1
|
Ianoș RD, Cozma A, Lucaciu RL, Hangan AC, Negrean V, Mercea DC, Ciulei G, Pop C, Procopciuc LM. Role of Circulating Biomarkers in Diabetic Cardiomyopathy. Biomedicines 2024; 12:2153. [PMID: 39335666 PMCID: PMC11428922 DOI: 10.3390/biomedicines12092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that has alarmingly increased in incidence in recent decades. One of the most serious complications of T2DM is diabetic cardiomyopathy (DCM), an often underrecognized yet severe condition that is a leading cause of mortality among diabetic patients. In the early stages of DCM, patients typically show no symptoms and maintain normal systolic and diastolic left ventricle function, making early detection challenging. Currently available clinical markers are often not specific enough to detect the early stage of DCM. Conventional biomarkers of cardiac mechanical stress and injury, such as natriuretic peptides (NPs) and cardiac troponin I (cTnI), have shown limited predictive value for patients with T2DM. NPs have proven efficacy in detecting diastolic dysfunction in diabetic patients when used alongside 2D echocardiography, but their utility as biomarkers is limited to symptomatic individuals. While cTnI is a reliable indicator of general cardiac damage, it is not specific to cardiac injury caused by high glucose levels or T2DM. This underscores the need for research into biomarkers that can enable early diagnosis and management of DCM to reduce mortality rates. Promising novel biomarkers that showed good performance in detecting diastolic dysfunction or heart failure in diabetic patients include galectin-3, ST2, FGF-21, IGFBP-7, GDF-15, and TGF-β. This review summarizes the current understanding of DCM biomarkers, aiming to generate new ideas for the early recognition and treatment of DCM by exploring related pathophysiological mechanisms.
Collapse
Affiliation(s)
- Raluca Diana Ianoș
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| | - Angela Cozma
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Vasile Negrean
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Delia Corina Mercea
- Department of Cardiology, Emergency County Hospital, 430031 Baia Mare, Romania; (D.C.M.); (C.P.)
| | - George Ciulei
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Călin Pop
- Department of Cardiology, Emergency County Hospital, 430031 Baia Mare, Romania; (D.C.M.); (C.P.)
- Faculty of Medicine Arad, “Vasile Goldis” Western University, 310045 Arad, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Huang Q, Chen T, Li J, Wang Y, Shi H, Yu Y, Ji Q, Shen X, Sun T, Shi H, Luo X, Jin B, You Y, Wu B. IL-37 ameliorates myocardial fibrosis by regulating mtDNA-enriched vesicle release in diabetic cardiomyopathy mice. J Transl Med 2024; 22:494. [PMID: 38790051 PMCID: PMC11127460 DOI: 10.1186/s12967-024-05250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifei Yu
- Endocrinology department, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Jin
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Bai G, Chen J, Liu Y, Chen J, Yan H, You J, Zou T. Neonatal resveratrol administration promotes skeletal muscle growth and insulin sensitivity in intrauterine growth-retarded suckling piglets associated with activation of FGF21-AMPKα pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3719-3728. [PMID: 38160249 DOI: 10.1002/jsfa.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyi Bai
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyong Chen
- Medical College, Huanghe Science and Technology University, Zhengzhou, China
| | - Yue Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Lu QB, Fu X, Liu Y, Wang ZC, Liu SY, Li YC, Sun HJ. Disrupted cardiac fibroblast BCAA catabolism contributes to diabetic cardiomyopathy via a periostin/NAP1L2/SIRT3 axis. Cell Mol Biol Lett 2023; 28:93. [PMID: 37993768 PMCID: PMC10666354 DOI: 10.1186/s11658-023-00510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Periostin is an extracellular matrix protein that plays a critical role in cell fate determination and tissue remodeling, but the underlying role and mechanism of periostin in diabetic cardiomyopathy (DCM) are far from clear. Thus, we aimed to clarify the mechanistic participation of periostin in DCM. METHODS The expression of periostin was examined in DCM patients, diabetic mice and high glucose (HG)-exposed cardiac fibroblasts (CF). Gain- and loss-of-function experiments assessed the potential role of periostin in DCM pathogenesis. RNA sequencing was used to investigate the underlying mechanisms of periostin in DCM. RESULTS A mouse cytokine antibody array showed that the protein expression of periostin was most significantly upregulated in diabetic mouse heart, and this increase was also observed in patients with DCM or HG-incubated CF. Periostin-deficient mice were protected from diabetes-induced cardiac dysfunction and myocardial damage, while overexpression of periostin held the opposite effects. Hyperglycemia stimulated the expression of periostin in a TGF-β/Smad-dependent manner. RNA sequencing results showed that periostin upregulated the expression of nucleosome assembly protein 1-like 2 (NAP1L2) which recruited SIRT3 to deacetylate H3K27ac on the promoters of the branched-chain amino acid (BCAA) catabolism-related enzymes BCAT2 and PP2Cm, resulting in BCAA catabolism impairment. Additionally, CF-derived periostin induced hypertrophy, oxidative injury and inflammation in primary cardiomyocytes. Finally, we identified that glucosyringic acid (GA) specifically targeted and inhibited periostin to ameliorate DCM. CONCLUSION Overall, manipulating periostin expression may function as a promising strategy in the treatment of DCM.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Endocrine, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Xiao Fu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Shi-Yi Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yu-Chao Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
6
|
Liu X, Shao Y, Han L, Zhang R, Chen J. Emerging Evidence Linking the Liver to the Cardiovascular System: Liver-derived Secretory Factors. J Clin Transl Hepatol 2023; 11:1246-1255. [PMID: 37577236 PMCID: PMC10412704 DOI: 10.14218/jcth.2022.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Recently, accumulating evidence has revealed hepatic mediators, termed as liver-derived secretory factors (LDSFs), play an important role in regulating CVDs such as atherosclerosis, coronary artery disease, thrombosis, myocardial infarction, heart failure, metabolic cardiomyopathy, arterial hypertension, and pulmonary hypertension. LDSFs presented here consisted of microbial metabolite, extracellular vesicles, proteins, and microRNA, they are primarily or exclusively synthesized and released by the liver, and have been shown to exert pleiotropic actions on cardiovascular system. LDSFs mainly target vascular endothelial cell, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages and platelets, and further modulate endothelial nitric oxide synthase/nitric oxide, endothelial function, energy metabolism, inflammation, oxidative stress, and dystrophic calcification. Although some LDSFs are known to be detrimental/beneficial, controversial findings were also reported for many. Therefore, more studies are required to further explore the causal relationships between LDSFs and CVDs and uncover the exact mechanisms, which is expected to extend our understanding of the crosstalk between the liver and cardiovascular system and identify potential therapeutic targets. Furthermore, in the case of patients with liver disease, awareness should be given to the implications of these abnormalities in the cardiovascular system. These studies also underline the importance of early recognition and intervention of liver abnormalities in the practice of cardiovascular care, and a multidisciplinary approach combining hepatologists and cardiologists would be more preferable for such patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Lu C, Jin L, Bi J, Jin H, You X, Peng L, Fan H, Wang H, Wang L, Fan Z, Wang X, Liu B. Toxicokinetics of recombinant human fibroblast growth factor 21 for injection in cynomolgus monkey for 3 months. Front Pharmacol 2023; 14:1176136. [PMID: 37288111 PMCID: PMC10242211 DOI: 10.3389/fphar.2023.1176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Recombinant human fibroblast growth factor 21 (FGF-21) is a potential therapeutic agent for multiple metabolic diseases. However, little is known about the toxicokinetic characteristics of FGF-21. Methods: In the present study, we investigated the toxicokinetics of FGF-21 delivered via subcutaneous injection in vivo. Twenty cynomolgus monkeys were injected subcutaneously with different doses of FGF-21 for 86 days. Serum samples were collected at eight different time points (0, 0.5, 1.5, 3, 5, 8, 12, and 24 h) on day 1, 37 and 86 for toxicokinetic analysis. The serum concentrations of FGF-21 were measured using a double sandwich Enzyme-linked immunosorbent assay. Blood samples were collected on day 0, 30, 65, and 87 for blood and blood biochemical tests. Necropsy and pathological analysis were performed on d87 and d116 (after recovery for 29 days). Results: The average AUC(0-24h) values of low-dose FGF-21 on d1, d37, and d86 were 5253, 25268, and 60445 μg h/L, and the average AUC(0-24h) values of high-dose FGF-21 on d1, d37, and d86 were 19964, 78999, and 1952821 μg h/L, respectively. Analysis of the blood and blood biochemical indexes showed that prothrombin time and AST content in the high-dose FGF-21 group increased. However, no significant changes in other blood and blood biochemical indexes were observed. The anatomical and pathological results showed that continuous subcutaneous injection of FGF-21 for 86 days did not affect organ weight, the organ coefficient, and histopathology in cynomolgus monkeys. Discussion: Our results have guiding significance for the preclinical research and clinical use of FGF-21.
Collapse
Affiliation(s)
- Chao Lu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Lei Jin
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
| | - Jianing Bi
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongyi Jin
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Xinyi You
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Lulu Peng
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Haibing Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Huan Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Liangshun Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Zhengkai Fan
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Xiaojie Wang
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
- Laboratory of Zhejiang Province for Pharmaceutical Engineering and Development of Growth Factors, Collaborative Biomedical Innovation Center of Wenzhou, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases, Chinese Academy of Medical Science, Wenzhou, China
| | - Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacological Sciences, Wenzhou Medical University, Chashan University Park, Wenzhou, China
| |
Collapse
|
8
|
Yan B, Mei Z, Tang Y, Song H, Wu H, Jing Q, Zhang X, Yan C, Han Y. FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death Dis 2023; 14:311. [PMID: 37156793 PMCID: PMC10167257 DOI: 10.1038/s41419-023-05842-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone secreted primarily by the liver and is considered a major regulator of energy homeostasis. Recent research has revealed that FGF21 could play an important role in cardiac pathological remodeling effects and prevention of cardiomyopathy; however, the underlying mechanism remains largely unknown. This study aimed to determine the mechanism underlying the cardioprotective effects of FGF21. We engineered FGF21 knock out mice and subsequently elucidated the effects of FGF21 and its downstream mediators using western blotting, qRT-PCR, and mitochondrial morphological and functional analyses. FGF21 knockout mice showed cardiac dysfunction, accompanied by a decline in global longitudinal strain (GLS) and ejection fraction (EF), independent of metabolic disorders. Mitochondrial quality, quantity, and function were abnormal, accompanied by decreased levels of optic atrophy-1 (OPA1) in FGF21 KO mice. In contrast to FGF21 knockout, cardiac-specific overexpression of FGF21 alleviated the cardiac dysfunction caused by FGF21 deficiency. In an in vitro study, FGF21 siRNA deteriorated mitochondrial dynamics and impaired function induced by cobalt chloride (CoCl2). Both recombinant FGF21 and adenovirus-mediated FGF21 overexpression could alleviate CoCl2-induced mitochondrial impairment by restoring mitochondrial dynamics. FGF21 was essential for maintaining mitochondrial dynamics and function of the cardiomyocytes. As a regulator of cardiomyocyte mitochondrial homeostasis under oxidative stress, FGF21 could be an important new target for therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Bing Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhu Mei
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaohan Tang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hanlin Wu
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Quanmin Jing
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
9
|
Kaur N, Gare SR, Ruiz-Velasco A, Miller JM, Abouleisa RR, Ou Q, Shen J, Soran H, Mohamed TM, Liu W. FGF21/FGFR1-β-KL cascade in cardiomyocytes modulates angiogenesis and inflammation under metabolic stress. Heliyon 2023; 9:e14952. [PMID: 37123894 PMCID: PMC10133673 DOI: 10.1016/j.heliyon.2023.e14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (β-KL). This study first demonstrated a decreased expression or activity of FGFR1 and β-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and β-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-β-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-β-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.
Collapse
Affiliation(s)
- Namrita Kaur
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | | - Jessica M. Miller
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Riham R.E. Abouleisa
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Jiahan Shen
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Handrean Soran
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Wei Liu
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| |
Collapse
|
10
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
11
|
Kaur N, Gare SR, Shen J, Raja R, Fonseka O, Liu W. Multi-organ FGF21-FGFR1 signaling in metabolic health and disease. Front Cardiovasc Med 2022; 9:962561. [PMID: 35983184 PMCID: PMC9378980 DOI: 10.3389/fcvm.2022.962561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome is a chronic systemic disease that is particularly manifested by obesity, diabetes, and hypertension, affecting multiple organs. The increasing prevalence of metabolic syndrome poses a threat to public health due to its complications, such as liver dysfunction and cardiovascular disease. Impaired adipose tissue plasticity is another factor contributing to metabolic syndrome. Emerging evidence demonstrates that fibroblast growth factors (FGFs) are critical players in organ crosstalk via binding to specific FGF receptors (FGFRs) and their co-receptors. FGFRs activation modulates intracellular responses in various cell types under metabolic stress. FGF21, in particular is considered as the key regulator for mediating systemic metabolic effects by binding to receptors FGFR1, FGFR3, and FGFR4. The complex of FGFR1 and beta Klotho (β-KL) facilitates endocrine and paracrine communication networks that physiologically regulate global metabolism. This review will discuss FGF21-mediated FGFR1/β-KL signaling pathways in the liver, adipose, and cardiovascular systems, as well as how this signaling is involved in the interplay of these organs during the metabolic syndrome. Furthermore, the clinical implications and therapeutic strategies for preventing metabolic syndrome and its complications by targeting FGFR1/β-KL are also discussed.
Collapse
Affiliation(s)
| | | | - Jiahan Shen
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Rida Raja
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | - Oveena Fonseka
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
12
|
Muñoz-Córdova F, Hernández-Fuentes C, Lopez-Crisosto C, Troncoso MF, Calle X, Guerrero-Moncayo A, Gabrielli L, Chiong M, Castro PF, Lavandero S. Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Front Cardiovasc Med 2022; 8:707336. [PMID: 35004869 PMCID: PMC8734937 DOI: 10.3389/fcvm.2021.707336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes developed mainly in poorly controlled patients. In DCM, several clinical manifestations as well as cellular and molecular mechanisms contribute to its phenotype. The production of reactive oxygen species (ROS), chronic low-grade inflammation, mitochondrial dysfunction, autophagic flux inhibition, altered metabolism, dysfunctional insulin signaling, cardiomyocyte hypertrophy, cardiac fibrosis, and increased myocardial cell death are described as the cardinal features involved in the genesis and development of DCM. However, many of these features can be associated with broader cellular processes such as inflammatory signaling, mitochondrial alterations, and autophagic flux inhibition. In this review, these mechanisms are critically discussed, highlighting the latest evidence and their contribution to the pathogenesis of DCM and their potential as pharmacological targets.
Collapse
Affiliation(s)
- Felipe Muñoz-Córdova
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Carolina Hernández-Fuentes
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Calle
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Jiang LP, Yu XH, Chen JZ, Hu M, Zhang YK, Lin HL, Tang WY, He PP, Ouyang XP. Histone Deacetylase 3: A Potential Therapeutic Target for Atherosclerosis. Aging Dis 2022; 13:773-786. [PMID: 35656103 PMCID: PMC9116907 DOI: 10.14336/ad.2021.1116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease, is characterized by plaque formation in the intima. Secondary lesions include intraplaque hemorrhage, plaque rupture, and local thrombosis. Vascular endothelial function impairment and smooth muscle cell migration lead to vascular dysfunction, which is conducive to the formation of macrophage-derived foam cells and aggravates inflammatory response and lipid accumulation that cause atherosclerosis. Histone deacetylase (HDAC) is an epigenetic modifying enzyme closely related to chromatin structure and gene transcriptional regulation. Emerging studies have demonstrated that the Class I member HDAC3 of the HDAC super family has cell-specific functions in atherosclerosis, including 1) maintenance of endothelial integrity and functions, 2) regulation of vascular smooth muscle cell proliferation and migration, 3) modulation of macrophage phenotype, and 4) influence on foam cell formation. Although several studies have shown that HDAC3 may be a promising therapeutic target, only a few HDAC3-selective inhibitors have been thoroughly researched and reported. Here, we specifically summarize the impact of HDAC3 and its inhibitors on vascular function, inflammation, lipid accumulation, and plaque stability in the development of atherosclerosis with the hopes of opening up new opportunities for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Jin-Zhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Yang-Kai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Hui-Ling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Wan-Ying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
| | - Ping-Ping He
- School of Nursing, University of South China, Hunan, China
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hunan, China.
- Correspondence should be addressed to: Dr. Ping-Ping He, School of Nursing, University of South China, Hunan, China. and Dr. Xin-Ping Ouyang, Department of Physiology, University of South China, Hunan, China. .
| |
Collapse
|
14
|
Zhang Y, Liu D, Long XX, Fang QC, Jia WP, Li HT. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl) 2021; 134:2931-2943. [PMID: 34939977 PMCID: PMC8710326 DOI: 10.1097/cm9.0000000000001890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT The morbidity and mortality of cardiovascular diseases (CVDs) are increasing worldwide and seriously threaten human life and health. Fibroblast growth factor 21 (FGF21), a metabolic regulator, regulates glucose and lipid metabolism and may exert beneficial effects on the cardiovascular system. In recent years, FGF21 has been found to act directly on the cardiovascular system and may be used as an early biomarker of CVDs. The present review highlights the recent progress in understanding the relationship between FGF21 and CVDs including coronary heart disease, myocardial ischemia, cardiomyopathy, and heart failure and also explores the related mechanism of the cardioprotective effect of FGF21. FGF21 plays an important role in the prediction, treatment, and improvement of prognosis in CVDs. This cardioprotective effect of FGF21 may be achieved by preventing endothelial dysfunction and lipid accumulating, inhibiting cardiomyocyte apoptosis and regulating the associated oxidative stress, inflammation and autophagy. In conclusion, FGF21 is a promising target for the treatment of CVDs, however, its clinical application requires further clarification of the precise role of FGF21 in CVDs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao-Xue Long
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi-Chen Fang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hua-Ting Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
15
|
SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9265016. [PMID: 34790288 PMCID: PMC8592716 DOI: 10.1155/2021/9265016] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Background The mitochondrial dynamics and mitochondrial biogenesis are essential for maintaining the bioenergy function of mitochondria in diabetic cardiomyopathy (DCM). Previous studies have revealed that secreted frizzled-related protein 2 (SFRP2) is beneficial against apoptosis and oxidative stress. However, no research has confirmed whether SFRP2 regulates oxidative stress and apoptosis through mitochondrial function in DCM. Methods Exposure of H9C2 cardiomyocytes in high glucose (HG) 25 mM and palmitic acid (PAL) 0.2 mM was used to simulate DCM in vitro. H9C2 cells with SFRP2 overexpression or SFRP2 knockdown were constructed and cultured under glucolipotoxicity or normal glucose conditions. An SD rat model of type 2 diabetes mellitus (T2DM) was generated using a high-fat diet combined with a low-dose STZ injection. Overexpression of SFRP2 in the rat model was generated by using an adeno-associated virus approach. CCK-8, TUNEL assay, and DHE staining were used to detect cell viability, and MitoTracker Red CMXRos was used to detect changes in mitochondrial membrane potential. We used qRT-PCR and western blot to further explore the mechanisms of SFRP2 regulating mitochondrial dynamics through the AMPK/PGC1-α pathway to improve diabetic cardiomyocyte injury. Results Our results indicated that SFRP2 was significantly downregulated in H9C2 cells and cardiac tissues in T2DM conditions, accompanied by decreased expression of mitochondrial dysfunction. The mitochondrial membrane potential was reduced, and the cells were led to oxidative stress injury and apoptosis. Furthermore, the overexpression of SFRP2 could reverse apoptosis and promote mitochondrial function in T2DM conditions in vitro and in vivo. We also found that silencing endogenous SFRP2 could further promote glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes, accompanied by downregulation of p-AMPK. Conclusion SFRP2 exerted cardioprotective effects by salvaging mitochondrial function in an AMPK-PGC1-α-dependent manner, which modulates mitochondrial dynamics and mitochondrial biogenesis, reducing oxidative stress and apoptosis. SFRP2 may be a promising therapeutic biomarker in DCM.
Collapse
|
16
|
Activation of activator protein-1-fibroblast growth factor 21 signaling attenuates Cisplatin hepatotoxicity. Biochem Pharmacol 2021; 194:114823. [PMID: 34748822 DOI: 10.1016/j.bcp.2021.114823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Fibroblast growth factor (Fgf/FGF) 21, which plays important roles in sugar, lipid and energy metabolism, has been accepted as a mito-stress marker gene. We recently reported that FGF21 expression can be up-regulated via activation of aryl hydrocarbon receptor (AhR) or glucocorticoid receptor (GR) and that FGF21 plays important cytoprotective roles. Cisplatin (cis-diamminedichloroplatinum, CDDP) is a widely used chemotherapeutic drug. Numerous adverse effects including hepatotoxicity have been noted during CDDP therapy. It is known that CDDP can induce mitochondrial dysfunction. The studies were designed to determine the regulation of Fgf/FGF21 expression by CDDP, and to characterize the underlying mechanisms of its regulation, as well as to determine the impact of gain or loss of Fgf/FGF21 function on the progression of CDDP hepatotoxicity. Our results showed that CDDP and phorbol ester induced mRNA and protein expression of Fgf/FGF21 and β-Klotho, two essential components of Fgf21 signaling, in mouse livers and cultured mouse/human hepatocytes. Luciferase reporter assays and ChIP-qPCR assays demonstrated that the cJun-AP-1 activation is responsible for CDDP- and phorbol ester-induced Fgf/FGF21 expression. Such induction is abolished after cotreated with AP-1 inhibitor SR11302. In addition, CDDP produces more severe liver injury in Fgf21-null than wild-type mice. Pre-treatment of GR activator dexamethasone or AhR activator β-Naphthoflavone, both of which can induce Fgf21 expression, attenuated CDDP-induced hepatotoxicity in vivo and in vitro. In conclusion, Fgf/FGF21-β-Klotho signaling can be activated via AP-1 activation. Gain of Fgf/FGF21 function attenuates the progression of CDDP hepatotoxicity, which may be considered clinically to improve CDDP therapy.
Collapse
|
17
|
Aleem M, Maqsood H, Younus S, Zafar AF, Talpur AS, Shakeel H. Fibroblast Growth Factor 21 and Its Association With Oxidative Stress and Lipid Profile in Type 2 Diabetes Mellitus. Cureus 2021; 13:e17723. [PMID: 34659937 PMCID: PMC8490936 DOI: 10.7759/cureus.17723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Cardiovascular diseases are the leading cause of mortality in diabetic patients. Oxidative stress and mitochondrial dysfunction lead to diabetic cardiomyopathy (DCM) characterized by impaired cardiac structure and function. Hyperglycemia causes oxidative stress, which can lead to microvascular complications, macrovascular complications, and atherosclerosis. Peripheral tissues produce fibroblast growth factor 21 (FGF-21), which has anti-inflammatory properties, increases oxidation of fatty acids, and improves insulin sensitivity. Its increased levels are found in metabolic syndrome and type 2 diabetes mellitus and may also lead to coronary heart disease. Our study sought to measure the serum FGF-21 levels and their associations with lipid profile parameters and oxidative stress in patients with type 2 diabetes mellitus. Methodology One-hundred fifty (150) patients of both genders with type 2 diabetes mellitus were recruited along with 150 controls. Simple random sampling was done. After taking relevant history and physical examination, we drew venous blood samples of each patient and sent them to the institutional laboratory for analysis of fasting blood sugar (FBS) levels, glycated hemoglobin (HbA1C), lipid profile, and FGF-21 serum levels. Oxidative stress parameter malondialdehyde (MDA) was estimated and the total antioxidant status by ferric reducing antioxidant power assay (FRAP) was assessed. Patients were followed up after three months to record the glycemic index, and the values were recorded. We used SPSS Software 25.0 (SPSS, Inc., Chicago, USA) to analyze the data. For consideration of results to be statistically significant, a 𝑃 value of < 0.05 was selected. Results The levels of serum cholesterol, triglycerides, and low-density lipoprotein (LDL) cholesterol were increased in diabetics compared to controls and were statistically significant (p<0.05). High-density lipoprotein (HDL) cholesterol was lower in diabetic patients as compared to the controls (p<0.05). There was a statistically significant increase in the level of MDA in diabetics compared to controls (p˂0.005). Serum levels of total antioxidant status (FRAP) were decreased in diabetics in comparison with controls (p˂0.005). Serum FGF-21 level was statistically increased in diabetics compared to controls (p˂0.005). FGF-21 and MDA are positively correlated and FGF-21 and FRAP are negatively correlated. Serum FGF-21 is positively correlated with total cholesterol, triglycerides, serum LDL cholesterol, and HDL cholesterol. Conclusion Our study concludes that there is a significant correlation between fibroblast growth factor 21, oxidative stress, and abnormal lipid profile in type 2 diabetic patients. FGF-21 could be the target of certain medications used to treat metabolic disorders and obesity.
Collapse
Affiliation(s)
- Mudassar Aleem
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | - Hamza Maqsood
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | - Shifa Younus
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | - Ahmed F Zafar
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | | | | |
Collapse
|
18
|
Zhang X, Hu C, Yuan XP, Yuan YP, Song P, Kong CY, Teng T, Hu M, Xu SC, Ma ZG, Tang QZ. Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death Dis 2021; 12:624. [PMID: 34135313 PMCID: PMC8209005 DOI: 10.1038/s41419-021-03922-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Xiao-Pin Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Si-Chi Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, China.
| |
Collapse
|
19
|
Xiao M, Tang Y, Wang S, Wang J, Wang J, Guo Y, Zhang J, Gu J. The Role of Fibroblast Growth Factor 21 in Diabetic Cardiovascular Complications and Related Epigenetic Mechanisms. Front Endocrinol (Lausanne) 2021; 12:598008. [PMID: 34349728 PMCID: PMC8326758 DOI: 10.3389/fendo.2021.598008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), is an emerging metabolic regulator mediates multiple beneficial effects in the treatment of metabolic disorders and related complications. Recent studies showed that FGF21 acts as an important inhibitor in the onset and progression of cardiovascular complications of diabetes mellitus (DM). Furthermore, evidences discussed so far demonstrate that epigenetic modifications exert a crucial role in the initiation and development of DM-related cardiovascular complications. Thus, epigenetic modifications may involve in the function of FGF21 on DM-induced cardiovascular complications. Therefore, this review mainly interprets and delineates the recent advances of role of FGF21 in DM cardiovascular complications. Then, the possible changes of epigenetics related to the role of FGF21 on DM-induced cardiovascular complications are discussed. Thus, this article not only implies deeper understanding of the pathological mechanism of DM-related cardiovascular complications, but also provides the possible novel therapeutic strategy for DM-induced cardiovascular complications by targeting FGF21 and related epigenetic mechanism.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
20
|
Ferrer‐Curriu G, Guitart‐Mampel M, Rupérez C, Zamora M, Crispi F, Villarroya F, Fernández‐Solà J, Garrabou G, Planavila A. The protective effect of fibroblast growth factor‐21 in alcoholic cardiomyopathy: a role in protecting cardiac mitochondrial function. J Pathol 2020; 253:198-208. [DOI: 10.1002/path.5573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Gemma Ferrer‐Curriu
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Mariona Guitart‐Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex‐IDIBAPS, Faculty of Medicine and Health Science University of Barcelona, Internal Medicine Service – Hospital Clínic of Barcelona, Barcelona and CIBERER Barcelona Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal –Barcelona Center for Maternal–Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu) Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona Barcelona Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal –Barcelona Center for Maternal–Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu) Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona Barcelona Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| | - Joaquim Fernández‐Solà
- Alcohol Unit, Department of Medicine Hospital Clinic, University of Barcelona Barcelona Spain
- CIBEROBN Fisiopatología de la Obesidad y la Nutrición, Instituto Carlos III Madrid Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex‐IDIBAPS, Faculty of Medicine and Health Science University of Barcelona, Internal Medicine Service – Hospital Clínic of Barcelona, Barcelona and CIBERER Barcelona Spain
| | - Anna Planavila
- Departament de Bioquímica i Biologia Molecular Institut de Biomedicina de la Universitat de Barcelona (IBUB) i Institut de Recerca Sant Joan de Deu (IRSJD), Universitat de Barcelona Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Madrid Spain
| |
Collapse
|
21
|
Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16:654-667. [PMID: 32764725 DOI: 10.1038/s41574-020-0386-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that has important roles in regulating energy balance and glucose and lipid homeostasis through a heterodimeric receptor complex comprising FGF receptor 1 (FGFR1) and β-klotho. Administration of FGF21 to rodents or non-human primates causes considerable pharmacological benefits on a cluster of obesity-related metabolic complications, including a reduction in fat mass and alleviation of hyperglycaemia, insulin resistance, dyslipidaemia, cardiovascular disorders and non-alcoholic steatohepatitis (NASH). However, native FGF21 is unsuitable for clinical use owing to poor pharmacokinetic and biophysical properties. A large number of long-acting FGF21 analogues and agonistic monoclonal antibodies for the FGFR1-β-klotho receptor complexes have been developed. Several FGF21 analogues and mimetics have progressed to early phases of clinical trials in patients with obesity, type 2 diabetes mellitus and NASH. In these trials, the primary end points of glycaemic control have not been met, whereas substantial improvements were observed in dyslipidaemia, hepatic fat fractions and serum markers of liver fibrosis in patients with NASH. The complexity and divergence in pharmacology and pathophysiology of FGF21, interspecies variations in FGF21 biology, the possible existence of obesity-related FGF21 resistance and endogenous FGF21 inactivation enzymes represent major obstacles to clinical implementation of FGF21-based pharmacotherapies for metabolic diseases.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Xiaolong L, Dongmin G, Liu M, Zuo W, Huijun H, Qiufen T, XueMei H, Wensheng L, Yuping P, Jun L, Zhaolin Z. FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med 2020; 24:4992-5006. [PMID: 32227589 PMCID: PMC7205825 DOI: 10.1111/jcmm.15118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE−/− mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE−/− mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE−/− mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.
Collapse
Affiliation(s)
- Lin Xiaolong
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Guo Dongmin
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Mihua Liu
- Department of infectious Disease, Centre for Lipid Research & Key Laboratory of Molecular Biology for infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing City, China.,Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Wang Zuo
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Hu Huijun
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Tan Qiufen
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Hu XueMei
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Lin Wensheng
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Pan Yuping
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Lin Jun
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, China
| | - Zeng Zhaolin
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China.,Department of Cardiology, Nanchuan People's Hospital, Chongqing Medical University, Chongqing City, China
| |
Collapse
|
23
|
Alizadeh-Fanalou S, Babaei M, Hosseini A, Azadi N, Nazarizadeh A, Shojaii A, Borji M, Malekinejad H, Bahreini E. Effects of Securigera Securidaca seed extract in combination with glibenclamide on antioxidant capacity, fibroblast growth factor 21 and insulin resistance in hyperglycemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112331. [PMID: 31655149 DOI: 10.1016/j.jep.2019.112331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Undesired effects of synthetic antidiabetic agents have made researchers to seek for safer and healthier resources. With this aspect, herbal materials have attracted substantial research interest and are being extensively investigated. Considering that herb-drug interactions can be a double-edged sword presenting both risks and benefits, investigation of such interactions is greatly in demand. AIM OF THE STUDY to investigate possible beneficial effects of hydroalcoholic extract of SecurigeraSecuridaca seed (HESS) on antioxidant capacity, fibroblast growth factor 21 (FGF21) and insulin resistance in Streptozotocin (STZ)-induced diabetic rats, alone and in combination with glibenclamide. MATERIALS AND METHODS Forty male Wistar rats were randomly divided in to eight equal groups including healthy and diabetic controls and six treated groups with a various doses of HESS alone and in combination with glibenclamide, for 35 consecutive days. Serum samples were taken and analyzed for biochemical profile, HOMA indexes, FGF21, oxidative/nitrosative stress and inflammatory biomarkers as compared with the controls. Moreover, total phenolic and flavonoid contents of herbal extract were assessed. RESULTS The herbal extract was found to be rich in flavonoid and phenolic components. Both of glibenclamide and the HESS decreased glucose and insulin resistance, as well as increased body weight and insulin sensitivity. Moreover, the extract could mitigate oxidative/nitrosative stress and inflammation dose-dependently, however, the standard drug was less effective than HESS. Induction of diabetes increased FGF21 levels and both of the treatments could reduce its contents, however, glibenclamide was more effective than HESS. CONCLUSIONS The results clearly show that there is no contradiction between HESS and glibenclamide. Moreover, the herbal extract could augment antioxidant and anti-inflammatory properties of the standard drug.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Babaei
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Namamali Azadi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asie Shojaii
- Department of Pharmacognosy, Research Institute for Islamic & Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Borji
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Malekinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Urmia University of Medical University, Urmia, Iran.
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Cheng Y, Zhang X, Ma F, Sun W, Wang W, Yu J, Shi Y, Cai L, Xu Z. The Role of Akt2 in the Protective Effect of Fenofibrate against Diabetic Nephropathy. Int J Biol Sci 2020; 16:553-567. [PMID: 32025205 PMCID: PMC6990917 DOI: 10.7150/ijbs.40643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Fenofibrate (FF) protects against diabetic nephropathy (DN) in type 1 diabetic (T1D) mice by upregulating the expression of fibroblast growth factor 21 (FGF21), leading to the activation of the Akt-mediated Nrf2 antioxidant pathways. Here, we examined which isoforms of Akt contribute to FF activation of FGF21-mediated renal protection by examining the phosphorylation and expression of three isoforms, Akt1, Akt2, and Akt3. T1D induced by a single intraperitoneal dose of streptozotocin (STZ) resulted in reduced phosphorylation of one isoform, Akt2, but FF treatment increased renal Akt2 phosphorylation in these and normal mice, suggesting a potential and specific role for renal Akt2 in FF protection against T1D. This was further confirmed using in vitro cultured HK-2 human kidney tubule cells exposed to high glucose (HG) with siRNA silencing of the Akt2 gene and STZ-induced diabetic Akt2-knockout mice with and without 3-month FF treatment. In normal HK-2 cells exposed to HG for 24 hours, FF completely prevented cell death, reduced total Akt expression and glycogen synthase kinase (GSK)-3β phosphorylation, increased nuclear accumulation of Fyn, and reduced nuclear Nrf2 levels. These positive effects of FF were partially abolished by silencing Akt2 expression. Similarly, FF abolished T1D-induced renal oxidative stress, inflammation, and renal dysfunction in wild-type mice, but was only partially effective in Akt2-KO mice. Furthermore, FF treatment stimulated phosphorylation of AMPKα, an important lipid metabolism mediator, which in parallel with Akt2 plays an important role in FF protection against HG-induced HK-2 cells oxidative stress and damage. These results suggest that FF protects against DN through FGF21 to activate both Akt2/GSK-3β/Fyn/Nrf2 antioxidants and the AMPK pathway. Therefore, FF could be repurposed for the prevention of DN in T1D patients.
Collapse
Affiliation(s)
- Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jinyu Yu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
25
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
26
|
FGF21 Mediates Mesenchymal Stem Cell Senescence via Regulation of Mitochondrial Dynamics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4915149. [PMID: 31178962 PMCID: PMC6501200 DOI: 10.1155/2019/4915149] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cell- (MSC-) based therapy is a novel strategy in regenerative medicine. The functional and regenerative capacities of MSCs decline with senescence. Nonetheless, the potential mechanisms that underlie their senescence are not fully understood. This study was aimed at exploring the potential mechanisms of fibroblast growth factor 21 (FGF21) in the regulation of MSC senescence. The senescence of MSCs was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The morphology and the level of mitochondrial reactive oxygen species (ROS) of MSCs were assessed by MitoTracker and Mito-Sox staining, respectively. The expression of FGF21 and mitochondrial dynamics-related proteins was detected by Western blotting. As MSCs were expanded in vitro, the expression of FGF21 decreased. Depletion of FGF21 enhanced production of mitochondrial reactive oxidative species (ROS) and increased the senescence of early-passage MSCs whereas inhibition of ROS abolished these effects. The senescent MSCs exhibited increased mitochondrial fusion and decreased mitochondrial fission. Treatment of early-passage MSCs with FGF21 siRNA enhanced mitochondrial fusion and reduced mitochondrial fission. Moreover, treatment of mitofusin2- (Mfn2-) siRNA inhibited depletion of FGF21-induced MSC senescence. Furthermore, we demonstrated that depletion of FGF21-induced mitochondrial fusion was regulated by the AMPK signaling pathway. Treatment with an AMPK activator, AICAR, abrogated the depletion of FGF21-induced senescence of MSCs by inhibiting mitochondrial fusion. Compared with MSCs isolated from young donors, those derived from aged donors showed a lower level of FGF21 and a higher level of senescent activity. Furthermore, overexpression of FGF21 in aged MSCs inhibited senescence. Our study shows that FGF21, via the AMPK signaling pathway, regulates the senescence of MSCs by mediating mitochondrial dynamics. Targeting FGF21 might represent a novel strategy to improve the quality and quantity of MSCs.
Collapse
|
27
|
Shi Y, Wang S, Peng H, Lv Y, Li W, Cheng S, Liu J. Fibroblast Growth Factor 21 Attenuates Vascular Calcification by Alleviating Endoplasmic Reticulum Stress Mediated Apoptosis in Rats. Int J Biol Sci 2019; 15:138-147. [PMID: 30662354 PMCID: PMC6329919 DOI: 10.7150/ijbs.28873] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a hormone with multiple metabolic properties, has proven to be pleiotropic biological effects and may play pivotal role in numerous cardiovascular and metabolic diseases in the future. Vascular calcification (VC) is a concomitant pathological process of various cardiovascular and metabolic diseases. However, the effects of FGF21 on VC remain unclear. Therefore, in this research, we aimed to explore the roles and mechanisms of FGF21 in VC induced by vitamin D3 plus nicotine (VDN) treatment rats. After 28 days VDN treatment, the calcium overload was confirmed by blood pressure, ultrasound imaging, calcium content, ALP activity and aortic pathological characteristics. In terms of FGF21, exogenous FGF21 can ameliorate the elevation of blood pressure, aortic calcification and related injury in VC rats. To investigate the mechanisms of FGF21 on VC, the endoplasmic reticulum stress (ERS) mediated apoptosis pathways were tested. As a method to detect apoptosis, the increased positive TUNEL staining cells were alleviated by FGF21 treatment. Furthermore, exogenous FGF21 can suppress the increased ERS chaperone, GRP78, in the calcified aortas. In the three pathways of ERS mediated apoptosis, we found CHOP pathway and caspase-12 pathway were involved in the treatment of FGF21, but not p-JNK/JNK pathway. Our study proved for the first time that FGF21 can inhibit the progress of VC by alleviating ERS mediated apoptosis in rats. FGF21 might be a new target for preventing and treating VC.
Collapse
Affiliation(s)
- Yuchen Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shaoping Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Hongyu Peng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yuan Lv
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wenzheng Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shujuan Cheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
28
|
Liu Q, Wang S, Wei M, Huang X, Cheng Y, Shao Y, Xia P, Zhong M, Liu S, Zhang G, Hu S. Improved FGF21 Sensitivity and Restored FGF21 Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats After Duodenal-Jejunal Bypass and Sleeve Gastrectomy. Front Endocrinol (Lausanne) 2019; 10:566. [PMID: 31543863 PMCID: PMC6728857 DOI: 10.3389/fendo.2019.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: Bariatric surgery can profoundly improve glucose and lipid metabolism in diabetic rats. Fibroblast growth factor 21 (FGF21) is an important hormone with multiple metabolic beneficial effects. Alteration in serum FGF21 level after bariatric surgery has been reported with conflicting results. Here, we investigated the effect of bariatric surgeries on FGF21 expression and sensitivity. Methods: We performed duodenal-jejunal bypass (DJB), sleeve gastrectomy (SG) and sham surgery in diabetic rats induced by high fat diet and streptozotocin. Metabolic parameters, including body weight, food intake, glucose tolerance, and lipid profiles, were monitored. FGF21 levels in both serum and liver were measured after surgery. FGF21 signaling pathway including FGF receptor 1 (FGFR1), β-klotho (KLB), and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) was detected in the liver and white adipose tissue (WAT). We also determined FGF21 sensitivity post-operatively by acute recombinant human FGF21 injection. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted immediately after FGF21 injection. Serum triglyceride (TG) and non-esterified fatty acid (NEFA) were measured and the mRNA levels of early growth response 1 (Egr1) and c-Fos in the liver and WAT were detected after FGF21 injection. Results: Improvements in glucose tolerance, insulin sensitivity, and lipid profiles were observed after bariatric surgeries along with ameliorated lipid metabolism in the liver and WAT. Serum and hepatic FGF21 levels decreased in both DJB and SG groups. FGFR1 and phosphorylated ERK1/2 levels increased in both DJB and SG groups 8 weeks after surgery. The expression of KLB was downregulated only in the WAT after DJB and SG. Significant alteration of OGTT and ITT were observed after acute FGF21 administration in DJB and SG groups. Serum TG and NEFA in DJB and SG groups also decreased after FGF21 administration. And increased mRNA levels of Egr1 and c-Fos were detected in the liver and WAT after DJB and SG surgeries. Conclusions: DJB and SG surgeries can downregulate hepatic expression of FGF21, restore FGF21 signaling pathway and improve FGF21 sensitivity in high-fat diet/streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Qiaoran Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuo Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Shao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Pingtian Xia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Sanyuan Hu
| |
Collapse
|
29
|
Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61:R91-R105. [PMID: 30307158 PMCID: PMC6145237 DOI: 10.1530/jme-18-0005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response and is a retrograde signaling pathway, which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies, which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Correspondence should be addressed to M Shong:
| |
Collapse
|
30
|
Zhang J, Xu Z, Gu J, Jiang S, Liu Q, Zheng Y, Freedman JH, Sun J, Cai L. HDAC3 inhibition in diabetic mice may activate Nrf2 preventing diabetes-induced liver damage and FGF21 synthesis and secretion leading to aortic protection. Am J Physiol Endocrinol Metab 2018; 315:E150-E162. [PMID: 29634312 DOI: 10.1152/ajpendo.00465.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular complications are common pathologies associated with type 1 diabetes. In recent years, histone deacetylation enzyme (HDAC) inhibitors have been shown to be successful in preventing atherosclerosis. To investigate the mechanism for HDAC3 inhibition in preventing diabetic aortic pathologies, male OVE26 type 1 diabetic mice and age-matched wild-type (FVB) mice were given the HDAC3-specific inhibitor RGFP-966 or vehicle for 3 mo. These mice were then euthanized immediately or maintained for an additional 3 mo without treatment. Levels of aortic inflammation and fibrosis and plasma and fibroblast growth factor 21 (FGF21) levels were determined. Because the liver is the major organ for FGF21 synthesis in diabetic animals, the effects of HDAC3 inhibition on hepatic FGF21 synthesis were examined. Additionally, hepatic miR-200a and kelch-like ECH-associated protein 1 (Keap1) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were measured. HDAC3 inhibition significantly reduced aortic fibrosis and inflammation in OVE26 mice at both 3 and 6 mo. Plasma FGF21 levels were significantly higher in RGFP-966-treated OVE26 mice compared with vehicle-treated mice at both time points. It also significantly reduced hepatic pathologies associated with diabetes, accompanied by increased FGF21 mRNA and protein expression. HDAC3 inhibition also increased miR-200a expression, reduced Keap1 protein levels, and increased Nrf2 nuclear translocation with an upregulation of antioxidant gene and FGF21 transcription. Our results support a model where HDAC3 inhibition may promote Nrf2 activity by increasing miR-200a expression with a concomitant decrease in Keap1 to preserve hepatic FGF21 synthesis. The preservation of hepatic FGF21 synthesis ultimately leads to a reduction in diabetes-induced aorta pathologies.
Collapse
Affiliation(s)
- Jian Zhang
- Cardiovascular Center, the First Hospital of Jilin University , Changchun, Jilin , China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville , Louisville, Kentucky
| | - Zheng Xu
- Cardiovascular Center, the First Hospital of Jilin University , Changchun, Jilin , China
| | - Junlian Gu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville , Louisville, Kentucky
| | - Saizhi Jiang
- Department of Pediatrics, Pediatric Research Institute, University of Louisville , Louisville, Kentucky
- Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Quan Liu
- Cardiovascular Center, the First Hospital of Jilin University , Changchun, Jilin , China
| | - Yang Zheng
- Cardiovascular Center, the First Hospital of Jilin University , Changchun, Jilin , China
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| | - Jian Sun
- Cardiovascular Center, the First Hospital of Jilin University , Changchun, Jilin , China
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville , Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
31
|
Guo D, Xiao L, Hu H, Liu M, Yang L, Lin X. FGF21 protects human umbilical vein endothelial cells against high glucose-induced apoptosis via PI3K/Akt/Fox3a signaling pathway. J Diabetes Complications 2018; 32:729-736. [PMID: 29907326 DOI: 10.1016/j.jdiacomp.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
AIMS Diabetic macroangiopathy is the main cause of morbidity and mortality in patients with diabetes. Endothelial cell injury is a pathological precondition for diabetic macroangiopathy. Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which has recently been suggested to protect cardiac myocytes and vascular cells against oxidative stress-induced injury in vitro and vivo. In this study, we aimed to investigate the protective capacity of FGF21 in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced apoptosis via phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway. METHODS The cell viability was examined by CCK-8 assay, Intracellular ROS levels were measured by the detection of the fluorescent product formed by the oxidation of DCFH-DA, Apoptosis was analyzed using Hoechst 33258 nuclear staining and Flow Cytometry Analysis (FCA), the expression of protein were detected by Western blot. RESULTS Results show that pretreating HUVECs with FGF21 before exposure to HG increases cell viability, while decreasing apoptosis and the generation of reactive oxygen species. Western blot analysis shows that HG reduces the phosphorylation of Akt and FoxO3a, and induces nuclear localization of FoxO3a. The effects were significantly reversed by FGF21 pre-treatment. Furthermore, the protective effects of FGF21 were prevented by PI3K/Akt inhibitor LY294002. CONCLUSIONS Our data demonstrates that FGF21 protects HUVECs from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Dongmin Guo
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lele Xiao
- Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Huijun Hu
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province 516001, China
| | - Mihua Liu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of infectious Disease, The Second Affiliated Hospital, Chongqing Medical University, Chongqing City 400016, China
| | - Lu Yang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, Hunan Province 421001, China.
| | - Xiaolong Lin
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province 516001, China.
| |
Collapse
|
32
|
Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, Tian H, Wang B, Wang Y, Zhang Y, Han Z, Qu A, Xu H, Lu A, Yang T, Li X, Xu A, Du J, Lin Z. FGF21 Prevents Angiotensin II-Induced Hypertension and Vascular Dysfunction by Activation of ACE2/Angiotensin-(1-7) Axis in Mice. Cell Metab 2018; 27:1323-1337.e5. [PMID: 29706566 DOI: 10.1016/j.cmet.2018.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/27/2017] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. However, the role of FGF21 in hypertension remains elusive. Here we show that FGF21 deficiency significantly exacerbates angiotensin II-induced hypertension and vascular dysfunction, whereas such negative effects are reversed by replenishment of FGF21. Mechanistically, FGF21 acts on adipocytes and renal cells to promote induction of angiotensin-converting enzyme 2 (ACE2), which in turn converts angiotensin II to angiotensin-(1-7), then inhibits hypertension and reverses vascular damage. In addition, ACE2 deficiency strikingly abrogates these beneficial effects of FGF21 in mice, including alleviation of angiotensin II-associated hypertension and vascular damage. Otherwise, pharmaceutical inhibition of angiotensin-(1-7) attenuates the protective effect of FGF21 on angiotensin II-induced vascular dysfunction, but not on hypertension. Thus, FGF21 protects against angiotensin II-induced hypertension and vascular impairment by activation of the ACE2/angiotensin-(1-7) axis via fine-tuning the multi-organ crosstalk between liver, adipose tissue, kidney, and blood vessels.
Collapse
Affiliation(s)
- Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yihui Shao
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing 100029, China
| | - Fan Wu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing 100029, China
| | - Rongrong Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jujia Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haishan Tian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Yanfang Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zongsheng Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Aijuan Qu
- Department of Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Haixia Xu
- Department of Endocrinology, the 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Aihua Lu
- Institute of Hypertension, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University, Guangzhou 510080, China; Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing 100029, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
33
|
Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed Pharmacother 2018; 101:510-527. [DOI: 10.1016/j.biopha.2018.02.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
|
34
|
Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets? Trends Pharmacol Sci 2018; 39:452-467. [PMID: 29605388 DOI: 10.1016/j.tips.2018.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
The diabetic heart is characterized by metabolic disturbances that are often accompanied by local inflammation, oxidative stress, myocardial fibrosis, and cardiomyocyte apoptosis. Overall changes result in contractile dysfunction, concentric left ventricular (LV) hypertrophy, and dilated cardiomyopathy, that together affect cardiac output and eventually lead to heart failure, the foremost cause of death in diabetic patients. There are currently several validated biomarkers for the diagnosis and risk assessment of cardiac diseases, but none is capable of discriminating patients with diabetic cardiomyopathy (DCM). In this review we point to several novel candidate biomarkers from new activated molecular pathways (including microRNAs) with the potential to detect or prevent DCM in its early stages, or even to treat it once established. The prospective use of selected biomarkers that integrate inflammation, oxidative stress, fibrosis, and metabolic dysregulation is widely discussed.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018; 10:213-231. [PMID: 29072367 DOI: 10.1111/1753-0407.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) are byproducts of cellular physiological processes of the metabolism of intermediary nutrients. Although physiological defense mechanisms readily convert these species into water or urea, an improper balance between their production and removal leads to oxidative stress (OS), which is harmful to cellular components. This OS may result in uncontrolled growth or, ultimately, cell death. In addition, ROS and RNS are closely related to the development of diabetes and its complications. Therefore, numerous researchers have proposed the development of strategies for the removal of ROS/RNS to prevent or treat diabetes and its complications. Some molecules that are synthesized in the body or obtained from food participate in the removal and neutralization of ROS and RNS. Metallothionein, a cysteine-rich protein, is a metal-binding protein that has a wide range of functions in cellular homeostasis and immunity. Metallothionein can be induced by a variety of conditions, including zinc supplementation, and plays a crucial role in mediating anti-OS, anti-apoptotic, detoxification, and anti-inflammatory effects. Metallothionein can modulate various stress-induced signaling pathways (mitogen-activated protein kinase, Wnt, nuclear factor-κB, phosphatidylinositol 3-kinase, sirtuin 1/AMP-activated protein kinase and fibroblast growth factor 21) to alleviate diabetes and diabetic complications. However, a deeper understanding of the functional, biochemical, and molecular characteristics of metallothionein is needed to bring about new opportunities for OS therapy. This review focuses on newly proposed functions of a metallothionein and their implications relevant to diabetes and its complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Hanyang University, College of Medicine and Engineering, Seoul, South Korea
| | - Jian Zhang
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|