human iron homeostasis with significant correlations between COHb and serum ferritin and iron levels and percentage iron saturation of transferrin.
Collapse
Affiliation(s)
- Andrew J. Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Dina M. Schreinemachers
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol 2015; 93:1021-7. [DOI: 10.1139/cjpp-2014-0353] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetes is a chronic metabolic disease with a high prevalence worldwide. Diabetes and insulin resistance are associated with the development of cardiovascular and nervous diseases. The development of these disorders reflects complex pathological processes in which the oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) plays a pivotal role. It is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity and increases the production of ROS, thus resulting in diminished NO bioavailability and increased oxidative stress. Alpha-lipoic acid (LA) possesses beneficial effects both in the prevention and in the treatment of diabetes. LA is a potent antioxidant with insulin-mimetic and anti-inflammatory activity. LA in the diet is quickly absorbed, transported to the intracellular compartments, and reduced to dihydrolipoic acid (DHLA) under the action of enzymes. LA, which plays an essential role in mitochondrial bioenergetic reactions, has drawn considerable attention as an antioxidant for use in managing diabetic complications such as retinopathy, neuropathy and other vascular diseases.
Collapse
Affiliation(s)
- Luc Rochette
- Laboratoire de Physiopathologie et Pharmacologies Cardio-Métaboliques (LPPCM), INSERM UMR866, Université de Bourgogne, Facultés de Médecine et de Pharmacie, 7 Boulevard Jeanne d’Arc, 21033 Dijon Cedex, France
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “UMF Iuliu Haţieganu”, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Adriana Muresan
- Department of Physiology, Faculty of Medicine, “UMF Iuliu Haţieganu” Cluj-Napoca, Romania
| | - Catherine Vergely
- Laboratoire de Physiopathologie et Pharmacologies Cardio-Métaboliques (LPPCM), INSERM UMR866, Université de Bourgogne, Facultés de Médecine et de Pharmacie, 7 Boulevard Jeanne d’Arc, 21033 Dijon Cedex, France
| |
Collapse
|
19
|
Li X, Ye F, Li L, Chang W, Wu X, Chen J. The role of HO-1 in protection against lead-induced neurotoxicity. Neurotoxicology 2015; 52:1-11. [PMID: 26542248 DOI: 10.1016/j.neuro.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 12/01/2022]
Abstract
Lead is a pervasive and persistent environmental pollutant that exerts deleterious effects on all living organisms and continues to threaten public health on a global scale. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme that mediates antioxidative and cytoprotective effects to maintain cellular redox homeostasis and protect cells from oxidative stress. This study was designed to explore the role of HO-1 in protection against lead neurotoxicity and the signaling pathways involved. Lead acetate (PbAc) exposure resulted in increased HO-1 expression in primary rat hippocampal neurons and SH-SY5Y cells. PbAc-induced intracellular reactive oxygen species (ROS) also increased, and cell viability decreased in SH-SY5Y cells. We further demonstrated that HO-1 could be induced by PbAc through the P38, ERK1/2, and PI3K/AKT signaling pathways in a ROS-dependent manner and through the JNK pathway in a ROS-independent manner. Further investigation revealed that HO-1 overexpression significantly restrained cell apoptosis and ROS production induced by PbAc in SH-SY5Y cells. Moreover, HO-1 knockdown aggravated PbAc-induced cell apoptosis and ROS production. Our results indicated that HO-1 was a novel protective factor that could efficiently inhibit PbAc-induced oxidative stress and cell death in the nervous system, thereby providing the potential therapeutic strategies for the prevention and treatment of lead-related diseases.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fang Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lili Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wei Chang
- Department of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, PR China
| | - Xiongwen Wu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
20
|
Hanus J, Kolkin A, Chimienti J, Botsay S, Wang S. 4-Acetoxyphenol Prevents RPE Oxidative Stress-Induced Necrosis by Functioning as an NRF2 Stabilizer. Invest Ophthalmol Vis Sci 2015; 56:5048-59. [PMID: 26241392 DOI: 10.1167/iovs.15-16401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Oxidative stress has been suggested to be a major risk factor for the pathogenesis of AMD. Retinal pigment epithelial (RPE) cells are essential for maintaining the homeostasis of the retina, and RPE cell death and the resultant photoreceptor apoptosis have been observed in dry AMD, especially in geographic atrophy. The purpose of this article was to identify and repurpose the Food and Drug Administration-approved natural compound 4-Acetoxyphenol (4-AC), and to evaluate its effect and mechanism in protecting against oxidative stress-induced RPE necrosis. METHODS We exposed ARPE-19 cells to tert-Butyl hydroperoxide (tBHP) after pretreatment with 4-AC, and measured cell viability by MTT assay. Aggregation of RIPK3 and HMGB1 nuclear release were analyzed by transfected reporter genes. Reactive oxygen species (ROS) were measured using a commercially available ROS detection system. The importance of the NRF2/NQO1/HO-1 pathway in mediating 4-AC function was corroborated by siRNA studies, qRT-PCR, and immunostaining. RESULTS We have identified a natural antioxidant, 4-AC, which demonstrates strong abilities to protect RPE cells from oxidative stress-induced necrosis. Mechanistically, 4-AC blocked the increase of cellular ROS induced by oxidative stress, and upregulated NQO1 and HO-1 genes by stabilizing and inducing the nuclear translocation of NRF2 transcription factor. The NQO1, HO-1, and NRF2 were further shown to be required for 4-AC protection of RPE cells from death induced by tBHP. The tBHQ, an NRF2 stabilizer, consistently mimicked the protective effect of 4-AC against tBHP-induced RPE death. CONCLUSIONS The compound 4-AC protects ARPE-19 cells from oxidative stress-induced necrosis through upregulation of NQO1 and HO-1 genes by stabilization of NRF2.
Collapse
Affiliation(s)
- Jakub Hanus
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States
| | - Alexander Kolkin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States
| | - Julia Chimienti
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States
| | - Sara Botsay
- Southern Eye Bank, Metairie, Louisiana, United States
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States 3Department of Ophthalmology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
21
|
Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 2015; 74:11-22. [PMID: 26392237 DOI: 10.1016/j.vph.2015.09.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Heme oxygenase-1 (HO-1, hmox-1) catalyzes the rate-limiting step in the heme degradation processes. Out of three by-products of HO-1 activity, biliverdin, iron ions and carbon monoxide (CO), the latter was mostly shown to mediate many beneficial HO-1 effects, including protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. Mounting evidence suggests that HO-1/CO systemmay be of special benefit in protection inmany pathological conditions, like atherosclerosis or myocardial infarction. By contrast, the augmented expression of HO-1 in tumor tissues may have detrimental effect as HO-1 accelerates the formation of tumor neovasculature and provides the selective advantage for tumor cells to overcome the increased oxidative stress during tumorigenesis and during treatment. The inhibition of HO-1 has been proposed as an anti-cancer therapy, however, because of non-specific effects of known HO-1 inhibitors, the discovery of ideal drug lowering HO-1 expression/activity is still an open question. Importantly, in several types of cancer HO-1/CO system exerts opposite activities, making the possible treatment more complicated. All together indicates the complex role for HO-1/CO in various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
22
|
Giant magnetoresistive-based biosensing probe station system for multiplex protein assays. Biosens Bioelectron 2015; 70:61-8. [DOI: 10.1016/j.bios.2015.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/19/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
|
23
|
Ultrasound up-regulates expression of heme oxygenase-1 gene in endothelial cells. J Med Ultrason (2001) 2015; 42:467-75. [DOI: 10.1007/s10396-015-0635-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/14/2015] [Indexed: 11/26/2022]
|
24
|
Vinchi F, Muckenthaler MU, Da Silva MC, Balla G, Balla J, Jeney V. Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 2014; 5:94. [PMID: 24847266 PMCID: PMC4017151 DOI: 10.3389/fphar.2014.00094] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022] Open
Abstract
Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called "iron hypothesis," iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endothelial activation, smooth muscle cell proliferation and macrophage activation; all of these processes are considered to be proatherogenic. On the other hand, the observation that hemochromatotic patients, affected by life-long iron overload, do not show any increased incidence of atherosclerosis is perceived as the most convincing evidence against the "iron hypothesis." Epidemiological studies and data from animal models provided conflicting evidences about the role of iron in atherogenesis. Therefore, more careful studies are needed in which issues like the source and the compartmentalization of iron will be addressed. This review article summarizes what we have learnt about iron and atherosclerosis from epidemiological studies, animal models and cellular systems and highlights the rather contributory than innocent role of iron in atherogenesis.
Collapse
Affiliation(s)
- Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - Milene C Da Silva
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Pediatrics, University of Debrecen Debrecen, Hungary
| | - József Balla
- Department of Medicine, University of Debrecen Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
25
|
Cheng S, Enserro D, Xanthakis V, Sullivan LM, Murabito JM, Benjamin EJ, Polak JF, O'Donnell CJ, Wolf PA, O'Connor GT, Keaney JF, Vasan RS. Association of exhaled carbon monoxide with subclinical cardiovascular disease and their conjoint impact on the incidence of cardiovascular outcomes. Eur Heart J 2014; 35:2980-7. [PMID: 24574370 DOI: 10.1093/eurheartj/ehu052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Whereas endogenous carbon monoxide (CO) is cytoprotective at physiologic levels, excess CO concentrations are associated with cardiometabolic risk and may represent an important marker of progression from subclinical to clinical cardiovascular disease (CVD). METHODS AND RESULTS In 1926 participants of the Framingham Offspring Study (aged 57 ± 10 years, 46% women), we investigated the relationship of exhaled CO, a surrogate of blood CO concentration, with both prevalent subclinical CVD and incident clinical CVD events. Presence of subclinical CVD was determined using a comprehensive panel of diagnostic tests used to assess cardiac and vascular structure and function. Individuals with the highest (>5 p.p.m.) compared with lowest (≤4 p.p.m.) CO exposure were more likely to have subclinical CVD [odds ratios (OR): 1.67, 95% CI: 1.32-2.12; P < 0.001]. During the follow-up period (mean 5 ± 3 years), 193 individuals developed overt CVD. Individuals with both high CO levels and any baseline subclinical CVD developed overt CVD at an almost four-fold higher rate compared with those with low CO levels and no subclinical disease (22.1 vs. 6.3%). Notably, elevated CO was associated with incident CVD in the presence [hazards ration (HR): 1.83, 95% CI: 1.08-3.11; P = 0.026] but not in the absence (HR: 0.80, 95% CI: 0.42-1.53; P = 0.51) of subclinical CVD (Pinteraction = 0.019). Similarly, subclinical CVD was associated with incident CVD in the presence of high but not low CO exposure. CONCLUSION Our findings in a community-based sample suggest that elevated CO is a marker of greater subclinical CVD burden and, furthermore, a potential key component in the progression from subclinical to clinical CVD.
Collapse
Affiliation(s)
- Susan Cheng
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Vanessa Xanthakis
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Biostatistics, Boston University, Boston, MA, USA Sections of Preventive Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lisa M Sullivan
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Joanne M Murabito
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Cardiology, Boston University School of Medicine, Boston, MA, USA
| | - Joseph F Polak
- Department of Radiology, New England Medical Center, Boston, MA, USA
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Center for Population Studies, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Philip A Wolf
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - John F Keaney
- Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Sections of Preventive Medicine, Boston University School of Medicine, Boston, MA, USA Department of Cardiology, Boston University School of Medicine, Boston, MA, USA Department of Epidemiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
26
|
Wang YZ, Zhang YC, Cheng JS, Ni Q, Li PW, Han W, Zhang YL. Protective Effects of BML-111 on Cerulein-Induced Acute Pancreatitis-Associated Lung Injury via Activation of Nrf2/ARE Signaling Pathway. Inflammation 2014; 37:1120-33. [DOI: 10.1007/s10753-014-9836-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Blazevic T, Schaible AM, Weinhäupl K, Schachner D, Nikels F, Weinigel C, Barz D, Atanasov AG, Pergola C, Werz O, Dirsch VM, Heiss EH. Indirubin-3'-monoxime exerts a dual mode of inhibition towards leukotriene-mediated vascular smooth muscle cell migration. Cardiovasc Res 2013; 101:522-32. [PMID: 24368834 PMCID: PMC3928003 DOI: 10.1093/cvr/cvt339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aims The small molecule indirubin-3′-monoxime (I3MO) has been shown to inhibit vascular smooth muscle cell (VSMC) proliferation and neointima formation in vivo. The influence of I3MO on VSMC migration and vascular inflammation, two additional key players during the onset of atherosclerosis and restenosis, should be investigated. Methods and results We examined the influence of I3MO on VSMC migration, with focus on monocyte-derived leukotrienes (LTs) and platelet-derived growth factors (PDGFs) as elicitors. Exogenous LTB4 and cysteinyl leukotrienes as well as LT-enriched conditioned medium of activated primary human monocytes induced VSMC migration, which was inhibited by I3MO. I3MO also blunted migration of VSMC stimulated with the PDGF, the strongest motogen tested in this study. Induction of haem oxygenase 1 accounted for this anti-migratory activity of I3MO in VSMC. Notably, I3MO not only interfered with the migratory response in VSMC, but also suppressed the production of pro-migratory LT in monocytes. Conditioned media from monocytes that were activated in the presence of I3MO failed to induce VSMC migration. In cell-based and cell-free assays, I3MO selectively inhibited 5-lipoxygenase (5-LO), the key enzyme in LT biosynthesis, with an IC50 in the low micromolar range. Conclusion Our study reveals a novel dual inhibitory mode of I3MO on LT-mediated VSMC migration: (i) I3MO interferes with pro-migratory signalling in VSMC and (ii) I3MO suppresses LT biosynthesis in monocytes by direct inhibition of 5-LO. These inhibitory actions on both migratory stimulus and response complement the previously demonstrated anti-proliferative properties of I3MO and may further promote I3MO as promising vasoprotective compound.
Collapse
Affiliation(s)
- Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Conti E, Zezza L, Ralli E, Caserta D, Musumeci MB, Moscarini M, Autore C, Volpe M. Growth factors in preeclampsia: a vascular disease model. A failed vasodilation and angiogenic challenge from pregnancy onwards? Cytokine Growth Factor Rev 2013; 24:411-25. [PMID: 23800655 DOI: 10.1016/j.cytogfr.2013.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
Preeclampsia is the major cause of maternofetal and neonatal morbi-mortality including intrauterine growth retardation, miscarriages and stillbirths. Inadequate vascular dilation and angiogenesis represent the crucial underlying defect of gravidic hypertension, denoting a failed response to the vasodilatory and pro-angiogenic challenge imposed by pregnancy, especially if multifetal. A similar pathogenesis appears involved in gestational diabetes. In this review we aimed to provide a hint on understanding the deeply involved angiogenic disorders which eventually culminate in utero-placental failure. The key players in these complex processes may be found in an intricate network of growth factors (GFs) and GF inhibitors, controlled by several vascular risk factors modulated by environment and genes, which eventually impact on early and late cardiovascular outcomes of mother and fetus.
Collapse
Affiliation(s)
- E Conti
- Cardiology, Clinical and Molecular Medicine Department, "Sapienza" University of Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 2013; 57:114-25. [PMID: 23293044 DOI: 10.1002/mnfr.201200608] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/03/2012] [Accepted: 11/07/2012] [Indexed: 12/19/2022]
Abstract
Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α-lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di-thiol: dihydro-lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship.
Collapse
Affiliation(s)
- Luc Rochette
- INSERM UMR866, Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, Université de Bourgogne, Facultés de Médecine et Pharmacie, 21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
30
|
Wang YZ, Zhang YC, Cheng JS, Ni Q, Li PJ, Wang SW, Han W, Zhang YL. BML-111, a lipoxin receptor agonist, ameliorates 'two-hit'-induced acute pancreatitis-associated lung injury in mice by the upregulation of heme oxygenase-1. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:110-20. [PMID: 23802775 DOI: 10.3109/21691401.2013.794355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study is to investigate the effects of BML-111 on acute pancreatitis-associated lung injury (APALI) induced by cerulein with subsequent an LPS administration in mice and its possible mechanisms. One hundred and twenty-eight mice were randomly allocated to four groups, namely the APALI group, the BML-111 pretreatment group, the BM-111 control group, and the control group. The 'two-hit' mice APALI model was established by intraperitoneal injection of cerulein 7 times at hourly intervals and Escherichia coli lipopolysaccharide (LPS) once after the last dose of cerulein immediately. The samples were taken at 3, 6, 12, and 24 h after the last injection. Serum levels of amylase, TNF-a, IL-1β and IL-10, were determined. Histological score of the pancreas and lung, the wet/dry weight ratio, and heme oxygenase-1 (HO-1) expression in the lung were also evaluated. BML-111 pretreatment significantly reduced the serum levels of amylase, TNF-α, IL-1β, the wet/dry weight ratio of lung, and the pathology injury scores of pancreas and lung, and the serum levels of IL-10 were markedly increased. The severity of pancreatic and lung histology were also significantly improved by the administration of BML-111, and the expressions of HO-1 in lung tissues also increased in the BML-111 group compared with those in the APALI group. In conclusion, BML-111 exerts protective effects on APALI induced by cerulein and LPS. In addition to its anti-inflammatory effects, the beneficial effects may also be due to the upregulation of HO-1 expression in the lung tissues.
Collapse
Affiliation(s)
- Ying Zhen Wang
- Department of General Surgery, Hepato-biliary-pancreatic institute, Lanzhou University Second Hospital , Lanzhou , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baraldi D, Casali K, Fernandes RO, Campos C, Sartório C, Conzatti A, Couto GK, Schenkel PC, Belló-Klein A, Araujo ARS. The role of AT1-receptor blockade on reactive oxygen species and cardiac autonomic drive in experimental hyperthyroidism. Auton Neurosci 2013; 177:163-9. [PMID: 23623788 DOI: 10.1016/j.autneu.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022]
Abstract
The objective of this study was to explore the influence of the renin-angiotensin system on cardiac prooxidants and antioxidants levels and its association to autonomic imbalance induced by hyperthyroidism. Male Wistar rats were divided into four groups: control, losartan (10mg/kg/day by gavage, 28 day), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4+losartan. Spectral analysis (autonomic balance), angiotensin II receptor (AT1R), NADPH oxidase, Nrf2 and heme-oxygenase-1 (HO-1) myocardial protein expression, and hydrogen peroxide (H2O2) concentration were quantified. Autonomic imbalance induced by hyperthyroidism (~770%) was attenuated in the T4+losartan group (~32%) (P<0.05). AT1R, NADPH oxidase, H2O2, as well as concentration, Nrf2 and HO-1 protein expression were elevated (~172%, 43%, 40%, 133%, and 154%, respectively) in T4 group (P<0.05). H2O2 and HO-1 levels were returned to control values in the T4+losartan group (P<0.05). The overall results demonstrate a positive impact of RAS blockade in the autonomic control of heart rate, which was associated with an attenuation of H2O2 levels, as well as with a reduced counter-regulatory response of HO-1 in experimental hyperthyroidism.
Collapse
Affiliation(s)
- D Baraldi
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Long J, Wang S, Zhang Y, Liu X, Zhang H, Wang S. The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. J Vasc Surg 2013; 58:756-65.e2. [PMID: 23562340 DOI: 10.1016/j.jvs.2012.11.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore the therapeutic potential of endothelial progenitor cells (EPCs) transfected with vascular endothelial growth factor A (VEGFA) and heme oxygenase-1 (HO-1) on rat hindlimb ischemia model. METHODS Eukaryotic expression vectors encoding VEGFA or HO-1 were constructed and introduced into EPCs isolated from rat bone marrow. In total, 150 Sprague Dawley rat hindlimb ischemia models were established and randomized into five groups which were injected via tail vein with phosphate-buffered saline (PBS), nontransfected EPCs, VEGFA-modified EPCs, HO-1-modified EPCs, and both VEGFA- and HO-1-modified EPCs, respectively. The microvessel density, the expressions of VEGFA and HO-1 in the ischemic limbs, the recovery of blood flow as evaluated by laser-Doppler perfusion imaging, and the rate of limb salvage were compared among different groups. RESULTS Transplantation of both VEGFA- and HO-1-modified EPCs in recipient rats significantly increased the microvessel density (expressed as capillaries/m(2) at day 21 after operation, group vascular endothelial growth factor (VEGF)+HO-1, 357 ± 14.1; group VEGF, 253.7 ± 9.9; group HO-1, 255.5 ± 12.5; group EPC, 210.7 ± 10.3; group PBS, 144.3 ± 9.3; P < .001), the expressions of VEGFA and HO-1 in ischemic tissue, the recovery of blood flow (at day 21, VEGF+HO-1 group, 85.4 ± 17.8%; VEGF group, 51.2 ± 13.2%; HO-1 group, 50.4 ± 12.9%; EPC group, 39.9 ± 8.5%; PBS group, 28.3 ± 7.8%; P < .001), and the rate of limb salvage (VEGF+HO-1 group, 94.4%; VEGF group or HO-1 group, 63.6%; EPC group, 50.0%; PBS group, 11.1%), compared with transplantation of either VEGFA- or HO-1-modified EPCs alone, or of nontransfected EPCs, or PBS injection. The order of therapeutic effectiveness on ischemic limbs was VEGFA- + HO-1-modifed EPC > either VEGFA- or HO-1-modified EPC alone > nontransfected EPC > PBS. CONCLUSIONS VEGFA-modified EPC and HO-1-modified EPC synergized with each other in promoting angiogenesis in ischemic limbs of rat hindlimb ischemia model. In addition to VEGF, the introduction of HO-1 in EPC-based transplantation may serve as a novel and useful therapeutic strategy for ischemic disease of lower extremity.
Collapse
Affiliation(s)
- Jianting Long
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
33
|
Chan KH, O'Connell RL, Sullivan DR, Hoffmann LS, Rajamani K, Whiting M, Donoghoe MW, Vanhala M, Hamer A, Yu B, Stocker R, Ng MKC, Keech AC. Plasma total bilirubin levels predict amputation events in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 2013; 56:724-36. [PMID: 23322233 DOI: 10.1007/s00125-012-2818-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/10/2012] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Bilirubin has antioxidant and anti-inflammatory activities. Previous studies demonstrated that higher bilirubin levels were associated with reduced prevalence of peripheral arterial disease (PAD). However, the relationship between bilirubin and lower-limb amputation, a consequence of PAD, is currently unknown. We hypothesised that, in patients with type 2 diabetes, bilirubin concentrations may inversely associate with lower-limb amputation. METHODS The relationship between baseline plasma total bilirubin levels and amputation events was analysed in 9,795 type 2 diabetic patients from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. The analysis plan was pre-specified. Lower-limb amputation was adjudicated blinded to treatment allocation. Relevant clinical and biochemical data were available for analyses. Amputation was a pre-specified tertiary endpoint. RESULTS Bilirubin concentrations were significantly inversely associated with lower-limb amputation, with a greater than threefold risk gradient across levels. Individuals with lower bilirubin concentrations had a higher risk for first amputation (HR 1.38 per 5 μmol/l decrease in bilirubin concentration, 95% CI 1.07, 1.79, p = 0.013). The same association persisted after adjustment for baseline variables, including age, height, smoking status, γ-glutamyltransferase level, HbA1c, trial treatment allocation (placebo vs fenofibrate), as well as previous PAD, non-PAD cardiovascular disease, amputation or diabetic skin ulcer, neuropathy, nephropathy and diabetic retinopathy (HR 1.38 per 5 μmol/l decrease in bilirubin concentration, 95% CI 1.05, 1.81, p = 0.019). CONCLUSIONS/INTERPRETATION Our results identify a significant inverse relationship between bilirubin levels and total lower-limb amputation, driven by major amputation. Our data raise the hypothesis that bilirubin may protect against amputation in type 2 diabetes.
Collapse
Affiliation(s)
- K H Chan
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, Miller BF, Hamilton KL. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 2013. [PMID: 23201694 DOI: 10.1016/j.freeradbiomed.2012.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge.
Collapse
Affiliation(s)
- Danielle J Reuland
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
36
|
Chen TY, Sun HL, Yao HT, Lii CK, Chen HW, Chen PY, Li CC, Liu KL. Suppressive effects of Indigofera suffruticosa Mill extracts on lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Food Chem Toxicol 2013; 55:257-64. [PMID: 23352929 DOI: 10.1016/j.fct.2012.12.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022]
Abstract
Indigofera suffruticosa Mill is used as an herbal medicine for the treatment of inflammation. The aim of this study is to assess the anti-inflammatory potency of I. suffruticosa and its likely molecular mechanisms of action in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Both water and ethanolic extracts of I. suffruticosa significantly decreased LPS-induced nitric oxide (NO) as well as the expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α, and pro-interleukin-1β. Moreover, LPS-induced inhibitory factor-κB-α phosphorylation, nuclear factor-κB (NF-κB) nuclear protein-DNA binding affinity, and NF-κB reporter gene activity were dramatically inhibited by I. suffruticosa extracts. Exogenous addition of I. suffruticosa significantly induced heme oxygenase-1 (HO-1) expression, and the presence of HO-1 small interfering RNA partly reversed the inhibitory effects of I. suffruticosa on LPS-induced NO production and iNOS expression. Furthermore, I. suffruticosa induced HO-1 expression may be through activation of the ERK/nuclear factor E2-related factor 2 pathway. Eight phenolic compounds were found in the I. suffruticosa extracts, but salicylic acid was the only one detected in the plasma of mice fed with I. suffruticosa extracts. In summary, I. suffruticosa have a strong anti-inflammatory property that diminishes pro-inflammatory mediator expressions by lessening LPS-induced NF-κB activation and inducing HO-1 expression in macrophages.
Collapse
Affiliation(s)
- Tzy-Yen Chen
- Division of Gastroenterology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
38
|
Li FYL, Lam KSL, Tse HF, Chen C, Wang Y, Vanhoutte PM, Xu A. Endothelium-selective activation of AMP-activated protein kinase prevents diabetes mellitus-induced impairment in vascular function and reendothelialization via induction of heme oxygenase-1 in mice. Circulation 2012; 126:1267-77. [PMID: 22851545 DOI: 10.1161/circulationaha.112.108159] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Endothelial damage and dysfunction are crucial mediators that link diabetes mellitus with atherosclerotic cardiovascular disease. AMP-activated kinase (AMPK) has been implicated in regulation of both energy metabolism and vascular homeostasis. The present study investigated whether endothelium-selective activation of AMPK prevents diabetes mellitus-induced endothelial damage and vascular dysfunction by improving reendothelialization in mice. METHODS AND RESULTS Transgenic mice with endothelium-selective expression of a constitutively active (CA) AMPK were generated and rendered diabetic by the injection of streptozotocin. Relaxation and reendothelialization of carotid arteries and circulating numbers of endothelial progenitor cells (EPCs) were examined after wire-induced denudation. Bone marrow-derived EPCs were isolated to monitor their in vivo and in vitro function. Compared with wild-type littermates, the CA-AMPK transgenic mice were resistant to diabetes mellitus-induced impairment in endothelium-dependent relaxation and reendothelialization of their injured carotid arteries. These changes in the transgenic mice were accompanied by increased mobilization of EPCs and enhanced incorporation of EPCs into injured blood vessels. Furthermore, EPCs from the transgenic mice exhibited augmented adhesion, migration, and tube formation capacities. At the molecular level, the expression of heme oxygenase (HO)-1 and the secretion of stromal cell-derived factor (SDF)-1α were upregulated in EPCs derived from the transgenic mice, whereas AMPK-mediated elevation of serum SDF-1α levels and improvements of EPC function and reendothelialization were all abrogated by pharmacological inhibition of heme oxygenase-1. CONCLUSIONS Endothelium-specific AMPK activation is sufficient to protect against diabetes mellitus-induced aggravation of vascular injury by promoting EPC function and reendothelialization via upregulation of heme oxygenase-1 and SDF-1α.
Collapse
|
39
|
Gullotta F, di Masi A, Ascenzi P. Carbon monoxide: an unusual drug. IUBMB Life 2012; 64:378-86. [PMID: 22431507 DOI: 10.1002/iub.1015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
The highly toxic gas carbon monoxide (CO) displays many physiological roles in several organs and tissues. Although many diseases, including cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration, and sleep disorders, have been linked to abnormal endogenous CO metabolism and functions, CO administration has therapeutic potential in inflammation, sepsis, lung injury, cardiovascular diseases, transplantation, and cancer. Here, insights into the CO-based therapy, characterized by the induction or gene transfer of heme oxygenase-1 and either gas or CO-releasing molecule administration, are reviewed.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Roma, Italy
| | | | | |
Collapse
|
40
|
Rochette L, Vergely C, Rochette F, Girard C. Carbon monoxide: a new pharmaceutical agent? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-011-0430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Bindu S, Pal C, Dey S, Goyal M, Alam A, Iqbal MS, Dutta S, Sarkar S, Kumar R, Maity P, Bandyopadhyay U. Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J Biol Chem 2011; 286:39387-402. [PMID: 21908612 PMCID: PMC3234763 DOI: 10.1074/jbc.m111.279893] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/29/2011] [Indexed: 01/01/2023] Open
Abstract
The mechanism of action of heme oxygenase-1 (HO-1) in mitochondrial oxidative stress (MOS)-mediated apoptotic tissue injury was investigated. MOS-mediated gastric mucosal apoptosis and injury were introduced in rat by indomethacin, a non-steroidal anti-inflammatory drug. Here, we report that HO-1 was not only induced but also translocated to mitochondria during gastric mucosal injury to favor repair mechanisms. Furthermore, mitochondrial translocation of HO-1 resulted in the prevention of MOS and mitochondrial pathology as evident from the restoration of the complex I-driven mitochondrial respiratory control ratio and transmembrane potential. Mitochondrial translocation of HO-1 also resulted in time-dependent inhibition of apoptosis. We searched for the plausible mechanisms responsible for HO-1 induction and mitochondrial localization. Free heme, the substrate for HO-1, was increased inside mitochondria during gastric injury, and mitochondrial entry of HO-1 decreased intramitochondrial free heme content, suggesting that a purpose of mitochondrial translocation of HO-1 is to detoxify accumulated heme. Heme may activate nuclear translocation of NF-E2-related factor 2 to induce HO-1 through reactive oxygen species generation. Electrophoretic mobility shift assay and chromatin immunoprecipitation studies indicated nuclear translocation of NF-E2-related factor 2 and its binding to HO-1 promoter to induce HO-1 expression during gastric injury. Inhibition of HO-1 by zinc protoporphyrin aggravated the mucosal injury and delayed healing. Zinc protoporphyrin further reduced the respiratory control ratio and transmembrane potential and enhanced MOS and apoptosis. In contrast, induction of HO-1 by cobalt protoporphyrin reduced MOS, corrected mitochondrial dysfunctions, and prevented apoptosis and gastric injury. Thus, induction and mitochondrial localization of HO-1 are a novel cytoprotective mechanism against MOS-mediated apoptotic tissue injury.
Collapse
Affiliation(s)
- Samik Bindu
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmay Pal
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sumanta Dey
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Athar Alam
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd. Shameel Iqbal
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubham Dutta
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rahul Kumar
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Pallab Maity
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- From the Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
42
|
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011; 32:234-46. [PMID: 22020111 DOI: 10.1016/j.mam.2011.10.006] [Citation(s) in RCA: 675] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/11/2011] [Indexed: 12/21/2022]
Abstract
For the past 40 years or so, oxidative stress has been increasingly recognized as a contributing factor in aging and in various forms of pathophysiology generally associated with aging. Our view of oxidative stress has been largely "superoxide-centric", as we focused on the pathological sources of this oxygen-derived free radical and the types of molecular havoc it can wreak, as well as on the protection provided by the antioxidant enzymes, especially the superoxide dismutases, catalases, and glutathione peroxidases. In the last decade our view of oxidative stress has broadened considerably, and it is now often seen as an imbalance that has its origins in our genes, and the ways in which gene expression is regulated. At the center of this new focus is the transcription factor called nuclear factor (erythroid-derived 2)-like 2, or Nrf2. Nrf2 is referred to as the "master regulator" of the antioxidant response, modulating the expression of hundreds of genes, including not only the familiar antioxidant enzymes, but large numbers of genes that control seemingly disparate processes such as immune and inflammatory responses, tissue remodeling and fibrosis, carcinogenesis and metastasis, and even cognitive dysfunction and addictive behavior. Thus, the dysregulation of Nrf2-regulated genes provides a logical explanation for the connections, both direct and indirect, between observable oxidative stress and perhaps 200 human diseases involving these various physiological processes, each reflecting a network involving many gene products. The evolutionary self-association of these many genes under the common control of Nrf2 suggests that the immune and inflammatory systems may present the largest demand for increased antioxidant protection, apart from constitutive oxidative stress resulting from mitochondrial oxygen consumption for metabolic purposes. Gene expression microarray data on human primary vascular endothelial cells and on the SK-N-MC human neuroblastoma-derived cell line have been obtained in response to the dietary supplement Protandim, a potent composition of highly synergistic phytochemical Nrf2 activators. Pathway analysis of results shows significant modulation by Protandim of pathways involving not only antioxidant enzymes, but of those related to colon cancer, cardiovascular disease, and Alzheimer disease.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Department of Medicine, Division of Pulmonary Science and Critical Care Medicine, University of Colorado at Denver, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
43
|
Nitroalkylation--a redox sensitive signaling pathway. Biochim Biophys Acta Gen Subj 2011; 1820:777-84. [PMID: 21723375 DOI: 10.1016/j.bbagen.2011.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/17/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023]
Abstract
Redox-sensitive posttranslational modification emerged as important signaling mechanisms. Besides other posttranslational modifications nitroalkylation by nitrated fatty acids mediate favorable anti-inflammatory effects. This review gives an overview of the generation and the reactivity of nitrated fatty acids. Additionally, it provides insights into the so far described pathways regulated by nitrated fatty acids. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
|