1
|
Facchin A, Filipe J, Mauri I, Tagliasacchi F, Grilli G, Vitiello T, Ratti G, Musa L, Penati M, Scarpa P, Lauzi S. Antimicrobial Resistance and Biofilm-Forming Ability in ESBL-Producing and Non-ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Canine Urinary Samples from Italy. Antibiotics (Basel) 2025; 14:31. [PMID: 39858317 PMCID: PMC11760867 DOI: 10.3390/antibiotics14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/11/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In dogs, bacterial urinary tract infections are a frequent cause of antimicrobial prescription, increasing the risk of selecting antibiotic-resistant bacteria. This study analyzed resistance patterns, the presence of extended-spectrum β-lactamases (ESBLs) and biofilm-forming capacity in E. coli and K. pneumoniae previously isolated from urine samples collected from 133 selected dogs admitted to the Veterinary Teaching Hospital of Milan, Italy, in 2021 and 2023. Methods: The E. coli and K. pneumoniae isolates were bacteriologically and genetically analyzed. Results: Overall, 53/133 (39.8%) samples had a positive microbiological culture. Thirty-four E. coli/K. pneumoniae isolates were detected, accounting for 26.5% of the examined samples. The 34 isolates included 28 E. coli and 6 K. pneumoniae. Four (11.8%) were ESBL-producing bacteria, all supported by blaCTX-M gene belonging to group 1. The K. pneumoniae isolates were significantly associated with ESBL production (p < 0.05). MIC analysis showed 11 (32.4%) multidrug-resistant isolates. Biofilm-forming capacity was observed in 23 (67.6%) isolates, regardless of bacterial species, including 20 weakly and 3 moderately adherent bacteria. All moderate biofilm producers were K. pneumoniae. Multidrug resistance (MDR) was significantly more present in strains with moderate biofilm-forming ability compared to strains with weak ability to form biofilm (p < 0.05). E. coli was confirmed as the most commonly identified urinary isolate in dogs. Conclusions: The high presence of ESBL producers and MDR in K. pneumoniae suggests mandatory in vitro susceptibility testing in the presence of this bacterium in dogs with UTI. The association of moderate biofilm production with MDR highlights the need for monitoring and surveillance of bacterial prevalence and resistance patterns of urinary isolates in dogs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (A.F.); (G.G.); (L.M.); (P.S.)
| |
Collapse
|
2
|
Tree M, Lam TJGM, McDougall S, Beggs DS, Robertson ID, Barnes AL, Chopra A, Ram R, Stockman CA, Kent TC, Aleri JW. Epidemiology of antimicrobial resistance in commensal Escherichia coli from healthy dairy cattle on a Mediterranean pasture-based system of Australia: A cross-sectional study. J Dairy Sci 2025; 108:803-820. [PMID: 39369890 DOI: 10.3168/jds.2024-25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to determine the prevalence of antimicrobial resistance (AMR) in commensal Escherichia coli from healthy lactating cows and calves in the Mediterranean pasture-based feeding dairy system of Western Australia (WA). Fecal samples were collected from healthy adult lactating cows and healthy calves from dairy farms in WA. Presumptive commensal E. coli was isolated from these samples and confirmed using matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Broth microdilution was used to assess the prevalence and the phenotypic AMR profiles of the E. coli isolates to 8 antimicrobial agents of dairy industry and human importance. The minimum inhibitory concentration for each isolate was interpreted using the epidemiologic cutoff (ECOFF) and Clinical and Laboratory Standards Institute breakpoints. Genomic characterization provided multilocus sequence types and AMR genes for a selection of isolates categorized as nonwild type (NWT) by ECOFF values for the combination of ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. From a total of 1,117 fecal samples (633 adult, 484 calf) collected across 26 randomly selected farms, 891 commensal E. coli isolates were recovered (541 adult, 350 calf). Commensal E. coli classified as NWT was highest for ampicillin for both adult (68.8%; 95% CI [64.7, 72.7]) and calf feces (67.1%; 95% CI [62.0, 72.0]). A large proportion of tetracycline NWT and trimethoprim-sulfamethoxazole NWT organisms were also identified from calf feces, being 44.0% (95% CI [38.7, 49.4]) and 24.6% (95% CI [20.2, 29.4]), respectively. Clinical resistance prevalence was low, being higher for calves than for adult feces for ampicillin (adult: 7.8%, 95% CI [5.7, 10.3]; calf: 30.0%, 95% CI [25.2, 35.1]), tetracycline (adult: 6.3%, 95% CI [4.4, 8.7]; calf: 40.3%, 95% CI [35.1, 45.6]), and trimethoprim-sulfamethoxazole (adult: 2.6%, 95% CI [1.4, 4.3]; calf: 22.0%, 95% CI [17.7, 26.7]). Commensal E. coli originating from calf feces was significantly higher in NWT prevalence compared with adult feces for ciprofloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. The overall number of antimicrobials an isolate was classified as NWT toward varied among farms and was significantly higher for isolates originating from calf rather than adult feces. The strain type and sampling source of the commensal E. coli investigated were both associated with the commonality of the resultant resistance genome. Clinical resistance and NWT classification were highest for ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, all antimicrobials commonly used in the treatment of dairy cattle in Australia. Although highly variable across farms, commensal E. coli isolated from healthy dairy calf feces had significantly higher NWT and multidrug resistance (MDR) prevalence compared with feces from healthy adult lactating dairy cows. The resistant genome identified in MDR isolates, although not always consistent with the phenotype, included QnrS1 and genes encoding AmpC β-lactamase and aminoglycoside phosphotransferase.
Collapse
Affiliation(s)
- M Tree
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - T J G M Lam
- GD Animal Health, Deventer, and Faculty of Veterinary Medicine Utrecht University, 3584 CS Utrecht, the Netherlands
| | - S McDougall
- Cognosco, Anexa Veterinary Services, Morrinsville 3340, New Zealand
| | - D S Beggs
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - I D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - A L Barnes
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - A Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - R Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - C A Stockman
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - T C Kent
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, Murdoch, WA 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Shano S, Kalam MA, Afrose S, Rahman MS, Akter S, Uddin MN, Jalal FA, Dutta P, Ahmed M, Kamal KMM, Hassan MM, Nadimpalli ML. An application of COM-b model to explore factors influencing veterinarians' antimicrobial prescription behaviors: Findings from a qualitative study in Bangladesh. PLoS One 2024; 19:e0315246. [PMID: 39680579 DOI: 10.1371/journal.pone.0315246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The integration of behavioral theories in designing antimicrobial stewardship (AMS) interventions aimed at optimizing the antimicrobial prescription in veterinary practice is highly recommended. However, little is known about the factors that influence veterinarians' antimicrobial behavior for food-producing animals in lower- and middle-income settings like Bangladesh. There is a large body of research on the factors that influence veterinarian behavior of prescribing antimicrobials, however, there is a need for more studies that use comprehensive behavior change models to develop and evaluate interventions. Applying the Capability, Opportunity, and Motivation for Behavior (COM-B) model, this qualitative study attempted to address this gap by conducting 32 one-on-one semi-structured interviews with registered veterinarians in Bangladesh. In alignment with COM-B constructs and the theoretical domain framework (TDF), thematic analysis (both inductive and deductive inferences) was performed to analyze the data and identify underlying factors that influence veterinarians' antimicrobial prescription behavior. We found that under "Capability," factors such as knowledge of antimicrobial resistance (AMR); ability to handle complex disease conditions; ability to identify the appropriate antimicrobial type, routes of administration, and potential side effects influence prescription behavior by veterinarians. Under "Opportunity," veterinarians' prescription behavior was influenced by lack of laboratory testing facilities, poor farm biosecurity, farm management and location, farming conditions, impacts of climate change, the clinical history of animals and social influence from different actors including senior figures, peers, farmers, and other informal stakeholders. Under "Motivation," national laws and guidelines serve as catalysts in reducing antimicrobial prescriptions. However, perceived consequences such as fear of treatment failure, losing clients, farmers' reliance on informal service providers, and economic losses demotivate veterinarians from reducing the prescription of antimicrobials. Additionally, veterinarians feel that reducing the burden of AMR is a shared responsibility since many informal stakeholders are involved in the administration and purchase of these medicines. Based on our results, this study recommends incorporating the factors we identified into existing or novel AMS interventions. The behavior change wheel can be used as the guiding principle while designing AMS interventions to increase capability, opportunity and motivation to reduce antimicrobial over-prescription.
Collapse
Affiliation(s)
- Shahanaj Shano
- Institute of Epidemiology Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
- Global Health and Development Program, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
| | - Md Abul Kalam
- Global Health and Development Program, Laney Graduate School, Emory University, Atlanta, Georgia, United States of America
| | - Sharmin Afrose
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Md Sahidur Rahman
- Bangladesh Country Office, Eastern Mediterranean Public Health Network (EMPHNET), Dhaka, Bangladesh
| | - Samira Akter
- Department of Anthropology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Nasir Uddin
- International Center for Diarrheal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Faruk Ahmed Jalal
- Humanity and Inclusion, Bangladesh Country Office, Dhaka, Bangladesh
| | - Pronesh Dutta
- Institute of Epidemiology Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh
| | | | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Maya L Nadimpalli
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Li H, Zhu X, Zhang X, Dong C. Caspofungin enhances the potency of rifampin against Gram-negative bacteria. Front Microbiol 2024; 15:1447485. [PMID: 39211315 PMCID: PMC11358092 DOI: 10.3389/fmicb.2024.1447485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Developing antibiotic adjuvants is an effective strategy to combat antimicrobial resistance (AMR). The envelope of Gram-negative bacteria (GNB) is a barrier to prevent the entry of antibiotics, making it an attractive target for novel antibiotic and adjuvant development. Methods and Results In this study, we identified Caspofungin acetate (CAS) as an antibiotic adjuvant against GNB in the repurposing screen of 3,158 FDA-approved drugs. Checkerboard assays suggested that CAS could enhance the antimicrobial activity of rifampin or colistin against various GNB strains in vitro, Moreover, Galleria mellonella larvae infection model also indicated that CAS significantly potentiated the efficacy of rifampin against multidrug-resistant Escherichia coli 72 strain in vivo. Most importantly, resistance development assay showed that CAS was less susceptible to accelerating the resistance development of drug-sensitive strain E. coli MG1655. Functional studies and RNA-seq analysis confirmed that the mechanisms by which CAS enhanced the antimicrobial activities of antibiotics were involved in permeabilizing the bacterial cell envelope, disrupting proton motive force and inhibiting bacterial biofilm formation. Additionally, it has been found that PgaC is the CAS target and enzymatic assay has confirmed the inhibition activity. Discussion Our results illustrate the feasibility of CAS as an antibiotic adjuvant against GNB, which is an alternative strategy of anti-infection.
Collapse
Affiliation(s)
- Haotian Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaojing Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xing Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Rahman MK, Rodriguez-Mori H, Loneragan GH, Awosile B. Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. Comp Immunol Microbiol Infect Dis 2024; 106:102139. [PMID: 38325128 DOI: 10.1016/j.cimid.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (blaCMY-2,blaTEM-1A, and blaTEM-1B), 6 genes in Salmonella enterica (blaCARB-2, blaCMY-2, blaCTXM-65, blaTEM-1A, blaTEM-1B, and blaHERA-3), and 2 genes in Campylobacter spp. (blaOXA-61 and blaOXA-449) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. blaCTXM-55 has been detected in E. coli isolates from the four food animal sources while blaCTXM-15 and blaCTXM-27 were found only in cattle and swine. In Salmonella enterica, blaCTXM-2, blaCTXM-9, blaCTXM-14, blaCTXM-15, blaCTXM-27, blaCTXM-55, and blaNDM-1 were only detected among human isolates. blaOXAs and blaCARB were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface.
Collapse
Affiliation(s)
- Md Kaisar Rahman
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, USA
| | | | - Guy H Loneragan
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, USA
| | - Babafela Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, USA.
| |
Collapse
|
6
|
Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, Lee YJ, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020-2022. Antibiotics (Basel) 2023; 13:27. [PMID: 38247586 PMCID: PMC10812631 DOI: 10.3390/antibiotics13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yun Jin Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| |
Collapse
|
7
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front Vet Sci 2023; 10:1260433. [PMID: 38239744 PMCID: PMC10795760 DOI: 10.3389/fvets.2023.1260433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, such as Escherichia coli, are emerging as a serious threat to global health due to their rapid spread and their multidrug-resistant (MDR) phenotypes. However, limited information is available regarding the prevalence and antimicrobial resistance (AMR) profile of ESBL-E. coli in the United States dairy farms. This study aimed to determine the prevalence and AMR pattern of ESBL-E. coli in East Tennessee dairy cattle farms. Methods Rectal fecal samples from dairy cattle (n = 508) and manure (n = 30), water (n = 19), and feed samples (n = 15) were collected from 14 farms. The presumptive E. coli was isolated on CHROMagar™ ESBL and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed on the ESBL-E. coli isolates. Results and discussion From 572 fecal and farm environmental samples, a total of 233 (41%, n = 572) ESBL-E. coli were identified. The prevalence of fecal ESBL-E. coli was 47.5% (95% CI: 46.2-49.2). The within-farm prevalence of ESBL-E. coli ranged from 8 to 100%. Recent treatment history with third-generation cephalosporins (3GC), cow parity ≥3, and calves were the independent risk factors associated (P < 0.05) with fecal carriage of ESBL-E. coli. Overall, 99.6% (n = 231) ESBL-E. coli tested were phenotypically resistant to at least one of the 14 antimicrobial agents tested. The most common AMR phenotypes were against beta-lactam antibiotics, ampicillin (99.1%; n = 231 isolates), and ceftriaxone (98.7%, n = 231). Most ESBL-E. coli isolates (94.4%) were MDR (resistance to ≥3 antimicrobial classes), of which 42.6% showed co-resistance to at least six classes of antimicrobials. ESBL-E. coli isolates with concurrent resistance to ceftriaxone, ampicillin, streptomycin, tetracycline, sulfisoxazole, and chloramphenicol are widespread and detected in all the farms. The detection of MDR ESBL-E. coli suggests that dairy cattle can be a reservoir for these bacteria, highlighting the associated public health risk.
Collapse
Affiliation(s)
| | | | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
8
|
Abraham R, Allison HS, Lee T, Pavic A, Chia R, Hewson K, Lee ZZ, Hampson DJ, Jordan D, Abraham S. A national study confirms that Escherichia coli from Australian commercial layer hens remain susceptible to critically important antimicrobials. PLoS One 2023; 18:e0281848. [PMID: 37418382 PMCID: PMC10328298 DOI: 10.1371/journal.pone.0281848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Controlling the use of the most critically important antimicrobials (CIAs) in food animals has been identified as one of the key measures required to curb the transmission of antimicrobial resistant bacteria from animals to humans. Expanding the evidence demonstrating the effectiveness of restricting CIA usage for preventing the emergence of resistance to key drugs amongst commensal organisms in animal production would do much to strengthen international efforts to control antimicrobial resistance (AMR). As Australia has strict controls on antimicrobial use in layer hens, and internationally comparatively low levels of poultry disease due to strict national biosecurity measures, we investigated whether these circumstances have resulted in curtailing development of critical forms of AMR. The work comprised a cross-sectional national survey of 62 commercial layer farms with each assessed for AMR in Escherichia coli isolates recovered from faeces. Minimum inhibitory concentration analysis using a panel of 13 antimicrobials was performed on 296 isolates, with those exhibiting phenotypic resistance to fluoroquinolones (a CIA) or multi-class drug resistance (MCR) subjected to whole genome sequencing. Overall, 53.0% of isolates were susceptible to all antimicrobials tested, and all isolates were susceptible to cefoxitin, ceftiofur, ceftriaxone, chloramphenicol and colistin. Resistance was observed for amoxicillin-clavulanate (9.1%), ampicillin (16.2%), ciprofloxacin (2.7%), florfenicol (2.4%), gentamicin (1.0%), streptomycin (4.7%), tetracycline (37.8%) and trimethoprim/sulfamethoxazole (9.5%). MCR was observed in 21 isolates (7.0%), with two isolates exhibiting resistance to four antimicrobial classes. Whole genome sequencing revealed that ciprofloxacin-resistant (fluoroquinolone) isolates were devoid of both known chromosomal mutations in the quinolone resistance determinant regions and plasmid-mediated quinolone resistance genes (qnr)-other than in one isolate (ST155) which carried the qnrS gene. Two MCR E. coli isolates with ciprofloxacin-resistance were found to be carrying known resistance genes including aadA1, dfrA1, strA, strB, sul1, sul2, tet(A), blaTEM-1B, qnrS1 and tet(A). Overall, this study found that E. coli from layer hens in Australia have low rates of AMR, likely due to strict control on antimicrobial usage achieved by the sum of regulation and voluntary measures.
Collapse
Affiliation(s)
- Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Hui San Allison
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Terence Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Raymond Chia
- Australian Eggs, North Sydney, New South Wales, Australia
| | - Kylie Hewson
- Sativus Pty Ltd, Beenleigh, Queensland, Australia
| | - Zheng Zhou Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David Jordan
- New South Wales Department of Primary industries, Wollongbar, New South Wales, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
9
|
Development of an In Vivo Extended-Spectrum Cephalosporin-Resistant Escherichia coli Model in Post-Weaned Pigs and Its Use in Assessment of Dietary Interventions. Animals (Basel) 2023; 13:ani13060959. [PMID: 36978499 PMCID: PMC10044249 DOI: 10.3390/ani13060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Current interventions targeting antimicrobial resistance (AMR), a major impact on commercial pork production, focus on reducing the emergence of AMR by minimising antimicrobial usage through antimicrobial stewardship and a range of alternative control methods. Although these strategies require continued advancement, strategies that directly aim to reduce or eliminate existing antimicrobial resistant bacteria, specifically bacteria resistant to critically important antimicrobials (CIAs), need to be investigated and established. This study established an in vivo model for examining the effects of postbiotics, in the form of Lactobacillus acidophilus fermentation products (LFP) and Saccharomyces cerevisiae fermentation products (SFP), on the shedding of extended-spectrum cephalosporin (ESC)-resistant E. coli. The model was successful in demonstrating the presence of ESC-resistant E. coli as evidenced by its detection in 62 of 64 pigs. There was a strong trend (p = 0.065) for the SFP postbiotics to reduce the shedding of ESC-resistant E. coli, indicating positive impacts of this additive on reducing the carriage of bacteria resistant to CIAs. Overall, this in vivo model enables future evaluation of strategies targeting ESC-resistant E. coli while increasing our knowledge on the carriage of ESC-resistant E. coli in pigs.
Collapse
|
10
|
Farrell S, Benson T, McKernan C, Regan Á, Burrell AMG, Dean M. Exploring veterinarians' behaviour relating to antibiotic use stewardship on Irish dairy farms using the COM-B model of behaviour change. Res Vet Sci 2023; 156:45-53. [PMID: 36780797 DOI: 10.1016/j.rvsc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Employing a theoretical model of human behaviour (COMB), the current study explores the factors influencing veterinarians' engagement with antibiotic use stewardship on Irish dairy farms. One-to-one semi structured interviews were carried out by telephone with 12 veterinarians whose daily work focused on dairy cattle. A thematic analysis approach was undertaken. The identified themes and sub-themes were then mapped to the COM-B model. This study identified challenges faced by veterinarians when trying to prescribe responsibly which included lack of training to encourage farmer behaviour change, issues with laboratory testing, pressures from farmers to prescribe antimicrobials, concern for animal welfare and farmers going elsewhere for prescriptions. Having a good knowledge of AMR, peers as an advice source, potential financial benefits for farmers as a result of reduced antimicrobial costs and accepting a shared responsibility for AMR, facilitate veterinarians in their role as antimicrobial stewards. The barriers and facilitators identified as influencing veterinarians' capability, opportunity and motivation to responsibly prescribe antimicrobials formed the basis for a number of practical recommendations which should be considered by advisory and policy making teams. Recommendations include; continuous training for veterinarians on AMR and alternatives to overcome the barriers faced when trying to promote reduced AMU, veterinarian peer support groups to improve confidence in their knowledge and decision making to minimise the effect of client pressures/expectations, setting up collaborative farmer and veterinarian working groups to promote a transparent working relationship and the development of affordable and efficient diagnostic and susceptibility testing.
Collapse
Affiliation(s)
- Sarah Farrell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Tony Benson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Claire McKernan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Áine Regan
- Department of Agri-Food Business and Spatial Analysis, Rural Economy Development Programme, Teagasc, Mellows Campus, Athenry, Ireland.
| | - Alison M G Burrell
- Animal Health Ireland, 2 - 5 The Archways, Carrick-on-Shannon, Co. Leitrim N41 WN27, Ireland.
| | - Moira Dean
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
11
|
Antimicrobial Resistance of and Genomic Insights into Pasteurella multocida Strains Isolated from Australian Pigs. Microbiol Spectr 2023; 11:e0378422. [PMID: 36651773 PMCID: PMC9927299 DOI: 10.1128/spectrum.03784-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection with Pasteurella multocida represents a significant economic threat to Australian pig producers, yet our knowledge of its antimicrobial susceptibilities is lagging, and genomic characterization of P. multocida strains associated with porcine lower respiratory disease is internationally scarce. This study utilized high-throughput robotics to phenotypically and genetically characterize an industry-wide collection of 252 clinical P. multocida isolates that were recovered between 2014 and 2019. Overall, antimicrobial resistance was found to be low, with clinical resistance below 1% for all tested antimicrobials except those from the tetracycline class. Five dominant sequence types, representing 64.8% of all isolates, were identified; they were disseminated across farms and had previously been detected in various animal hosts and countries. P. multocida in Australian farms remain controllable via current antimicrobial therapeutic protocols. The identification of highly dominant, interspecies-infecting strains provides insight into the epidemiology of the opportunistic pathogen, and it highlights a biosecurity threat to the Australian livestock industry. IMPORTANCE Pasteurellosis is rated by the World Animal Health Organisation (OIE) as a high-impact disease in livestock. Although it is well understood in many host-disease contexts, our understanding of the organism in porcine respiratory disease is limited. Given its high frequency of involvement in porcine respiratory disease complex (PRDC), it is important that we are aware of its antimicrobial susceptibilities so that we can respond quickly and appropriately with antimicrobial therapy. Genetic insights about the organism can help us to better understand its epidemiology and inform our biosecurity practices and prophylactic management.
Collapse
|
12
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Sherif AE, Ashkan MF, Alrahimi J, Abdullah Motwali E, Imran Tousif M, Abbas Khan M, Hussain M, Umair M, Ghalloo BA, Korma SA. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Tree M, McDougall S, Beggs DS, Robertson ID, Lam TJ, Aleri JW. Antimicrobial use on Australian dairy cattle farms – A survey of veterinarians. Prev Vet Med 2022; 202:105610. [DOI: 10.1016/j.prevetmed.2022.105610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
|
14
|
Magiri R, Gaundan S, Choongo K, Zindove T, Bakare A, Okyere E, Okello W, Mutwiri G, Rafai E, Gautam A, Iji P. Antimicrobial resistance management in Pacific Island countries: Current status, challenges, and strategic solutions. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.1-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is currently recognized as a major emerging threat to human and animal health. The burden of antimicrobial-resistant infections affects the economy in developed and developing countries. There is a rapid rise in AMR in human and veterinary medicine globally. AMR profiles are poorly documented in Fiji, and limited data are accessible. Fiji currently has no national veterinary antibiotic resistance surveillance network or regulations and guidelines on veterinary drug use. However, available literature shows that although human drugs are better managed than veterinary drugs, the knowledge is still constrained and dispersed. Furthermore, Fiji was chosen as a case study to develop a prototype AMR surveillance and control in the Pacific region. Pacific Island countries share similar geographic and climatic conditions. Currently, the Australian Centre for International Agricultural Research has funded an AMR project that addresses some gaps in managing AMR in the region. The project is the first to adopt the One Health approach to research the AMR in humans, animals, and the Pacific region's environment. Combating AMR needs human health and veterinary personnel to work with all other stakeholders. Continuous surveillance for resistant clinical isolates in humans and animals and the development of appropriate policy intervention measures in human and veterinary drug use are necessary to alleviate AMR burden. Therefore, there is a need to educate farmers, human patients, and the public on the fight against AMR. In addition, AMR data are necessary to develop effective AMR control strategies. This review gives a comprehensive information assessment on AMR in Fiji and the other South Pacific Islands in relation to global trends. Suggestions on the most appropriate ways of effectively managing AMR in Fiji have been made.
Collapse
Affiliation(s)
- Royford Magiri
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji; School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sharon Gaundan
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji
| | - Kennedy Choongo
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji; Department of Veterinary Biomedical Sciences , School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Titus Zindove
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji
| | - Archibold Bakare
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji
| | - Eunice Okyere
- Department of Public Health, College of Medicine, Nursing and Health Sciences, Fiji National University, Private Mail Bag, Hoodless House Campus, Brown Street, Suva, Fiji
| | - Walter Okello
- Commonwealth Scientific and Industrial Research Organization, Black Mountain Science and Innovation Park, Clunies Ross Street, Acton ACT 260, Australia
| | - George Mutwiri
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Eric Rafai
- Ministry of Health and Medical Services, Dinem House, 88 Amy St, Suva, Fiji
| | - Ashodra Gautam
- Ministry of Health and Medical Services, Dinem House, 88 Amy St, Suva, Fiji
| | - Paul Iji
- Department of Veterinary Science, College of Agriculture, Fisheries and Forestry, Fiji National University, Suva P.O. Box 7222, Fiji
| |
Collapse
|
15
|
Aleri JW, Sahibzada S, Harb A, Fisher AD, Waichigo FK, Lee T, Robertson ID, Abraham S. Molecular epidemiology and antimicrobial resistance profiles of Salmonella isolates from dairy heifer calves and adult lactating cows in a Mediterranean pasture-based system of Australia. J Dairy Sci 2021; 105:1493-1503. [PMID: 34955273 DOI: 10.3168/jds.2021-21084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Dairy cows can be reservoirs of foodborne pathogens such as Salmonella that pose serious public health risks to humans. The study was designed to examine the molecular epidemiology and antimicrobial resistance profiles of Salmonella isolates from dairy heifer calves and adult lactating cows in the pasture-based system of Australia. A total of 838 animals (328 heifer calves and 510 lactating cows) from 22 farms were sampled. Overall, 54 Salmonella isolates were recovered (calves 28/328 and cows 26/510). A herd-level Salmonella prevalence of 50% (95% confidence interval: 31%-69%) was recorded. Within-herd prevalence for Salmonella ranged between 4%-29% and 4%-45% among the heifer calves and adult lactating cows, respectively. Three different serovars were identified with Salmonella Infantis being the most common serovar (n = 33, 61%) followed by Salmonella Kiambu (n = 20, 37.0%) and one isolate of Salmonella Cerro (2%). The highest antimicrobial resistance prevalence of Salmonella isolates was found against streptomycin (n = 31, 57%), followed by cefoxitin (n = 12, 22%), ceftriaxone (n = 2, 4%), and chloramphenicol (n = 1, 2%). Multiple class resistance was observed on 4 isolates against cefoxitin, chloramphenicol, and streptomycin. Multilocus sequence types ST32 (61%), ST309 (37%), and ST367 (2%) were strongly linked to the serovars Salmonella Infantis, Salmonella Kiambu, and Salmonella Cerro, respectively. Whole genome sequencing of Salmonella isolates detected only 2 resistance genes: aac(6') gene that confers resistance against aminoglycosides among 40.7% of the isolates, and a single isolate positive for the blaDHA-16 gene. Two distinct clusters among the serovars were observed suggesting 2 independent sources of spread. Despite the low prevalence of antimicrobial resistance among Salmonella from the dairy farms, our findings contribute to the regional and national understanding of antimicrobial resistance in dairy herds in Australia. There is need for continued antimicrobial resistance stewardship and surveillance programs to ensure the production of high-quality food products and the long-term protection of both animal and human health.
Collapse
Affiliation(s)
- J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Antimicrobial Resistance and Infectious Diseases Research Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia.
| | - S Sahibzada
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Antimicrobial Resistance and Infectious Diseases Research Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia
| | - A Harb
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Antimicrobial Resistance and Infectious Diseases Research Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia
| | - A D Fisher
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, 250 Princes Highway, Werribee, 3030 VIC, Australia; Animal Welfare Science Centre, University of Melbourne, 3010 VIC, Australia
| | - F K Waichigo
- Brunswick Veterinary Services, 27 Ommaney Road, Brunswick Junction, 6224 WA, Australia
| | - T Lee
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Antimicrobial Resistance and Infectious Diseases Research Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia
| | - I D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - S Abraham
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia; Antimicrobial Resistance and Infectious Diseases Research Laboratory, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, 6150 WA, Australia
| |
Collapse
|
16
|
Sharma A, Singh A, Dar MA, Kaur RJ, Charan J, Iskandar K, Haque M, Murti K, Ravichandiran V, Dhingra S. Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures to tackle hostility. J Infect Public Health 2021; 15:172-181. [PMID: 34972026 DOI: 10.1016/j.jiph.2021.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial Resistance (AMR) is significant challenge humanity faces today, with many patients losing their lives every year due to AMR. It is more widespread and has shown a higher prevalence in low- and middle-income countries (LMICs) due to lack of awareness and other associated reasons. WHO has suggested some crucial guidelines and specific strategies such as antimicrobial stewardship programs taken at the institutional level to combat AMR. Creating awareness at the grassroots level can help to reduce the AMR and promote safe and effective use of antimicrobials. Control strategies in curbing AMR also comprise hygiene and sanitation as microbes travel from contaminated surroundings to the human body surface. As resistance to multiple drugs increases, vaccines can play a significant role in curbing the menace of AMR. This article summarizes the current surveillance practices and applied control measures to tackle the hostility in these countries with particular reference to the role of antimicrobial stewardship programs and the responsibilities of regulatory authorities in managing the situation.
Collapse
Affiliation(s)
- Ayush Sharma
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Akanksha Singh
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Mukhtar Ahmad Dar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Rimple Jeet Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Katia Iskandar
- Lebanese University, School of Pharmacy, Beirut, Lebanon; INSPECT-LB: Institute National de Sante Publique, Epidemiologie Clinique et Toxicologie, Beirut, Lebanon; Universite Paul Sabatier UT3, INSERM, UMR1295, Toulouse, France
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India; Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.
| |
Collapse
|
17
|
Laird TJ, Jordan D, Lee ZZ, O'Dea M, Stegger M, Truswell A, Sahibzada S, Abraham R, Abraham S. Diversity detected in commensals at host and farm level reveals implications for national antimicrobial resistance surveillance programmes. J Antimicrob Chemother 2021; 77:400-408. [PMID: 34791273 DOI: 10.1093/jac/dkab403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A key component to control of antimicrobial resistance (AMR) is the surveillance of food animals. Currently, national programmes test only limited isolates per animal species per year, an approach tacitly assuming that heterogeneity of AMR across animal populations is negligible. If the latter assumption is incorrect then the risk to humans from AMR in the food chain is underestimated. OBJECTIVES To demonstrate the extent of phenotypic and genetic heterogeneity of Escherichia coli in swine to assess the need for improved protocols for AMR surveillance in food animals. METHODS Eight E. coli isolates were obtained from each of 10 pigs on each of 10 farms. For these 800 isolates, AMR profiles (MIC estimates for six drugs) and PCR-based fingerprinting analysis were performed and used to select a subset (n = 151) for WGS. RESULTS Heterogeneity in the phenotypic AMR traits of E. coli was observed in 89% of pigs, with 58% of pigs harbouring three or more distinct phenotypes. Similarly, 94% of pigs harboured two or more distinct PCR-fingerprinting profiles. Farm-level heterogeneity was detected, with ciprofloxacin resistance detected in only 60% of pigs from a single farm. Furthermore, 58 STs were identified, with the dominant STs being ST10, ST101, ST542 and ST641. CONCLUSIONS Phenotypic and genotypic heterogeneity of AMR traits in bacteria from animal populations are real phenomena posing a barrier to correct interpretation of data from AMR surveillance. Evolution towards a more in-depth sampling model is needed to account for heterogeneity and increase the reliability of inferences.
Collapse
Affiliation(s)
- Tanya J Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - Zheng Zhou Lee
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
- DPIRD Diagnostic and Laboratory Services, South Perth, Western Australia, Australia
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Alec Truswell
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
18
|
Validation of Selective Agars for Detection and Quantification of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Microbiol Spectr 2021; 9:e0066421. [PMID: 34756091 PMCID: PMC8579925 DOI: 10.1128/spectrum.00664-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Success in the global fight against antimicrobial resistance (AMR) is likely to improve if surveillance can be performed on an epidemiological scale. An approach based on agars with incorporated antimicrobials has enormous potential to achieve this. However, there is a need to identify the combinations of selective agars and key antimicrobials yielding the most accurate counts of susceptible and resistant organisms. A series of experiments involving 1,202 plates identified the best candidate combinations from six commercially available agars and five antimicrobials, using 18 Escherichia coli strains as either pure cultures or inocula-spiked feces. The effects of various design factors on colony counts were analyzed in generalized linear models. Without antimicrobials, Brilliance E. coli and CHROMagar ECC agars yielded 28.9% and 23.5% more colonies, respectively, than MacConkey agar. The order of superiority of agars remained unchanged when fecal samples with or without spiking of resistant E. coli strains were inoculated onto agars with or without specific antimicrobials. When antimicrobials were incorporated at various concentrations, it was revealed that ampicillin, tetracycline, and ciprofloxacin were suitable for incorporation into Brilliance and CHROMagar agars at all defined concentrations. Gentamicin was suitable for incorporation only at 8 and 16 μg/ml, while ceftiofur was suitable only at 1 μg/ml. CHROMagar extended-spectrum β-lactamase (ESBL) agar supported growth of a wider diversity of extended-spectrum-cephalosporin-resistant E. coli strains. The findings demonstrate the potential for agars with incorporated antimicrobials to be combined with laboratory-based robotics to deliver AMR surveillance on a vast scale with greater sensitivity of detection and strategic relevance. IMPORTANCE Established models of surveillance for AMR in livestock typically have a low sampling intensity, which creates a tremendous barrier to understanding the variation of resistance among animal and food enterprises. However, developments in laboratory robotics now make it possible to rapidly and affordably process large volumes of samples. Combined with modern selective agars incorporating antimicrobials, this forms the basis of a novel surveillance process for identifying resistant bacteria by chromogenic reactions, including accurately detecting and quantifying the presence of bacteria even when they are present at low concentrations. Because Escherichia coli is a widely preferred indicator bacterium for AMR surveillance, this study identifies the optimal selective agar for quantifying resistant E. coli strains by assessing the growth performance on agars with antimicrobials. The findings are the first step toward exploiting laboratory robotics in an up-scaled approach to AMR surveillance in livestock, with wider adaptations in food, clinical microbiology, and public health.
Collapse
|
19
|
Suárez-Pérez A, Corbera JA, González-Martín M, Tejedor-Junco MT. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures ( Neophron percnopterus majorensis). Animals (Basel) 2021; 11:ani11061692. [PMID: 34204084 PMCID: PMC8229213 DOI: 10.3390/ani11061692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Increasing antimicrobial resistance is a global problem for both human and animal health. Escherichia coli is frequently used as a “sentinel” for antimicrobial resistance and as an indicator of faecal contamination of the environment. This study is a characterisation of the antimicrobial resistance phenotypes of E. coli isolates obtained from cloacal samples of Canarian Egyptian vultures. A total of 65 chickens and 38 adult and immature birds were studied. Antimicrobial susceptibility to 16 antibiotics of 12 different categories was determined in 103 E. coli isolates. We found a 39.8% prevalence of multidrug-resistant (MDR) E. coli. Almost all MDR phenotypes found included resistance to tetracycline, an antibiotic widely used in veterinary medicine. Resistance has also been found to chloramphenicol (13 MDR phenotypes), imipenem (5 MDR phenotypes) and others. Wild birds can act as reservoirs and disseminators of MDR E. coli, transferring them via faeces to the environment, feed or water. Our results highlight the need to minimise exposure of wild birds to antimicrobials from human activities to avoid the spread of antimicrobial resistance. Abstract The presence of multidrug-resistant (MDR) Escherichia coli in cloacal samples from Canarian Egyptian vultures was investigated. Samples were obtained from chicks (n = 65) and from adults and immature birds (n = 38). Antimicrobial susceptibility to 16 antibiotics included in 12 different categories was determined for 103 E. coli isolates. MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories. Forty-seven different resistance phenotypes were detected: 31 MDR (41 isolates) and 16 non-MDR (62 isolates). One isolate was resistant to all 12 antimicrobial categories and 2 phenotypes included resistance to 9 antimicrobial categories. Imipenem resistance was included in five MDR phenotypes, corresponding to five different isolates. Statistically significant differences in prevalence of MDR-phenotypes were found between chicks in nests and the rest of the animals, probably due to the shorter exposure time of chicks to antimicrobials. The main risk derived from MDR bacteria in scavengers is that it threatens the treatment of wild animals in rescue centres and could be transferred to other animals in the facilities. In addition to this, it could pose a health risk to veterinarians or other staff involved in wildlife protection programmes.
Collapse
Affiliation(s)
- Alejandro Suárez-Pérez
- Wildlife Animal Rescue Centre, Cabildo de Tenerife, 38291 La Laguna, Spain;
- Department of Animal Pathology, Animal Production and Food Hygiene and Technology, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain
| | - Juan Alberto Corbera
- Department of Animal Pathology, Animal Production and Food Hygiene and Technology, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain
- Research Institute of Biomedical and Health Sciences, ULPGC, 35016 Las Palmas, Spain; (M.G.-M.); (M.T.T.-J.)
- Correspondence:
| | - Margarita González-Martín
- Research Institute of Biomedical and Health Sciences, ULPGC, 35016 Las Palmas, Spain; (M.G.-M.); (M.T.T.-J.)
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, ULPGC, 35016 Las Palmas, Spain; (M.G.-M.); (M.T.T.-J.)
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria (ULPGC), 35413 Arucas, Spain
| |
Collapse
|
20
|
Mokgophi TM, Gcebe N, Fasina F, Adesiyun AA. Antimicrobial Resistance Profiles of Salmonella Isolates on Chickens Processed and Retailed at Outlets of the Informal Market in Gauteng Province, South Africa. Pathogens 2021; 10:pathogens10030273. [PMID: 33804304 PMCID: PMC8000370 DOI: 10.3390/pathogens10030273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
The study determined the antimicrobial resistance profiles of Salmonella on chickens processed and retailed at outlets of the informal markets in Gauteng province, South Africa. The study also investigated the relationship of antimicrobial resistant Salmonella to the source and type of samples and their serotypes. Carcass swabs, cloacal swabs and carcass drips were randomly collected from each of 151 slaughtered chickens from six townships. Isolation and identification were performed using standard and polymerase chain reaction (PCR) methods. The disc diffusion method was used to determine the resistance of Salmonella isolates to 16 antimicrobial agents and PCR to determine their serovars. Ninety-eight (64.9%) of the 151 chickens were contaminated with Salmonella of which 94.9% (93/98) were resistant serovars. The frequency of antimicrobial resistance of Salmonella isolates was high to erythromycin (94.9%) and spectinomycin (82.7%) but was low to ciprofloxacin (1.0%) and norfloxacin (1.0%) (p < 0.05). All 170 isolates of Salmonella tested exhibited resistance to one or more antimicrobial agents and the frequency varied significantly (p < 0.05) across the townships, the type of samples and the serovars. The prevalence of multidrug resistance (MDR) in Salmonella was 81.8% (139/170). Our findings pose zoonotic, food safety and therapeutic risks to workers and consumers of undercooked, contaminated chickens from these outlets.
Collapse
Affiliation(s)
- Thelma M. Mokgophi
- Department of Production Animal Studies, University of Pretoria, Private Bag X 04, Onderstepoort, Pretoria 0110, South Africa;
| | - Nomakorinte Gcebe
- Agricultural Research Council–Bacteriology and Zoonotic Diseases Diagnostic Laboratory, Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa;
| | - Folorunso Fasina
- ECTAD, Food and Agriculture Organization of the UN, Dar es Salaam 14111, Tanzania & Department of Vet-erinary Tropical Diseases, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa;
| | - Abiodun A. Adesiyun
- Department of Production Animal Studies, University of Pretoria, Private Bag X 04, Onderstepoort, Pretoria 0110, South Africa;
- Department of Paraclinical Sciences, School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago
- Correspondence:
| |
Collapse
|
21
|
Sahra S, Jahangir A, Hamadi R, Jahangir A, Glaser A. Clinical and Microbiologic Efficacy and Safety of Imipenem/Cilastatin/Relebactam in Complicated Infections: A Meta-analysis. Infect Chemother 2021; 53:271-283. [PMID: 34216121 PMCID: PMC8258290 DOI: 10.3947/ic.2021.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for Gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (HABP), and ventilator-associated bacterial pneumonia (VABP). MATERIALS AND METHODS We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. We included randomized clinical trials-with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A P-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I² statistic. RESULTS The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. CONCLUSION Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, HABP, VABP).
Collapse
Affiliation(s)
- Syeda Sahra
- Staten Island University Hospital, Staten Island, NY, USA.
| | | | | | | | - Allison Glaser
- Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
22
|
Urban Migrant Labourers as Potential Source for Transfer of Antimicrobial Resistance to Rural Community. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to investigate potential evidence for spread of antimicrobial resistance (AMR) from urban migrant labourers to labourers from local resident rural community due to sharing of common residential premises and other civic amenities. Two groups of unskilled labourers, enrolled for civil construction in a peri-urban area viz. (i) labourers having migrated from urban zone and (ii) labourers from local resident village community were compared in terms of demographic profile, history of various risk factors towards acquisition of AMR and prevalence of extended-spectrum beta-lactamase (ESBL), carbapenemase and New Delhi metallo-beta-lactamase type 1 (NDM-1) categories of AMR at enrolment and after one year of sharing of common residential premises with associated sanitation facilities using Escherichia coli as indicator organism. Higher percentage of urban migrant labourers were characterised by low literacy level, history of inhabitation in makeshift shelters without dedicated access to drinking water or cooking space, practice of defecation in open, episodes of illness suggestive of bacterial infections, faulty treatment seeking behaviour and intestinal carriage rate of E. coli with various categories of AMR compared to the non-migrant labourers from rural community. The later group showed an increase in the prevalence of carbapenem resistance with NDM-1 production during the duration of co-inhabitation with urban migrant labourers. The present study provided potential evidence for transfer of AMR by urban migrant labourers to non-migrant labourers from rural community that may serve as vehicle for further transmission of AMR to the rural community hitherto unexposed or less exposed to the problem.
Collapse
|
23
|
Implications of Foraging and Interspecies Interactions of Birds for Carriage of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Appl Environ Microbiol 2020; 86:AEM.01610-20. [PMID: 32801178 DOI: 10.1128/aem.01610-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Globally, gulls have been associated with carriage of high levels of Escherichia coli strains resistant to critically important antimicrobials (CIAs), a major concern, as these antimicrobials are the sole alternative or one among only a few alternatives available to treat severe life-threatening infections in humans. Previous studies of Australian silver gulls demonstrated high levels of resistance to CIAs, particularly fluoroquinolone and extended-spectrum cephalosporins, among E. coli strains (carriage at 24% and 22%, respectively). This study aimed to identify and characterize strains from four distinct bird species inhabiting a common coastal environment, determine the frequency of carriage of CIA-resistant E. coli strains, and examine if these resistant clones and their resistance-encoding mobile genetic elements (MGEs) could be transmitted between species. CIA-resistant E. coli was detected in silver gulls (53%), little penguins (11%), and feral pigeons (10%), but not in bridled terns. In total, 37 different sequence types (STs) were identified, including clinically significant human-associated lineages, such as ST131, ST95, ST648, ST69, ST540, ST93, ST450, and ST10. Five main mobile genetic elements associated with bla CTX-M-positive E. coli strains isolated from three bird species were detected. Examination of clonal lineages and MGEs provided indirect evidence of transfer of resistance between bird species. The carriage of CIA-resistant E. coli by gulls and pigeons with proximity to humans, and in some instances food-producing animals, increases the likelihood of further bidirectional dissemination.IMPORTANCE It has been shown that 20% of Australian silver gulls carry drug-resistant Escherichia coli strains of anthropogenic origin associated with severe diseases, such as sepsis and urinary tract infections, in humans. To further characterize the dynamics of drug-resistant E. coli in wildlife populations, we investigated the carriage of critically important antimicrobial (CIA) drug-resistant E. coli in four bird species in a common environment. Our results indicated that gulls, pigeons, and penguins carried drug-resistant E. coli strains, and analysis of mobile genetic elements associated with resistance genes indicated interspecies resistance transfer. Terns, representing a bird species that forages on natural food sources at sea and distant from humans, did not test positive for drug-resistant E. coli This study demonstrates carriage of CIA-resistant bacteria in multiple bird species living in areas commonly inhabited by humans and provides further evidence for a leapfrog effect of resistance in wildlife, facilitated by feeding habits.
Collapse
|
24
|
Antimicrobial resistance and genomic insights into bovine mastitis-associated Staphylococcus aureus in Australia. Vet Microbiol 2020; 250:108850. [PMID: 33011663 DOI: 10.1016/j.vetmic.2020.108850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate antimicrobial resistance and population structure of bovine mastitis-associated Staphylococcus aureus isolates, and compare them to human isolates obtained from Western Australian hospitals and overseas strains to determine relatedness to human isolates from a zoonotic or reverse zoonotic aspect. Antimicrobial susceptibility testing was performed on 202 S. aureus isolates of which 166 isolates underwent whole genome sequencing. Only resistance to penicillin (12.4%) and erythromycin (0.5%) was identified and of note, no resistance was demonstrated to oxacillin. Genomic characterisation identified 14 multilocus sequence types (STs), with most isolates belonging to clonal complexes 97, 705, and 1. Four distinct clades based on virulence gene composition were identified. The four clades were predominantly ST based, consisting of ST352, ST97, ST81/ST1, and ST705. Core genome comparison of the bovine and human S. aureus isolates demonstrated defined clustering by ST, with the Australian bovine S. aureus isolates clustering together according to their ST separately from human isolates. In addition, a bovine specific cluster comprising Australian ST151 and ST705 isolates, and ST151 isolates from Irish dairy cattle was clearly delineated. Examination of a detailed ST352 phylogeny provided evidence for geographical clustering of Australian strains into a distinct grouping separate from international strains. This study has identified Australian S. aureus isolates have limited genetic diversity and are genetically distinct from human and international bovine S. aureus isolates. Current first line therapies for bovine mastitis in Australian dairy cattle remain appropriate.
Collapse
|
25
|
Mukerji S, Stegger M, Truswell AV, Laird T, Jordan D, Abraham RJ, Harb A, Barton M, O'Dea M, Abraham S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J Antimicrob Chemother 2020; 74:2566-2574. [PMID: 31287537 DOI: 10.1093/jac/dkz242] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/21/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) to critically important antimicrobials (CIAs) amongst Gram-negative bacteria can feasibly be transferred amongst wildlife, humans and domestic animals. This study investigated the ecology, epidemiology and origins of CIA-resistant Escherichia coli carried by Australian silver gulls (Chroicocephalus novaehollandiae), a gregarious avian wildlife species that is a common inhabitant of coastal areas with high levels of human contact. METHODS Sampling locations were widely dispersed around the perimeter of the Australian continent, with sites separated by up to 3500 km. WGS was used to study the diversity and molecular characteristics of resistant isolates to ascertain their epidemiological origin. RESULTS Investigation of 562 faecal samples revealed widespread occurrence of extended-spectrum cephalosporin-resistant (21.7%) and fluoroquinolone-resistant (23.8%) E. coli. Genome sequencing revealed that CIA-resistant E. coli isolates (n = 284) from gulls predominantly belonged to human-associated extra-intestinal pathogenic E. coli (ExPEC) clones, including ST131 (17%), ST10 (8%), ST1193 (6%), ST69 (5%) and ST38 (4%). Genomic analysis revealed that gulls carry pandemic ExPEC-ST131 clades (O25:H4 H30-R and H30-Rx) and globally emerging fluoroquinolone-resistant ST1193 identified among humans worldwide. Comparative analysis revealed that ST131 and ST1193 isolates from gulls overlapped extensively with human clinical isolates from Australia and overseas. The present study also detected single isolates of carbapenem-resistant E. coli (ST410-blaOXA-48) and colistin-resistant E. coli (ST345-mcr-1). CONCLUSIONS The carriage of diverse CIA-resistant E. coli clones that strongly resemble pathogenic clones from humans suggests that gulls can act as ecological sponges indiscriminately accumulating and disseminating CIA-resistant bacteria over vast distances.
Collapse
Affiliation(s)
- Shewli Mukerji
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.,Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.,Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Alec Vincent Truswell
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - Rebecca Jane Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Ali Harb
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Mary Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
26
|
Köper LM, Bode C, Bender A, Reimer I, Heberer T, Wallmann J. Eight years of sales surveillance of antimicrobials for veterinary use in Germany-What are the perceptions? PLoS One 2020; 15:e0237459. [PMID: 32776971 PMCID: PMC7416935 DOI: 10.1371/journal.pone.0237459] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
A surveillance system for sales volumes of antimicrobial agents for veterinary use was established in Germany in 2011. Since then, pharmaceutical companies and wholesalers have been legally obliged to report annual volumes of veterinary antimicrobial products sold to veterinary practices or clinics located in Germany. The evaluation of sales volumes for eight consecutive years resulted in a considerable total decrease by 58% from 1706 tons to 722 tons. During the investigation period, two legally binding measures to control the risk of antimicrobial resistance resulting from the veterinary use of antimicrobials were introduced, a) the German treatment frequencies benchmarking in 2014 and b) the obligation to conduct susceptibility testing for the use of cephalosporins of the 3rd and 4th generation and of fluoroquinolones in 2018. Both had a marked impact on sales volumes. Nonetheless, the category of Critically Important Antimicrobials as defined by the World Health Organization kept accounting for the highest share on sales volumes in Germany in 2018 with 403 tons, despite an overall reduction by 53%. Sales surveillance is considered essential for data retrieval on a global scale and inter-country comparison. However, the usability of a surveillance system based on sales data for risk management of antimicrobial resistance has limitations. The German system does not include off-label use of antimicrobial products authorized for human medicine and does not allow for identification of areas of high risk according to animal species, farm and production types and indications for treatment. For further reduction and enhanced promotion of a prudent use of antimicrobials, targeted measures would be required that could only be deducted from use data collected at farm or veterinary practice level. A surveillance system based on use data is currently lacking in Germany but will be established according to Regulation (EU) 2019/6 on veterinary medicinal products.
Collapse
Affiliation(s)
- Lydia M. Köper
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
- * E-mail:
| | - Christoph Bode
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Alice Bender
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Inke Reimer
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Thomas Heberer
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Jürgen Wallmann
- Department Veterinary Drugs, Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| |
Collapse
|
27
|
Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures ( Neophron percnopterus majorensis). Animals (Basel) 2020; 10:ani10060970. [PMID: 32503222 PMCID: PMC7341323 DOI: 10.3390/ani10060970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Antibiotics are used to prevent and treat bacterial infections in both animals and humans. If bacteria become resistant to them, in particular as the result of the misuse and overuse of antibiotics, the infections that they cause are harder to treat. Therefore, the detection of microorganisms resistant to antimicrobial drugs is an important issue, considering the interaction among domestic animals, human, the ecosystem and wild animals. Wild birds, and particularly birds-of-prey, are sentinels, reservoirs, spreaders and a source of infection for human beings and other animals. Wildlife can also act as an asymptomatic reservoir for zoonotic bacteria (e.g., Salmonella). The presence of antimicrobial-resistant microorganisms was investigated for a period of three years and the differences between chicks in the nest (n = 81) and adult and immature birds (n = 61) were analyzed. Gram negative bacteria were isolated in all the samples. Escherichia coli was obtained in 80.28% of the samples, where the prevalence of Salmonella in our study was 6.3%. The results of our study support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the human population. Abstract Due to their predatory habits, raptors may serve as indicators of the presence of antimicrobial-resistant bacteria in the environment, but they also represent a public health risk for livestock and humans because they can act as reservoirs, sources and spreaders of these bacteria. Our objective was to determine the presence of antimicrobial-resistant bacteria in cloacal samples of Canarian Egyptian vultures (Neophron percnopterus majorensis), an endemic bird of prey. One hundred and forty-two cloacal swabs were obtained; Escherichia coli was isolated from 80.28% and Salmonella from 6.3% of these samples. Low levels of susceptibility to ampicillin, tetracycline and trimethoprim/sulfamethoxazole were found. About 20% of the isolates were resistant or presented intermediate susceptibility to fluoroquinolones. Surprisingly, we found isolates resistant to imipenem (6.96%). Isolates from chicks were more susceptible to antimicrobial drugs than adult and immature birds. About 50% of E. coli isolates were resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole, and about 20% to piperacillin, enrofloxacin and marbofloxacin. High percentages of isolates of Salmonella were found to be resistant to cephalexin (88%) and aminoglycosides (greater than 77%). Our results support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the human population, thus reinforcing the need to minimize the exposure of wildlife to antimicrobial agent through human and livestock waste.
Collapse
|
28
|
Gajdács M, Urbán E. A 10-year single-center experience on Stenotrophomonas maltophilia resistotyping in Szeged, Hungary. Eur J Microbiol Immunol (Bp) 2020; 10:91-97. [PMID: 32590357 PMCID: PMC7391376 DOI: 10.1556/1886.2020.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Stenotrophomonas maltophilia is an aerobic, oxidase-negative and catalase-positive bacillus. S. maltophilia is a recognized opportunistic pathogen. Due to the advancements in invasive medical procedures, organ transplantation and chemotherapy of malignant illnesses, the relevance of this pathogen increased significantly. The therapy of S. maltophilia infections is challenging, as these bacteria show intrinsic resistance to multiple classes of antibiotics, the first-choice drug is sulfamethoxazole/trimethoprim. Our aim was to assess the epidemiology of S. maltophilia from various clinical samples and the characterization of resistance-levels and resistotyping of these samples over a long surveillance period. The study included S. maltophilia bacterial isolates from blood culture samples, respiratory samples and urine samples and the data for the samples, received between January 2008 until December 2017, a total of 817 S. maltophilia isolates were identified (respiratory samples n = 579, 70.9%, blood culture samples n = 175, 21.4% and urine samples n = 63, 7.7%). Levofloxacin and colistin-susceptibility rates were the highest (92.2%; n = 753), followed by tigecycline (90.5%, n = 739), the first-line agent sulfamethoxazole/trimethoprim (87.4%, n = 714), while phenotypic resistance rate was highest for amikacin (72.5% of isolates were resistant, n = 592). The clinical problem of sulfamethoxazole/trimethoprim-resistance is a complex issue, because there is no guideline available for the therapy of these infections.
Collapse
Affiliation(s)
- Márió Gajdács
- 1Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720, Szeged, Hungary
| | - Edit Urbán
- 2Department of Public Health, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720, Szeged, Hungary
| |
Collapse
|
29
|
Adesiyun AA, Nkuna C, Mokgoatlheng‐Mamogobo M, Malepe K, Simanda L. Food safety risk posed to consumers of table eggs from layer farms in Gauteng Province, South Africa: Prevalence of
Salmonella
species and
Escherichia coli
, antimicrobial residues, and antimicrobial resistant bacteria. J Food Saf 2020. [DOI: 10.1111/jfs.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abiodun A. Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary ScienceUniversity of Pretoria Onderstepoort South Africa
| | - Charlotte Nkuna
- Poultry Disease Management AgencySouth African Poultry Association (SAPA) Johannesburg South Africa
| | | | - Keleabetswe Malepe
- Veterinary Public Health UnitDepartment of Agriculture Forestry and Fisheries (DAFF), Pretoria South Africa
| | - Liberty Simanda
- Residue LaboratoryOndersterpoort Veterinary Research Onderstepoort South Africa
- Randox Food Diagnostics, Ltd. London UK
| |
Collapse
|
30
|
Abraham S, O’Dea M, Sahibzada S, Hewson K, Pavic A, Veltman T, Abraham R, Harris T, Trott DJ, Jordan D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS One 2019; 14:e0224281. [PMID: 31644602 PMCID: PMC6808415 DOI: 10.1371/journal.pone.0224281] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The World Health Organisation has defined "highest priority critically important antimicrobials" (CIAs) as those requiring the greatest control during food production. Evidence demonstrating that restricted antimicrobial usage prevents the emergence of resistance to CIA's amongst pathogenic and commensal organisms on a production system-wide scale would strengthen international efforts to control antimicrobial resistance (AMR). Therefore, in a designed survey of all major chicken-meat producers in Australia, we investigated the phenotypic AMR of E. coli (n = 206) and Salmonella (n = 53) from caecal samples of chickens at slaughter (n = 200). A large proportion of E. coli isolates (63.1%) were susceptible to all tested antimicrobials. With regards to CIA resistance, only two E.coli isolates demonstrated resistance to fluoroquinolones, attributed to mutations in the quinolone resistance-determining regions of gyrA. Antimicrobial resistance was observed for trimethoprim/sulfamethoxazole (8.7%), streptomycin (9.7%), ampicillin (14.1%), tetracycline (19.4%) and cefoxitin (0.5%). All Salmonella isolates were susceptible to ceftiofur, chloramphenicol, ciprofloxacin, colistin, florfenicol, gentamicin and tetracycline. A low frequency of Salmonella isolates exhibited resistance to streptomycin (1.9%), ampicillin (3.8%), and cefoxitin (11.3%). AMR was only observed among Salmonella Sofia serovars. None of the Salmonella isolates exhibited a multi-class-resistant phenotype. Whole genome sequencing did not identify any known resistance mechanisms for the Salmonella isolates demonstrating resistance to cefoxitin. The results provide strong evidence that resistance to highest priority CIA's is absent in commensal E. coli and Salmonella isolated from Australian meat chickens, and demonstrates low levels of resistance to compounds with less critical ratings such as cefoxitin, trimethoprim/sulfamethoxazole, and tetracycline. Apart from regulated exclusion of CIAs from most aspects of livestock production, vaccination against key bacterial pathogens and stringent biosecurity are likely to have contributed to the favorable AMR status of the Australian chicken meat industry. Nevertheless, industry and government need to proactively monitor AMR and antimicrobial stewardship practices to ensure the long-term protection of both animal and human health.
Collapse
Affiliation(s)
- Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Kylie Hewson
- Australian Chicken Meat Federation, Sydney, New South Wales, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Taha Harris
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| |
Collapse
|
31
|
Canibe N, O’Dea M, Abraham S. Potential relevance of pig gut content transplantation for production and research. J Anim Sci Biotechnol 2019; 10:55. [PMID: 31304012 PMCID: PMC6604143 DOI: 10.1186/s40104-019-0363-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the gastrointestinal microbiota has a significant impact on the overall health and production of the pig. This has led to intensified research on the composition of the gastrointestinal microbiota, factors affecting it, and the impact of the microbiota on health, growth performance, and more recently, behavior of the host. Swine production research has been heavily focused on assessing the effects of feed additives and dietary modifications to alter or take advantage of select characteristics of gastrointestinal microbes to improve health and feed conversion efficiency. Research on faecal microbiota transplantation (FMT) as a possible tool to improve outcomes in pigs through manipulation of the gastrointestinal microbiome is very recent and limited data is available. Results on FMT in humans demonstrating the transfer of phenotypic traits from donors to recipients and the high efficacy of FMT to treat Clostridium difficile infections in humans, together with data from pigs relating GI-tract microbiota composition with growth performance has likely played an important role in the interest towards this strategy in pig production. However, several factors can influence the impact of FMT on the recipient, and these need to be identified and optimized before this tool can be applied to pig production. There are obvious inherent biosecurity and regulatory issues in this strategy, since the donor's microbiome can never be completely screened for all possible non-desirable microorganisms. However, considering the success observed in humans, it seems worth investigating this strategy for certain applications in pig production. Further, FMT research may lead to the identification of specific bacterial group(s) essential for a particular outcome, resulting in the development of banks of clones which can be used as targeted therapeutics, rather than the broader approach applied in FMT. This review examines the factors associated with the use of FMT, and its potential application to swine production, and includes research on using the pig as model for human medical purposes.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal Science, Aarhus University, AU-FOULUM, PO BOX 50, 8830 Tjele, Denmark
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease laboratory, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| |
Collapse
|
32
|
Hassena AB, Siala M, Guermazi S, Zormati S, Gdoura R, Sellami H. Occurrence and Phenotypic and Molecular Characterization of Antimicrobial Resistance of Salmonella Isolates from Food in Tunisia. J Food Prot 2019; 82:1166-1175. [PMID: 31233356 DOI: 10.4315/0362-028x.jfp-18-607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Multidrug-resistant Salmonella isolates have been recovered from food in Tunisia. Salmonella isolates from food are resistant to fluoroquinolones and cephalosporins. Surveillance of the antimicrobial susceptibility of foodborne bacteria is needed in Tunisia.
Collapse
Affiliation(s)
- Amal Ben Hassena
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mariam Siala
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Sonda Guermazi
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Sonia Zormati
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.,2 Centre Régional de Recherches Vétérinaires de Sfax, Sfax, Tunisia
| | - Radhouane Gdoura
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Hanen Sellami
- 1 Laboratoire de recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Département des Sciences de la vie, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.,3 Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, BP 273-8020, Nabeul 8000, Tunisia
| |
Collapse
|
33
|
Harb A, O'Dea M, Abraham S, Habib I. Childhood Diarrhoea in the Eastern Mediterranean Region with Special Emphasis on Non-Typhoidal Salmonella at the Human⁻Food Interface. Pathogens 2019; 8:E60. [PMID: 31064086 PMCID: PMC6631750 DOI: 10.3390/pathogens8020060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
Diarrhoeal disease is still one of the most challenging issues for health in many countries across the Eastern Mediterranean region (EMR), with infectious diarrhoea being an important cause of morbidity and mortality, especially in children under five years of age. However, the understanding of the aetiological spectrum and the burden of enteric pathogens involved in diarrhoeal disease in the EMR is incomplete. Non-typhoidal Salmonella (NTS), the focus of this review, is one of the most frequently reported bacterial aetiologies in diarrhoeal disease in the EMR. Strains of NTS with resistance to antimicrobial drugs are increasingly reported in both developed and developing countries. In the EMR, it is now widely accepted that many such resistant strains are zoonotic in origin and acquire their resistance in the food-animal host before onward transmission to humans through the food chain. Here, we review epidemiological and microbiological aspects of diarrhoeal diseases among children in the EMR, with emphasis on the implication and burden of NTS. We collate evidence from studies across the EMR on the zoonotic exposure and antimicrobial resistance in NTS at the interface between human and foods of animal origin. This review adds to our understanding of the global epidemiology of Salmonella with emphasis on the current situation in the EMR.
Collapse
Affiliation(s)
- Ali Harb
- College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia.
- Thi-Qar Public Health Division, Ministry of Health, Thi-Qar 64007, Iraq.
| | - Mark O'Dea
- College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia. m.o'
| | - Sam Abraham
- College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia.
| | - Ihab Habib
- College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia.
- High Institute of Public Health, Alexandria University, Alexandria 21516, Egypt.
| |
Collapse
|
34
|
Harb A, Abraham S, Rusdi B, Laird T, O'Dea M, Habib I. Molecular Detection and Epidemiological Features of Selected Bacterial, Viral, and Parasitic Enteropathogens in Stool Specimens from Children with Acute Diarrhea in Thi-Qar Governorate, Iraq. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091573. [PMID: 31064051 PMCID: PMC6539995 DOI: 10.3390/ijerph16091573] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Knowledge of etiology causes of diarrheal illness is essential for development and implementation of public health measures to prevent and control this disease syndrome. There are few published studies examining diarrhea in children aged <5 years in Iraq. This study aims to investigate the occurrences and epidemiology of selected bacterial (Salmonella spp. and Campylobacter spp.), viral (adenovirus, norovirus GI and GII, and astrovirus), and parasitic (Entamoeba spp. and Giardia spp.) agents in stool samples from 155 child diarrheal cases enrolled between March and August 2017, in a hospital-based cross-sectional study in Thi-Qar, southeastern Iraq. Using molecular techniques and sequence-based characterization, adenovirus was the most frequently detected enteropathogen (53/155 (34.2%)), followed by Salmonella spp. (23/155 (14.8%)), Entamoeba spp. (21/155 (13.5%)), and Campylobacter spp. (17/155 (10.9%)). Mixed infection with Salmonella spp. and Campylobacter spp. was evident, and the same was revealed between various enteric viruses, particularly adenovirus and norovirus. The most frequent co-infection pattern was between adenovirus and Campylobacter spp., in seven cases (7/155 (4.5%)). Whole-genome sequencing-derived typing data for Salmonella isolates (n = 23) revealed that sequence type 49 was the most prevalent in this sample set (15/23 (65.2%)). To the best of our knowledge, this study provides the first report on detection and identification of floR, blaCARB-2, and mphA antimicrobial resistance genes in Salmonella isolated from children in the Middle East region. Logistic regression analysis pointed to few enteropathogen-specific correlations between child age, household water source, and breastfeeding patterns in relation to the outcome of detection of individual enteropathogens. This study presents the first published molecular investigation of multiple enteropathogens among children <5 years of age in Iraq. Our data provide supporting evidence for planning of childhood diarrhea management programs. It is important to build on this study and develop future longitudinal case-control research in order to elaborate the epidemiology of enteropathogens in childhood diarrhea in Iraq.
Collapse
Affiliation(s)
- Ali Harb
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
- Thi-Qar Public Health Division, Ministry of Health, Nassriya 64001, Iraq.
| | - Sam Abraham
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
| | - Bertha Rusdi
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
| | - Tanya Laird
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
| | - Mark O'Dea
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia. m.o'
| | - Ihab Habib
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia.
- High Institute of Public Health, Alexandria University, Alexandria 0203, Egypt.
| |
Collapse
|
35
|
Markland S, Weppelmann TA, Ma Z, Lee S, Mir RA, Teng L, Ginn A, Lee C, Ukhanova M, Galindo S, Carr C, DiLorenzo N, Ahn S, Mah JH, Kim HY, Mai V, Mobley R, Morris JG, Jeong KC. High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study. Front Microbiol 2019; 10:176. [PMID: 30792707 PMCID: PMC6374349 DOI: 10.3389/fmicb.2019.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/22/2019] [Indexed: 02/01/2023] Open
Abstract
Although the over-use of antibiotics during food animal production is a potential driver of antimicrobial resistant microorganisms (ARMs), a high prevalence of cefotaxime resistant bacteria (CRB) has been observed in grazing animals raised without antibiotic supplementation. In this cross-sectional study, the prevalence and concentration of CRB in beef cattle on grazing farms were investigated. Fecal samples from the recto-anal junction of cattle (n = 840) and environmental samples (n = 258) were collected from 17 farms in North and Central Florida in the United States, and a survey of farm characteristics, animal husbandry practices, and antibiotic usage was conducted. CRB were detected in fecal samples from 47.4% of all cattle, with the prevalence ranging from 21.1 to 87.5% on farms, and significantly higher (P < 0.001) in calves compared to adult cows (54.1 vs. 41.8%). Environmental samples had a higher prevalence than fecal samples (P < 0.001), with CRB detected in 88.6% of water, 98.7% of soil, and 95.7% of forage samples. Compared to the concentration (log CFU/g) of CRB in fecal samples (2.95, 95% CI: 2.89, 3.02), the concentration of CRB was higher (P < 0.001) in soil and forage samples (5.37, 95% CI: 5.16, 5.57) and lower (P < 0.001) in water samples (1.08, 95% CI: 0.82, 1.36). Soil microbiota from farms with high prevalence of CRB clustered closer together and the proportion of Phylum Proteobacteria was higher on farms with high prevalence of CRB resistance. Large farming operations were associated with a 58% higher likelihood of CRB detection in fecal samples. Regular cleaning of drinking troughs and the addition of ionophores to feed were associated with CRB reduction in fecal samples. Taken together, the widespread of CRB into both cattle seldom treated with cephalosporin antibiotics and the surrounding environment suggests the environment is a natural source of antimicrobial resistance in beef cattle.
Collapse
Affiliation(s)
- Sarah Markland
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Thomas A Weppelmann
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Zhengxin Ma
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Shinyoung Lee
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Raies A Mir
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Lin Teng
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Amber Ginn
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Choonghee Lee
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Maria Ukhanova
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Sebastian Galindo
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL, United States
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Nicolas DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, United States
| | - Soohyoun Ahn
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jae-Hyung Mah
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Volker Mai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ray Mobley
- Department of Animal Science, Florida Agricultural and Mechanical University, Tallahassee, FL, United States
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - KwangCheol Casey Jeong
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
36
|
Al-Habsi K, Jordan D, Harb A, Laird T, Yang R, O'Dea M, Jacobson C, Miller DW, Ryan U, Abraham S. Salmonella enterica isolates from Western Australian rangeland goats remain susceptible to critically important antimicrobials. Sci Rep 2018; 8:15326. [PMID: 30333552 PMCID: PMC6193037 DOI: 10.1038/s41598-018-33220-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
This study investigated faecal carriage and antimicrobial resistance (AMR) of Salmonella enterica recovered from rangeland goats. Faecal samples (n = 400) were collected at slaughter from four consignments of goats (n = 100 samples per consignment), each from one of four localities in Western Australia. Carriage of Salmonella spp. was detected in 106 samples (26.5%; 95% CI 22.4-31.0%). The rate of faecal carriage for each consignment ranged between 23-30%. PCR assays targeting the STM2755 and STM4497 genes revealed 84.9% (90/106) of the isolates were of serovar Typhimurium. Salmonella Chester (11/106, 10.4%) and S. Saintpaul (5/106, 4.7%) were characterised at invA and ompF genes. Antimicrobial susceptibility testing demonstrated that 84.0% of isolates were susceptible to all tested (n = 13) antimicrobials. Resistance was identified to azithromycin (14.2%), tetracycline (10.4%), ampicillin (5.7%), amoxicillin-clavulanate and cefoxitin (3.8%), trimethoprim/sulfamethoxazole (1.9%), gentamicin and streptomycin (0.9%). No isolate was resistant to four or more antimicrobials, or to critically important antimicrobials such as fluoroquinolones and extended spectrum cephalosporins. This is the first study reporting AMR in Salmonella isolates from Australian rangeland goats. The rate of detection of AMR was very low, some resistance to low-importance drugs was present in the Salmonella population, despite the absence of active selection pressure.
Collapse
Affiliation(s)
- Khalid Al-Habsi
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, 1243 Bruxner Highway, Wollongbar, NSW, 2477, Australia
| | - Ali Harb
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Tanya Laird
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Mark O'Dea
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Caroline Jacobson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - David W Miller
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sam Abraham
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
37
|
Rapid detection of tetracycline resistance in bovine Pasteurella multocida isolates by MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA). Sci Rep 2018; 8:13599. [PMID: 30206239 PMCID: PMC6134125 DOI: 10.1038/s41598-018-31562-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Pasteurella multocida is notorious for its role as an opportunistic pathogen in infectious bronchopneumonia, the economically most important disease facing cattle industry and leading indication for antimicrobial therapy. To rationalize antimicrobial use, avoiding imprudent use of highly and critically important antimicrobials for human medicine, availability of a rapid antimicrobial susceptibility test is crucial. The objective of the present study was to design a MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA) procedure for tetracycline resistance detection in P. multocida. This procedure was validated on 100 clinical isolates with MIC-gradient strip test, and a comparison with disk diffusion was made. Sensitivity and specificity of the MBT-ASTRA procedure were 95.7% (95% confidence interval (CI) = 89.8–101.5) and 100% (95% CI = 100–100), respectively, classifying 98% of the isolates correctly after only three hours of incubation. Sensitivity and specificity of disk diffusion were 93.5% (95% CI = 86.3–100.6) and 96.3% (95% CI = 91.3–101.3) respectively, classifying 95% of the isolates correctly. In conclusion, this MBT-ASTRA procedure has all the potential to fulfil the need for a rapid and highly accurate tetracycline susceptibility testing in P. multocida to rationalize antimicrobial use in outbreaks of bronchopneumonia in cattle or other clinical presentations across species.
Collapse
|
38
|
Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME JOURNAL 2018; 12:2723-2735. [PMID: 29991761 PMCID: PMC6194032 DOI: 10.1038/s41396-018-0212-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/18/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Microbes frequently rely on metabolites excreted by other bacterial species, but little is known about how this cross-feeding influences the effect of antibiotics. We hypothesized that when species rely on each other for essential metabolites, the minimum inhibitory concentration (MIC) for all species will drop to that of the “weakest link”—the species least resistant in monoculture. We tested this hypothesis in an obligate cross-feeding system that was engineered between Escherichia coli, Salmonella enterica, and Methylobacterium extorquens. The effect of tetracycline and ampicillin were tested on both liquid and solid media. In all cases, resistant species were inhibited at significantly lower antibiotic concentrations in the cross-feeding community than in monoculture or a competitive community. However, deviation from the “weakest link” hypothesis was also observed in cross-feeding communities apparently as result of changes in the timing of growth and cross-protection. Comparable results were also observed in a clinically relevant system involving facultative cross-feeding between Pseudomonas aeruginosa and an anaerobic consortium found in the lungs of cystic fibrosis patients. P. aeruginosa was inhibited by lower concentrations of ampicillin when cross-feeding than when grown in isolation. These results suggest that cross-feeding significantly alters tolerance to antibiotics in a variety of systems.
Collapse
Affiliation(s)
- Elizabeth M Adamowicz
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.,Department of Ecology and Evolutionary Biology, University of Minnesota, St. Paul, MN, USA
| | - Jeffrey Flynn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - William R Harcombe
- Department of Ecology and Evolutionary Biology, University of Minnesota, St. Paul, MN, USA. .,BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
39
|
Kidsley AK, Abraham S, Bell JM, O'Dea M, Laird TJ, Jordan D, Mitchell P, McDevitt CA, Trott DJ. Antimicrobial Susceptibility of Escherichia coli and Salmonella spp. Isolates From Healthy Pigs in Australia: Results of a Pilot National Survey. Front Microbiol 2018; 9:1207. [PMID: 30038598 PMCID: PMC6047343 DOI: 10.3389/fmicb.2018.01207] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/17/2018] [Indexed: 02/01/2023] Open
Abstract
This study investigated the frequency of antimicrobial non-susceptibility (defined as the frequency of isolates with minimum inhibitory concentrations above the CLSI susceptible clinical breakpoint) among E. coli and Salmonella spp. isolated from healthy Australian finisher pigs. E. coli (n = 201) and Salmonella spp. (n = 69) were isolated from cecal contents of slaughter-age pigs, originating from 19 farms distributed throughout Australia during July-December 2015. Isolates underwent minimum inhibitory concentration (MIC) susceptibility testing to 11 antimicrobials. The highest frequencies of non-susceptibility among respective isolates of E. coli and Salmonella spp. were to ampicillin (60.2 and 20.3%), tetracycline (68.2 and 26.1%), chloramphenicol (47.8 and 7.3%), and trimethoprim/sulfamethoxazole (33.8 and 11.6%). Four E. coli isolates had MICs above the wild-type epidemiological cut-off value for ciprofloxacin, with two isolates from the same farm classified as clinically resistant (MICs of > 4 μg/ml), a noteworthy finding given that fluoroquinolones (FQs) are not legally available for use in Australian food-producing animals. Three of these four E. coli isolates belonged to the sequence type (ST) 10, which has been isolated from both humans and production animals, whilst one isolate belonged to a new ST (7573) and possessed qnrS1. This study shows that non-susceptibility to first line antimicrobials is common among E. coli and Salmonella spp. isolates from healthy slaughter age pigs in Australia. However, very low levels of non-susceptibility to critically important antimicrobials (CIAs), namely third generation cephalosporins and fluoroquinolones were observed. Nevertheless, the isolation of two ciprofloxacin-resistant E. coli isolates from Australian pigs demonstrates that even in the absence of local antimicrobial selection pressure, fluoroquinolone-resistant E. coli clonal lineages may enter livestock production facilities despite strict biosecurity.
Collapse
Affiliation(s)
- Amanda K. Kidsley
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Jan M. Bell
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Tanya J. Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - Pat Mitchell
- Australian Pork Limited, Canberra, ACT, Australia
| | - Christopher A. McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Darren J. Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
40
|
Abraham S, Kirkwood RN, Laird T, Saputra S, Mitchell T, Singh M, Linn B, Abraham RJ, Pang S, Gordon DM, Trott DJ, O'Dea M. Dissemination and persistence of extended-spectrum cephalosporin-resistance encoding IncI1-bla CTXM-1 plasmid among Escherichia coli in pigs. ISME JOURNAL 2018; 12:2352-2362. [PMID: 29899511 PMCID: PMC6155088 DOI: 10.1038/s41396-018-0200-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/24/2018] [Accepted: 03/12/2018] [Indexed: 01/09/2023]
Abstract
This study investigated the ecology, epidemiology and plasmid characteristics of extended-spectrum cephalosporin (ESC)-resistant E. coli in healthy pigs over a period of 4 years (2013–2016) following the withdrawal of ESCs. High carriage rates of ESC-resistant E. coli were demonstrated in 2013 (86.6%) and 2014 (83.3%), compared to 2015 (22%) and 2016 (8.5%). ESC resistance identified among E. coli isolates was attributed to the carriage of an IncI1 ST-3 plasmid (pCTXM1-MU2) encoding blaCTXM-1. Genomic characterisation of selected E. coli isolates (n = 61) identified plasmid movement into multiple commensal E. coli (n = 22 STs). Major STs included ST10, ST5440, ST453, ST2514 and ST23. A subset of the isolates belong to the atypical enteropathogenic E. coli (aEPEC) pathotype that harboured multiple LEE pathogenic islands. pCTXM1-MU2 was similar (99% nt identity) to IncI1-ST3 plasmids reported from Europe, encoded resistance to aminoglycosides, sulphonamides and trimethoprim, and carried colicin Ib. pCTXM1-MU2 appears to be highly stable and readily transferable. This study demonstrates that ESC resistance may persist for a protracted period following removal of direct selection pressure, resulting in the emergence of ESC-resistance in both commensal E. coli and aEPEC isolates of potential significance to human and animal health.
Collapse
Affiliation(s)
- Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Melbourne, Western Australia, Australia.
| | - Roy N Kirkwood
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Melbourne, Western Australia, Australia
| | - Sugiyono Saputra
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia.,Research Center for Biology, Indonesian Institute of Sciences, West Java, Cibinong, Indonesia
| | - Tahlia Mitchell
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Mohinder Singh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Benjamin Linn
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Rebecca J Abraham
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Melbourne, Western Australia, Australia
| | - David M Gordon
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australia
| | - Darren J Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Melbourne, Western Australia, Australia
| |
Collapse
|
41
|
Rusdi B, Laird T, Abraham R, Ash A, Robertson ID, Mukerji S, Coombs GW, Abraham S, O'Dea MA. Carriage of critically important antimicrobial resistant bacteria and zoonotic parasites amongst camp dogs in remote Western Australian indigenous communities. Sci Rep 2018; 8:8725. [PMID: 29880792 PMCID: PMC5992169 DOI: 10.1038/s41598-018-26920-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
Camp dogs in indigenous communities in the Western Australian Kimberley Region, share the domestic environment with humans and have the potential to act as carriers of, and sentinels for, a wide range of zoonotic agents, including intestinal parasites and antimicrobial resistant bacteria. In this study, we investigated the carriage of extended-spectrum-cephalosporin-resistant (ESC-resistant) Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA) and species of hookworm and Giardia among camp dogs in remote Western Australian Aboriginal communities. A total of 141 canine faecal samples and 156 nasal swabs were collected from dogs in four communities of the Western Australian Kimberley region. Overall, ESC-resistant E. coli was detected in 16.7% of faecal samples and MRSA was isolated from 2.6% of nasal swabs. Of most significance was the presence of the community-associated Panton-Valentine leucocidin (PVL)-positive MRSA ST93 and ST5 clones and ESC-resistant E. coli ST38 and ST131. The most prevalent zoonotic intestinal parasite infection was Ancylostoma caninum (66%). The prevalence of Giardia was 12.1%, with the main genotypes of Giardia detected being dog specific assemblages C and D, which are unlikely to cause disease in humans.
Collapse
Affiliation(s)
- Bertha Rusdi
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Amanda Ash
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Ian D Robertson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Shewli Mukerji
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,PathWest laboratory Medicine - WA, Fiona Stanley Hospital, Murdoch, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| | - Mark A O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
42
|
Li S, Zhou Y, Miao Z. Prevalence and Antibiotic Resistance of Non-typhoidal Salmonella Isolated from Raw Chicken Carcasses of Commercial Broilers and Spent Hens in Tai'an, China. Front Microbiol 2017; 8:2106. [PMID: 29163400 PMCID: PMC5671596 DOI: 10.3389/fmicb.2017.02106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
The present study was aimed to determine the prevalence and characteristics of Salmonella isolated from meat samples of commercial broilers (CB) and spent hens (SH). Between March and June 2016, 200 retail raw chicken carcasses (100 from CB and 100 from SH) were obtained from local supermarkets in Tai’an city of China, and Salmonella isolates were then analyzed for antibiotic resistance, serotype, β-lactamase genes, and the presence of class 1 integron. Forty Salmonella strains were obtained in this study (CB: 21/100, 21%; SH: 19/100, 19%). Three serotypes were identified in 40 Salmonella, and S. Enteritidis (CB: 15/21, 71.4%; SH: 10/19, 52.6%) was the dominant serotype, followed by S. Typhimurium (CB: 4/21, 19%; SH: 6/19, 31.6%) and S. Derby (CB: 2/21, 9.5%; SH: 3/19, 15.8%). Among 21 Salmonella isolated from CB, high antibiotic resistance rates were found for ampicillin (20/21, 95.2%), nalidixic acid (18/21, 85.7%), cefotaxime (17/21, 81%), and tetracycline (13/21, 61.9%); class 1 integron was observed in seven isolates (7/21, 33.3%), and gene cassettes included an empty integron (0.15 kb, n = 1), aadA2 (1.2 kb, n = 3), drfA1-aadA1 (1.4 kb, n = 1), and drfA17-aadA5 (1.7 kb, n = 2); blaTEM-1 was the dominant β-lactamase gene (21/21, 100%), followed by blaCTX-M-55 (7/21, 33.3%). Among 19 Salmonella isolated from SH, high antibiotic resistance rates were found for nalidixic acid (19/19, 100%), tetracycline (19/19, 100%), ampicillin (18/19, 94.7%), and ciprofloxacin (13/19, 68.4%); class 1 integron was observed in two isolates (2/19, 10.5%), and gene cassettes included drfA17-aadA5 (1.7 kb, n = 1) and drfA1-aadA1 (1.4 kb, n = 1); blaTEM-1 was the dominant β-lactamase gene (19/19, 100%), followed by blaCTX-M-55 (2/19, 10.5%) and blaCMY-2 (1/19, 5.3%). Collectively, antibiotic-resistant Salmonella can be widely detected in retail raw chicken carcasses of CB and SH, and therefore can pose a serious risk to public health.
Collapse
Affiliation(s)
- Song Li
- College of Basic Medicine, Taishan Medical University, Tai'an, China
| | - Yufa Zhou
- Center for Disease Control, Veterinary Bureau of Daiyue, Tai'an, China
| | - Zengmin Miao
- College of Life Sciences, Taishan Medical University, Tai'an, China
| |
Collapse
|
43
|
Abraham S, O'Dea M, Page SW, Trott DJ. Current and future antimicrobial resistance issues for the Australian pig industry. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antimicrobial use and antimicrobial resistance (AMR) in intensive pig production and its potential impacts to human and animal health are very much under the spotlight, both internationally, and within Australia. While the majority of AMR of medical importance is associated with the exclusive use of antimicrobials in humans, resistance in zoonotic foodborne pathogens such as Salmonella and Campylobacter, and livestock commensal bacteria such as Escherichia coli and Enterococcus spp., is under increased scrutiny. This is primarily due to the current reliance on many of the same drug classes as used in human medicine for treatment and control of bacterial diseases of livestock. Furthermore, the development of multidrug resistance in pathogens such as enterotoxigenic E. coli may drive off-label use of critically important drug classes such as 3rd-generation cephalosporins. This could lead to the emergence and amplification of resistance genes of potential public health significance in both pathogens and commensal bacteria. Livestock-associated and community-associated methicillin-resistant Staphylococcus aureus has also recently been detected in Australian pigs as a result of human-to-animal transmission and are a potential public health issue for in-contact piggery workers. Australia is in a unique position compared with many of its international trading partners due to its isolation, ban on importation of livestock and conservative approach to antimicrobial registration, including reservation of the fluoroquinolone class for use in humans and companion animals only. Cross-sectional AMR surveys of pathogens and commensals in healthy pigs have identified only low frequency of resistance to critically important drug classes. Nevertheless, resistance to critically important antimicrobials has emerged and careful antimicrobial stewardship is required to ensure that these low levels do not increase. In this report, we review AMR of significance to the Australian pig industry and identify potential prevention and control measures.
Collapse
|