1
|
Li Q, Kang C. Perspectives on Applications of 19F-NMR in Fragment-Based Drug Discovery. Molecules 2024; 29:5748. [PMID: 39683906 DOI: 10.3390/molecules29235748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Fragment-based drug discovery is a powerful approach in drug discovery, applicable to a wide range of targets. This method enables the discovery of potent compounds that can modulate target functions, starting from fragment compounds that bind weakly to the targets. While biochemical, biophysical, and cell-based assays are commonly used to identify fragments, 19F-NMR spectroscopy has emerged as a powerful tool for exploring interactions between biomolecules and ligands. Because fluorine atoms are not naturally present in biological systems, 19F-NMR serves as a sensitive method for fragment screening against diverse targets. Herein, we reviewed the applications of 19F-NMR in fragment screening, highlighting its effectiveness in identifying fragments that bind weakly to various targets such as proteins and RNA. The accumulated evidence suggests that 19F-NMR will continue to be a crucial tool in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore 138670, Singapore
| |
Collapse
|
2
|
Funato Y, Mimura M, Nunomura K, Lin B, Fujii S, Haruta J, Miki H. Development of a high-throughput screening system targeting the protein-protein interactions between PRL and CNNM. Sci Rep 2024; 14:25432. [PMID: 39455715 PMCID: PMC11511866 DOI: 10.1038/s41598-024-76269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Phosphatase of regenerating liver (PRL) is an oncogenic protein that promotes tumor progression by directly binding to cyclin M (CNNM) membrane proteins and inhibiting their Mg2+ efflux activity. In this study, we have developed a high-throughput screening system to detect the interactions between PRL and CNNM proteins based on homogenous time-resolved fluorescence resonance energy transfer (HTR-FRET, HTRF). We optimized the tag sequences attached to the recombinant proteins of the CNNM4 CBS domains and PRL3 lacking the carboxyl terminal CAAX motif, and successfully detected the interaction by observing the FRET signal in the mixture of the tagged proteins and fluorophore-conjugated antibodies. Moreover, we performed compound library screening using this system and discovered several compounds that could efficiently inhibit the PRL-CNNM interaction. Characterization of one candidate compound revealed that it was relatively stable compared with thienopyridone, a known inhibitor of the PRL-CNNM interaction. The candidate compound can also inhibit PRL function in cells: suppression of CNNM-dependent Mg2+ efflux, and has sufficient in vitro drug metabolism and pharmacokinetic properties. Overall, these results demonstrate the effectiveness of this screening system for identifying novel inhibitors of the PRL-CNNM interaction, which could contribute to the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Mai Mimura
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Shintarou Fujii
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Junichi Haruta
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, 565-0871, Osaka, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
3
|
Patnala SV, Robles R, Snyder DA. Application of CoLD-CoP to Detecting Competitively and Cooperatively Binding Ligands. Biomolecules 2024; 14:1136. [PMID: 39334902 PMCID: PMC11430148 DOI: 10.3390/biom14091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
NMR utilization in fragment-based drug discovery requires techniques to detect weakly binding fragments and to subsequently identify cooperatively binding fragments. Such cooperatively binding fragments can then be optimized or linked in order to develop viable drug candidates. Similarly, ligands or substrates that bind macromolecules (including enzymes) in competition with the endogenous ligand or substrate are valuable probes of macromolecular chemistry and function. The lengthy and costly process of identifying competitive or cooperative binding can be streamlined by coupling computational biochemistry and spectroscopy tools. The Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP) method, previously developed by Snyder and co-workers, detects weakly binding ligands by analyzing pairs of diffusion spectra, obtained in the absence and the presence of a protein. We extended the CoLD-CoP method to analyze spectra pairs (each in the presence of a protein) with or without a critical ligand, to detect both competitive and cooperative binding.
Collapse
Affiliation(s)
- Shiva V Patnala
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - Roberto Robles
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| |
Collapse
|
4
|
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 2024; 384:eadk5864. [PMID: 38662832 DOI: 10.1126/science.adk5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Collapse
Affiliation(s)
- Fabian Offensperger
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Miquel Duran-Frigola
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ersilia Open Source Initiative, Cambridge CB1 3DE, UK
| | - Elisa Hahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Andrea Rukavina
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenth Brennsteiner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kevin Ogilvie
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Nara Marella
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katharina Kladnik
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Rodolfo Ciuffa
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Evandro Ferrada
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Amanda Ng
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Zhechun Zhang
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - Gianluca Degliesposti
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Robert Stanton
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - André C Müller
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Georg E Winter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
5
|
Carbery A, Buttenschoen M, Skyner R, von Delft F, Deane CM. Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures. J Cheminform 2024; 16:32. [PMID: 38486231 PMCID: PMC10941399 DOI: 10.1186/s13321-024-00821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Protein-ligand binding site prediction is a useful tool for understanding the functional behaviour and potential drug-target interactions of a novel protein of interest. However, most binding site prediction methods are tested by providing crystallised ligand-bound (holo) structures as input. This testing regime is insufficient to understand the performance on novel protein targets where experimental structures are not available. An alternative option is to provide computationally predicted protein structures, but this is not commonly tested. However, due to the training data used, computationally-predicted protein structures tend to be extremely accurate, and are often biased toward a holo conformation. In this study we describe and benchmark IF-SitePred, a protein-ligand binding site prediction method which is based on the labelling of ESM-IF1 protein language model embeddings combined with point cloud annotation and clustering. We show that not only is IF-SitePred competitive with state-of-the-art methods when predicting binding sites on experimental structures, but it performs better on proxies for novel proteins where low accuracy has been simulated by molecular dynamics. Finally, IF-SitePred outperforms other methods if ensembles of predicted protein structures are generated.
Collapse
Affiliation(s)
- Anna Carbery
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Martin Buttenschoen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Rachael Skyner
- OMass Therapeutics, Building 4000, Chancellor Court, John Smith Drive, ARC Oxford, OX4 2GX, UK
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, United Kingdom
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
| |
Collapse
|
6
|
Amudala S, Sumit, Aidhen IS. LpxC inhibition: Potential and opportunities with carbohydrate scaffolds. Carbohydr Res 2024; 537:109057. [PMID: 38402732 DOI: 10.1016/j.carres.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a key enzyme involved in the biosynthesis of lipid A, an essential building block, for the construction and assembly of the outer membrane (OM) of Gram-negative bacteria. The enzyme is highly conserved in almost all Gram-negative bacteria and hence has emerged as a promising target for drug discovery in the fight against multi-drug resistant Gram-negative infections. Since the first nanomolar LpxC inhibitor, L-161,240, an oxazoline-based hydroxamate, the two-decade-long ongoing search has provided valuable information regarding essential features necessary for inhibition. Although the design and structure optimization for arriving at the most efficacious inhibitor of this enzyme has made good use of different heterocyclic moieties, the use of carbohydrate scaffold is scant. This review briefly covers the advancement and progress made in LpxC inhibition. The field awaits the use of potential associated with carbohydrate-based scaffolds for LpxC inhibition and the discovery of anti-bacterial agents against Gram-negative infections.
Collapse
Affiliation(s)
- Subramanyam Amudala
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Sumit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
7
|
Zhang H, Huang J, Xie J, Huang W, Yang Y, Xu M, Lei J, Chen H. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning. J Chem Inf Model 2024; 64:666-676. [PMID: 38241022 DOI: 10.1021/acs.jcim.3c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinchao Huang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjie Xie
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Weifeng Huang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyuan Xu
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xin Dao Huan Bei Road, Guangzhou 510005, China
| | - Jinping Lei
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongming Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xin Dao Huan Bei Road, Guangzhou 510005, China
| |
Collapse
|
8
|
Davoine C, Traina A, Evrard J, Lanners S, Fillet M, Pochet L. Coumarins as factor XIIa inhibitors: Potency and selectivity improvements using a fragment-based strategy. Eur J Med Chem 2023; 259:115636. [PMID: 37478556 DOI: 10.1016/j.ejmech.2023.115636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Previously, we described weak coumarin inhibitors of factor XIIa, a promising target for artificial surface-induced thrombosis and various inflammatory diseases. In this work, we used fragment-based drug discovery approach to improve our coumarin series. First, we screened about 200 fragments for the S1 pocket. The S1 pocket of trypsin-like serine proteases, such as factor XIIa, is highly conserved and is known to drive a major part of the association energy. From the screening, we selected fragments displaying a micromolar activity and studied their selectivity on other serine proteases. Then, these fragments were merged to our coumarin templates, leading to the generation of nanomolar inhibitors. The mechanism of inhibition was further studied by mass spectrometry demonstrating the covalent binding through the formation of an acyl enzyme complex. The most potent compound was tested in plasma to evaluate its stability and efficacy on coagulation assays. It exhibited a plasmatic half-life of 1.9 h and a good selectivity for the intrinsic coagulation pathway over the extrinsic one.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Amandine Traina
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jonathan Evrard
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Steve Lanners
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
9
|
Hoarau M, Sermmai P, Varatthan T, Thiabma R, Jantra T, Rattanajak R, Vitsupakorn D, Vanichtanankul J, Saepua S, Yuthavong Y, Thongpanchang C, Kamchonwongpaisan S. Discovery of rigid biphenyl Plasmodium falciparum DHFR inhibitors using a fragment linking strategy. RSC Med Chem 2023; 14:1755-1766. [PMID: 37731689 PMCID: PMC10507804 DOI: 10.1039/d3md00242j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023] Open
Abstract
Plasmodium falciparum dihydrofolate reductase (PfDHFR), a historical target for antimalarials, has been considered compromised due to resistance inducing mutations caused by pyrimethamine (PYR) overexposure. The clinical candidate P218 has demonstrated that inhibitors could efficiently target both PYR-sensitive and PYR-resistant parasites through careful drug design. Yet, P218 clinical development has been limited by its pharmacokinetic profile, incompatible with single dose regimen. Herein, we report the design of new PfDHFR inhibitors using fragment-based design, aiming at improved lipophilicity and overall drug-like properties. Fragment-based screening identified hits binding in the pABA site of the enzyme. Using structure-guided design, hits were elaborated into leads by fragment linking with 2,4-diaminopyrimidine. Resulting compounds display nM range inhibition of both drug-sensitive and resistant PfDHFR, high selectivity against the human isoform, drug-like lipophilicity and metabolic stability. Compound 4 and its ester derivative 3 kill blood stage TM4/8.2 parasite at nM concentrations while showing no toxicity against Vero cells.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Patpanat Sermmai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Thaveechai Varatthan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Ratthiya Thiabma
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Tararat Jantra
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Siriporn Saepua
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| |
Collapse
|
10
|
Visser EJ, Jaishankar P, Sijbesma E, Pennings MAM, Vandenboorn EMF, Guillory X, Neitz RJ, Morrow J, Dutta S, Renslo AR, Brunsveld L, Arkin MR, Ottmann C. From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking. Angew Chem Int Ed Engl 2023; 62:e202308004. [PMID: 37455289 DOI: 10.1002/anie.202308004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.
Collapse
Affiliation(s)
- Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Edmee M F Vandenboorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - R Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - John Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Shubhankar Dutta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| |
Collapse
|
11
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Hetényi C. Construction of Histone-Protein Complex Structures by Peptide Growing. Int J Mol Sci 2023; 24:13831. [PMID: 37762134 PMCID: PMC10530865 DOI: 10.3390/ijms241813831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structures of histone complexes are master keys to epigenetics. Linear histone peptide tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket, producing atomic-resolution structures of histone-reader complexes. PepGrow is able to handle the flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked peptide fragments. The new protocol combines the advantages of popular program packages and allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable strategy for the production of complex structures of histone peptides at atomic resolution.
Collapse
Affiliation(s)
| | | | | | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Út 12, 7624 Pécs, Hungary; (B.Z.Z.); (B.B.); (R.B.)
| |
Collapse
|
12
|
Hardie A, Cossins BP, Lovera S, Michel J. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Commun Chem 2023; 6:125. [PMID: 37322137 PMCID: PMC10272186 DOI: 10.1038/s42004-023-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Fragment-based drug discovery is an established methodology for finding hit molecules that can be elaborated into lead compounds. However it is currently challenging to predict whether fragment hits that do not bind to an orthosteric site could be elaborated into allosteric modulators, as in these cases binding does not necessarily translate into a functional effect. We propose a workflow using Markov State Models (MSMs) with steered molecular dynamics (sMD) to assess the allosteric potential of known binders. sMD simulations are employed to sample protein conformational space inaccessible to routine equilibrium MD timescales. Protein conformations sampled by sMD provide starting points for seeded MD simulations, which are combined into MSMs. The methodology is demonstrated on a dataset of protein tyrosine phosphatase 1B ligands. Experimentally confirmed allosteric inhibitors are correctly classified as inhibitors, whereas the deconstructed analogues show reduced inhibitory activity. Analysis of the MSMs provide insights into preferred protein-ligand arrangements that correlate with functional outcomes. The present methodology may find applications for progressing fragments towards lead molecules in FBDD campaigns.
Collapse
Affiliation(s)
- Adele Hardie
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Benjamin P Cossins
- UCB Pharma, 216 Bath Road, Slough, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, UK
| | - Silvia Lovera
- UCB Pharma, Chemin du Foriest 1, 1420, Braine-l'Alleud, Belgium
| | - Julien Michel
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
13
|
Wills S, Sanchez-Garcia R, Dudgeon T, Roughley SD, Merritt A, Hubbard RE, Davidson J, von Delft F, Deane CM. Fragment Merging Using a Graph Database Samples Different Catalogue Space than Similarity Search. J Chem Inf Model 2023. [PMID: 37229647 DOI: 10.1021/acs.jcim.3c00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fragment merging is a promising approach to progressing fragments directly to on-scale potency: each designed compound incorporates the structural motifs of overlapping fragments in a way that ensures compounds recapitulate multiple high-quality interactions. Searching commercial catalogues provides one useful way to quickly and cheaply identify such merges and circumvents the challenge of synthetic accessibility, provided they can be readily identified. Here, we demonstrate that the Fragment Network, a graph database that provides a novel way to explore the chemical space surrounding fragment hits, is well-suited to this challenge. We use an iteration of the database containing >120 million catalogue compounds to find fragment merges for four crystallographic screening campaigns and contrast the results with a traditional fingerprint-based similarity search. The two approaches identify complementary sets of merges that recapitulate the observed fragment-protein interactions but lie in different regions of chemical space. We further show our methodology is an effective route to achieving on-scale potency by retrospective analyses for two different targets; in analyses of public COVID Moonshot and Mycobacterium tuberculosis EthR inhibitors, potential inhibitors with micromolar IC50 values were identified. This work demonstrates the use of the Fragment Network to increase the yield of fragment merges beyond that of a classical catalogue search.
Collapse
Affiliation(s)
- Stephanie Wills
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ruben Sanchez-Garcia
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Tim Dudgeon
- Informatics Matters, Ltd., Perch Coworking, Franklins House, Bicester OX26 6JU, United Kingdom
| | - Stephen D Roughley
- Vernalis (R&D) Limited, Granta Park, Great Abington, Cambridge CB21 6GB, United Kingdom
| | - Andy Merritt
- LifeArc, Lynton House, 7-12 Tavistock Square, London WC1H 9LT, United Kingdom
| | - Roderick E Hubbard
- Vernalis (R&D) Limited, Granta Park, Great Abington, Cambridge CB21 6GB, United Kingdom
| | - James Davidson
- Vernalis (R&D) Limited, Granta Park, Great Abington, Cambridge CB21 6GB, United Kingdom
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
14
|
Abstract
Although fragment-based drug discovery (FBDD) has been successfully implemented and well-explored for protein targets, its feasibility for RNA targets is emerging. Despite the challenges associated with the selective targeting of RNA, efforts to integrate known methods of RNA binder discovery with fragment-based approaches have been fruitful, as a few bioactive ligands have been identified. Here, we review various fragment-based approaches implemented for RNA targets and provide insights into experimental design and outcomes to guide future work in the area. Indeed, investigations surrounding the molecular recognition of RNA by fragments address rather important questions such as the limits of molecular weight that confer selective binding and the physicochemical properties favorable for RNA binding and bioactivity.
Collapse
Affiliation(s)
- Blessy M. Suresh
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L. Childs-Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- UF Scripps Biomedical Research & The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
16
|
Dekker T, Harteveld JW, Wágner G, de Vries MCM, Custers H, van de Stolpe AC, de Esch IJP, Wijtmans M. Green Drug Discovery: Novel Fragment Space from the Biomass-Derived Molecule Dihydrolevoglucosenone (Cyrene TM). Molecules 2023; 28:molecules28041777. [PMID: 36838763 PMCID: PMC9967789 DOI: 10.3390/molecules28041777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Biomass-derived molecules can provide a basis for sustainable drug discovery. However, their full exploration is hampered by the dominance of millions of old-fashioned screening compounds in classical high-throughput screening (HTS) libraries frequently utilized. We propose a fragment-based drug discovery (FBDD) approach as an efficient method to navigate biomass-derived drug space. Here, we perform a proof-of-concept study with dihydrolevoglucosenone (CyreneTM), a pyrolysis product of cellulose. Diverse synthetic routes afforded a 100-membered fragment library with a diversity in functional groups appended. The library overall performs well in terms of novelty, physicochemical properties, aqueous solubility, stability, and three-dimensionality. Our study suggests that Cyrene-based fragments are a valuable green addition to the drug discovery toolbox. Our findings can help in paving the way for new hit drug candidates that are based on renewable resources.
Collapse
|
17
|
Steffek M, Helgason E, Popovych N, Rougé L, Bruning JM, Li KS, Burdick DJ, Cai J, Crawford T, Xue J, Decurtins W, Fang C, Grubers F, Holliday MJ, Langley A, Petersen A, Satz AL, Song A, Stoffler D, Strebel Q, Tom JYK, Skelton N, Staben ST, Wichert M, Mulvihill MM, Dueber EC. A Multifaceted Hit-Finding Approach Reveals Novel LC3 Family Ligands. Biochemistry 2023; 62:633-644. [PMID: 34985287 DOI: 10.1021/acs.biochem.1c00682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autophagy-related proteins (Atgs) drive the lysosome-mediated degradation pathway, autophagy, to enable the clearance of dysfunctional cellular components and maintain homeostasis. In humans, this process is driven by the mammalian Atg8 (mAtg8) family of proteins comprising the LC3 and GABARAP subfamilies. The mAtg8 proteins play essential roles in the formation and maturation of autophagosomes and the capture of specific cargo through binding to the conserved LC3-interacting region (LIR) sequence within target proteins. Modulation of interactions of mAtg8 with its target proteins via small-molecule ligands would enable further interrogation of their function. Here we describe unbiased fragment and DNA-encoded library (DEL) screening approaches for discovering LC3 small-molecule ligands. Both strategies resulted in compounds that bind to LC3, with the fragment hits favoring a conserved hydrophobic pocket in mATG8 proteins, as detailed by LC3A-fragment complex crystal structures. Our findings demonstrate that the malleable LIR-binding surface can be readily targeted by fragments; however, rational design of additional interactions to drive increased affinity proved challenging. DEL libraries, which combine small, fragment-like building blocks into larger scaffolds, yielded higher-affinity binders and revealed an unexpected potential for reversible, covalent ligands. Moreover, DEL hits identified possible vectors for synthesizing fluorescent probes or bivalent molecules for engineering autophagic degradation of specific targets.
Collapse
Affiliation(s)
- Micah Steffek
- Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Elizabeth Helgason
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lionel Rougé
- Structure Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - John M Bruning
- Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ke Sherry Li
- Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel J Burdick
- Chemistry Departments, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianping Cai
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Terry Crawford
- Chemistry Departments, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jing Xue
- Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Willy Decurtins
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Chunlin Fang
- WuXi AppTec (Wuhan) Company, Ltd., No. 666 GaoXin Road, WuHan East Lake High-tech Development Zone, Hubei 430075, China
| | - Felix Grubers
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael J Holliday
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Allyson Langley
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ann Petersen
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Lee Satz
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Aimin Song
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Stoffler
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Quentin Strebel
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jeffrey Y K Tom
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Skelton
- Chemistry Departments, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Chemistry Departments, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melinda M Mulvihill
- Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Erin C Dueber
- Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
18
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
19
|
Increased slow dynamics defines ligandability of BTB domains. Nat Commun 2022; 13:6989. [PMID: 36384931 PMCID: PMC9668832 DOI: 10.1038/s41467-022-34599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient determination of protein ligandability, or the propensity to bind small-molecules, would greatly facilitate drug development for novel targets. Ligandability is currently assessed using computational methods that typically consider the static structural properties of putative binding sites or by experimental fragment screening. Here, we evaluate ligandability of conserved BTB domains from the cancer-relevant proteins LRF, KAISO, and MIZ1. Using fragment screening, we discover that MIZ1 binds multiple ligands. However, no ligands are uncovered for the structurally related KAISO or LRF. To understand the principles governing ligand-binding by BTB domains, we perform comprehensive NMR-based dynamics studies and find that only the MIZ1 BTB domain exhibits backbone µs-ms time scale motions. Interestingly, residues with elevated dynamics correspond to the binding site of fragment hits and recently defined HUWE1 interaction site. Our data argue that examining protein dynamics using NMR can contribute to identification of cryptic binding sites, and may support prediction of the ligandability of novel challenging targets.
Collapse
|
20
|
Fragment-Based and Structural Investigation for Discovery of JNK3 Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14091900. [PMID: 36145648 PMCID: PMC9501523 DOI: 10.3390/pharmaceutics14091900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are related to cell proliferation, gene expression, and cell death. JNK isoform 3 (JNK3) is an important therapeutic target in varieties of pathological conditions including cancers and neuronal death. There is no approved drug targeting JNKs. To discover chemical inhibitors of JNK3, virtual fragment screening, the saturation transfer difference (STD) NMR, in vitro kinase assay, and X-ray crystallography were employed. A total of 27 fragments from the virtually selected 494 compounds were identified as initial hits via STD NMR and some compounds showed the inhibition of the activity of JNK3 in vitro. The structures of JNK3 with a fragment and a potent inhibitor were determined by X-ray crystallography. The fragment and inhibitor shared a common JNK3-binding feature. The result shows that fragment screening by NMR spectroscopy is a very efficient method to screen JNK3 binders and the structure of JNK3-inhibitor complex can be used to design and develop more potent inhibitors.
Collapse
|
21
|
Alibay I, Magarkar A, Seeliger D, Biggin PC. Evaluating the use of absolute binding free energy in the fragment optimisation process. Commun Chem 2022; 5:105. [PMID: 36697714 PMCID: PMC9814858 DOI: 10.1038/s42004-022-00721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/10/2022] [Indexed: 02/01/2023] Open
Abstract
Key to the fragment optimisation process within drug design is the need to accurately capture the changes in affinity that are associated with a given set of chemical modifications. Due to the weakly binding nature of fragments, this has proven to be a challenging task, despite recent advancements in leveraging experimental and computational methods. In this work, we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment optimisation decisions, retrospectively calculating binding free energies for 59 ligands across 4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accurately rank fragment-sized binders with an overall Spearman's r of 0.89 and a Kendall τ of 0.67, although often deviating from experiment in absolute free energy values with an RMSE of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimisation decisions can be supported by the ABFE calculations. Comparing against cheaper endpoint methods, namely Nwat-MM/GBSA, we find that ABFEs offer better ranking power and correlation metrics. Our results indicate that ABFE calculations can usefully guide fragment elaborations to maximise affinity.
Collapse
Affiliation(s)
- Irfan Alibay
- Department of Biochemistry, The University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an de Riß, Germany
| | - Daniel Seeliger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an de Riß, Germany
- Exscientia Inc, Office 400E, 2125 Biscayne Blvd, Miami, FL, 33137, USA
| | - Philip Charles Biggin
- Department of Biochemistry, The University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
22
|
Zapata-Acevedo CA, Guevara-Vela JM, Popelier PLA, Rocha Rinza T. Binding Energy Partition of Promising IRAK-4 Inhibitor (Zimlovisertib) for the Treatment of COVID-19 Pneumonia. Chemphyschem 2022; 23:e202200455. [PMID: 36044560 PMCID: PMC9538207 DOI: 10.1002/cphc.202200455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Indexed: 01/05/2023]
Abstract
The technique of Fragment-Based Drug Design (FBDD) considers the interactions of different moieties of molecules with biological targets for the rational construction of potential drugs. One basic assumption of FBDD is that the different functional groups of a ligand interact with a biological target in an approximately additive, that is, independent manner. We investigated the interactions of different fragments of ligands and Interleukin-1 Receptor-Associated Kinase 4 (IRAK-4) throughout the FBDD design of Zimlovisertib, a promising anti-inflammatory, currently in trials to be used for the treatment of COVID-19 pneumonia. We utilised state-of-the-art methods of wave function analyses mainly the Interacting Quantum Atoms (IQA) energy partition for this purpose. By means of IQA, we assessed the suitability of every change to the ligand in the five stages of FBDD which led to Zimlovisertib on a quantitative basis. We determined the energetics of the interaction of different functional groups in the ligands with the IRAK-4 protein target and thereby demonstrated the adequacy (or lack thereof) of the changes made across the design of this drug. This analysis permits to verify whether a given alteration of a prospective drug leads to the intended tuning of non-covalent interactions with its protein objective. Overall, we expect that the methods exploited in this paper will prove valuable in the understanding and control of chemical modifications across FBDD processes.
Collapse
Affiliation(s)
- César Arturo Zapata-Acevedo
- Tecnologico de Monterrey: Instituto Tecnologico y de Estudios Superiores de MonterreyChemistryAv. Carlos Lazo 100Santa Fe, La Loma01389Álvaro ObregónMEXICO
| | | | - Paul L. A. Popelier
- UoM: The University of ManchesterChemistryOxford RoadM13 9PLManchesterUNITED KINGDOM
| | - Tomás Rocha Rinza
- Institute Of Chemistry, National Autonomous University of MexicoDepartment of Physical ChemistryCircuito Exterior, Ciudad Universitaria04510Mexico CityMEXICO
| |
Collapse
|
23
|
Willis N, Mahy W, Sipthorp J, Zhao Y, Woodward HL, Atkinson BN, Bayle ED, Svensson F, Frew S, Jeganathan F, Monaghan A, Benvegnù S, Jolly S, Vecchia L, Ruza RR, Kjær S, Howell S, Snijders AP, Bictash M, Salinas PC, Vincent JP, Jones EY, Whiting P, Fish PV. Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit. J Med Chem 2022; 65:7212-7230. [PMID: 35536179 PMCID: PMC9150124 DOI: 10.1021/acs.jmedchem.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/26/2022]
Abstract
Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.
Collapse
Affiliation(s)
- Nicky
J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefano Benvegnù
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Jolly
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Steven Howell
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | | | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| |
Collapse
|
24
|
Hadfield TE, Imrie F, Merritt A, Birchall K, Deane CM. Incorporating Target-Specific Pharmacophoric Information into Deep Generative Models for Fragment Elaboration. J Chem Inf Model 2022; 62:2280-2292. [PMID: 35499971 PMCID: PMC9131447 DOI: 10.1021/acs.jcim.1c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Despite recent interest in deep generative models for scaffold elaboration, their applicability to fragment-to-lead campaigns has so far been limited. This is primarily due to their inability to account for local protein structure or a user's design hypothesis. We propose a novel method for fragment elaboration, STRIFE, that overcomes these issues. STRIFE takes as input fragment hotspot maps (FHMs) extracted from a protein target and processes them to provide meaningful and interpretable structural information to its generative model, which in turn is able to rapidly generate elaborations with complementary pharmacophores to the protein. In a large-scale evaluation, STRIFE outperforms existing, structure-unaware, fragment elaboration methods in proposing highly ligand-efficient elaborations. In addition to automatically extracting pharmacophoric information from a protein target's FHM, STRIFE optionally allows the user to specify their own design hypotheses.
Collapse
Affiliation(s)
- Thomas E Hadfield
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Fergus Imrie
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Andy Merritt
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Kristian Birchall
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, United Kingdom
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
25
|
Klein HF, Hamilton DJ, J. P. de Esch I, Wijtmans M, O'Brien P. Escape from planarity in fragment-based drug discovery: a synthetic strategy analysis of synthetic 3D fragment libraries. Drug Discov Today 2022; 27:2484-2496. [DOI: 10.1016/j.drudis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
26
|
Duke SO, Dayan FE. The search for new herbicide mechanisms of action: Is there a 'holy grail'? PEST MANAGEMENT SCIENCE 2022; 78:1303-1313. [PMID: 34796620 DOI: 10.1002/ps.6726] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 05/26/2023]
Abstract
New herbicide modes of action (MOAs) are in great demand because of the burgeoning evolution of resistance of weeds to existing commercial herbicides. This need has been exacerbated by the almost complete lack of introduction of herbicides with new MOAs for almost 40 years. There are many highly phytotoxic compounds with MOAs not represented by commercial herbicides, but neither these compounds nor structural analogues have been developed as herbicides for a variety of reasons. Natural products provide knowledge of many MOAs that are not being utilized by commercial herbicides. Other means of identifying new herbicide targets are discussed, including pharmaceutical target sites and metabolomic and proteomic information, as well as the use of artificial intelligence and machine learning to predict herbicidal compounds with new MOAs. Information about several newly discovered herbicidal compounds with new MOAs is summarized. The currently increased efforts of both established companies and start-up companies are likely to result in herbicides with new MOAs that can be used in herbicide resistance management within the next decade. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, USA
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
27
|
Miao J, Yuan H, Rao J, Zou J, Yang K, Peng G, Cao S, Chen H, Song Y. Identification of a small compound that specifically inhibits Zika virus in vitro and in vivo by targeting the NS2B-NS3 protease. Antiviral Res 2022; 199:105255. [PMID: 35143853 DOI: 10.1016/j.antiviral.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
Zika virus (ZIKV) has rapid become a global threat, but no ZIKV-specific vaccines or drugs are currently available. In this study, inhibitors of ZIKV NS2B-NS3 protease were screened from a library containing 4,452 compound fragments. One of the compounds, 6-bromo-1,2-naphthalenedione, exhibited high specific inhibition against ZIKV NS2B-NS3 protease, but had no inhibitory effects against other viral proteases. A microscale thermophoresis (MST) assay confirmed that the compound bound to ZIKV NS2B-NS3 protein with a binding constant (Kd) of 12.26 μM. Indirect immunofluorescence assays, Western blots, and plaque assays indicated that the compound inhibited virus replication in cells. Virus titer was reduced by more than 75% when the compound was present at 1 μM. A time-of-addition assay showed that inhibition occurred at the virus replication stage, but not at the adsorption or invasion stages. The half cytotoxicity concentration (CC50) of the compound on HeLa, Vero, and BHK-21 cells were 445.44 μM, 123.87 μM, and 123.64 μM, respectively. In vivo tests using infected AG129 mice demonstrated that treatment with the compound reduced mortality by up to 60%. Mice treated with the compound showed a reduction in histopathological lesions in brain, testis, and ovary. Viral RNA, IL-1β, and IL-6 mRNA levels decreased significantly in these tissues. In summary, this study has identified a small compound with high and specific inhibitory effects on ZIKV. The compound can be used as a therapeutic agent and is also an ideal starting point for drug optimization.
Collapse
Affiliation(s)
- Juan Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwei Rao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kelu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Sachdeo RA, Anthwal T, Nain S. Fragment based drug design. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2018-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rational approaches towards drug development have emerged as one of the most promising ways among the tedious conventional procedures with the aim of redefining the drug discovery process. The need of current medical system is demanding a much precise, faster and reliable approaches in parallel to faster growing technology for development of drugs with more intrinsic action and fewer side effects. Systematic and well-defined diagnostic studies have revealed the specific causes of disease and related targets for drug development. Designing a drug as per the specific target, studying it in-silico prior to its development has been proved as an added benefit to the studies. Many approaches like structure based drug design, fragment based drug design and ligand based drug design are been in practice for the drug discovery and development with the similar fundamental theory. Fragment based drug design utilizes a library of fragments designed specifically for the concerned target and these fragments are studied further before screening with virtual methods as well as with biophysical methods. The process follows a well-defined pathway which moulds a fragment into a perfect drug candidate. In this chapter we have tried to cover all the basic aspects of fragment based drug design and related technologies.
Collapse
Affiliation(s)
- Rahul Ashok Sachdeo
- Department of Pharmaceutical Chemistry , Government College of Pharmacy , Karad , Maharashtra , 415124 , India
| | - Tulika Anthwal
- Department of Pharmacy , Banasthali Vidyapith , Banasthali , Rajasthan , 304022 , India
| | - Sumitra Nain
- Department of Pharmacy , Banasthali Vidyapith , Banasthali , Rajasthan , 304022 , India
| |
Collapse
|
29
|
Andrianov GV, Ong WJG, Serebriiskii I, Karanicolas J. Efficient Hit-to-Lead Searching of Kinase Inhibitor Chemical Space via Computational Fragment Merging. J Chem Inf Model 2021; 61:5967-5987. [PMID: 34762402 PMCID: PMC8865965 DOI: 10.1021/acs.jcim.1c00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In early-stage drug discovery, the hit-to-lead optimization (or "hit expansion") stage entails starting from a newly identified active compound and improving its potency or other properties. Traditionally, this process relies on synthesizing and evaluating a series of analogues to build up structure-activity relationships. Here, we describe a computational strategy focused on kinase inhibitors, intended to expedite the process of identifying analogues with improved potency. Our protocol begins from an inhibitor of the target kinase and generalizes the synthetic route used to access it. By searching for commercially available replacements for the individual building blocks used to make the parent inhibitor, we compile an enumerated library of compounds that can be accessed using the same chemical transformations; these huge libraries can exceed many millions─or billions─of compounds. Because the resulting libraries are much too large for explicit virtual screening, we instead consider alternate approaches to identify the top-scoring compounds. We find that contributions from individual substituents are well described by a pairwise additivity approximation, provided that the corresponding fragments position their shared core in precisely the same way relative to the binding site. This key insight allows us to determine which fragments are suitable for merging into single new compounds and which are not. Further, the use of pairwise approximation allows interaction energies to be assigned to each compound in the library without the need for any further structure-based modeling: interaction energies instead can be reliably estimated from the energies of the component fragments, and the reduced computational requirements allow for flexible energy minimizations that allow the kinase to respond to each substitution. We demonstrate this protocol using libraries built from six representative kinase inhibitors drawn from the literature, which target five different kinases: CDK9, CHK1, CDK2, EGFRT790M, and ACK1. In each example, the enumerated library includes additional analogues reported by the original study to have activity, and these analogues are successfully prioritized within the library. We envision that the insights from this work can facilitate the rapid assembly and screening of increasingly large libraries for focused hit-to-lead optimization. To enable adoption of these methods and to encourage further analyses, we disseminate the computational tools needed to deploy this protocol.
Collapse
Affiliation(s)
- Grigorii V. Andrianov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Wern Juin Gabriel Ong
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Bowdoin College, Brunswick, ME 04011
| | - Ilya Serebriiskii
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111-2497,To whom correspondence should be addressed. , 215-728-7067
| |
Collapse
|
30
|
Piticchio SG, Martínez-Cartró M, Scaffidi S, Rachman M, Rodriguez-Arevalo S, Sanchez-Arfelis A, Escolano C, Picaud S, Krojer T, Filippakopoulos P, von Delft F, Galdeano C, Barril X. Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space. J Med Chem 2021; 64:17887-17900. [PMID: 34898210 DOI: 10.1021/acs.jmedchem.1c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.
Collapse
Affiliation(s)
- Serena G Piticchio
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Míriam Martínez-Cartró
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Salvatore Scaffidi
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Moira Rachman
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sergio Rodriguez-Arevalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Ainoa Sanchez-Arfelis
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom.,Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Carles Galdeano
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Xavier Barril
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
31
|
Taylor DM, Anglin J, Hu L, Wang L, Sankaran B, Wang J, Matzuk MM, Prasad BV, Palzkill T. Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Escherichia coli Producing OXA-48. ACS Infect Dis 2021; 7:3345-3354. [PMID: 34817169 PMCID: PMC9677231 DOI: 10.1021/acsinfecdis.1c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advances in β-lactamase inhibitor development, limited options exist for the class D carbapenemase known as OXA-48. OXA-48 is one of the most prevalent carbapenemases in carbapenem-resistant Enterobacteriaceae infections and is not susceptible to most available β-lactamase inhibitors. Here, we screened various low-molecular-weight compounds (fragments) against OXA-48 to identify functional scaffolds for inhibitor development. Several biphenyl-, naphthalene-, fluorene-, anthraquinone-, and azobenzene-based compounds were found to inhibit OXA-48 with low micromolar potency despite their small size. Co-crystal structures of OXA-48 with several of these compounds revealed key interactions with the carboxylate-binding pocket, Arg214, and various hydrophobic residues of β-lactamase that can be exploited in future inhibitor development. A number of the low-micromolar-potency inhibitors, across different scaffolds, synergize with ampicillin to kill Escherichia coli expressing OXA-48, albeit at high concentrations of the respective inhibitors. Additionally, several compounds demonstrated micromolar potency toward the OXA-24 and OXA-58 class D carbapenemases that are prevalent in Acinetobacter baumannii. This work provides foundational information on a variety of chemical scaffolds that can guide the design of effective OXA-48 inhibitors that maintain efficacy as well as potency toward other major class D carbapenemases.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, CA, 94720, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Imrie F, Hadfield TE, Bradley AR, Deane CM. Deep generative design with 3D pharmacophoric constraints. Chem Sci 2021; 12:14577-14589. [PMID: 34881010 PMCID: PMC8580048 DOI: 10.1039/d1sc02436a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
Generative models have increasingly been proposed as a solution to the molecular design problem. However, it has proved challenging to control the design process or incorporate prior knowledge, limiting their practical use in drug discovery. In particular, generative methods have made limited use of three-dimensional (3D) structural information even though this is critical to binding. This work describes a method to incorporate such information and demonstrates the benefit of doing so. We combine an existing graph-based deep generative model, DeLinker, with a convolutional neural network to utilise physically-meaningful 3D representations of molecules and target pharmacophores. We apply our model, DEVELOP, to both linker and R-group design, demonstrating its suitability for both hit-to-lead and lead optimisation. The 3D pharmacophoric information results in improved generation and allows greater control of the design process. In multiple large-scale evaluations, we show that including 3D pharmacophoric constraints results in substantial improvements in the quality of generated molecules. On a challenging test set derived from PDBbind, our model improves the proportion of generated molecules with high 3D similarity to the original molecule by over 300%. In addition, DEVELOP recovers 10× more of the original molecules compared to the baseline DeLinker method. Our approach is general-purpose, readily modifiable to alternate 3D representations, and can be incorporated into other generative frameworks. Code is available at https://github.com/oxpig/DEVELOP.
Collapse
Affiliation(s)
- Fergus Imrie
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| | - Thomas E Hadfield
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| | - Anthony R Bradley
- Exscientia Ltd The Schrödinger Building, Oxford Science Park Oxford OX4 4GE UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford Oxford OX1 3LB UK
| |
Collapse
|
33
|
Davoine C, Pardo A, Pochet L, Fillet M. Fragment Hit Discovery and Binding Site Characterization by Indirect Affinity Capillary Electrophoresis: Application to Factor XIIa. Anal Chem 2021; 93:14802-14809. [PMID: 34694784 DOI: 10.1021/acs.analchem.1c03611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fragment-based lead discovery is a usual strategy in drug discovery to identify innovative lead compounds. The success of this approach strongly relies on the capacity to detect weak binders and characterize their binding site. NMR and X-ray crystallography are the conventional technologies used to tackle this challenge. However, their large protein consumption and the cost of equipment reduce their accessibility. Here, an affinity capillary electrophoresis methodology was developed that enables the detection of mM binders, the determination of dissociation constants, and the characterization of the fragment binding site. On the basis of multiple equilibrium theory, dissociation constants in the μM-mM range were determined, and a new methodology is proposed to establish graphically if two fragments bind the same protein pocket. The applicability of this methodology was demonstrated experimentally on coagulation factor XIIa by evaluating pairs of fragments with expected behavior. This study reinforces the significance of using affinity capillary electrophoresis to gather valuable information for medicinal chemistry projects.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC─NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Alissia Pardo
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC─NARILIS), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000 Liège, Belgium
| |
Collapse
|
34
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
35
|
Metz A, Wollenhaupt J, Glöckner S, Messini N, Huber S, Barthel T, Merabet A, Gerber HD, Heine A, Klebe G, Weiss MS. Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallogr D Struct Biol 2021; 77:1168-1182. [PMID: 34473087 PMCID: PMC8411975 DOI: 10.1107/s2059798321008196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.
Collapse
Affiliation(s)
- Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Steffen Glöckner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Niki Messini
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Simon Huber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Tatjana Barthel
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Ahmed Merabet
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans-Dieter Gerber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
36
|
Reyes Romero A, Lunev S, Popowicz GM, Calderone V, Gentili M, Sattler M, Plewka J, Taube M, Kozak M, Holak TA, Dömling ASS, Groves MR. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun Biol 2021; 4:949. [PMID: 34376783 PMCID: PMC8355244 DOI: 10.1038/s42003-021-02442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/09/2021] [Indexed: 11/14/2022] Open
Abstract
Malate dehydrogenases (MDHs) sustain tumor growth and carbon metabolism by pathogens including Plasmodium falciparum. However, clinical success of MDH inhibitors is absent, as current small molecule approaches targeting the active site are unselective. The presence of an allosteric binding site at oligomeric interface allows the development of more specific inhibitors. To this end we performed a differential NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface. Subsequent biophysical and biochemical experiments of an identified fragment indicate an allosteric mechanism of 4-(3,4-difluorophenyl) thiazol-2-amine (4DT) inhibition by impacting the formation of the active site loop, located >30 Å from the 4DT binding site. Further characterization of the more tractable homolog 4-phenylthiazol-2-amine (4PA) and 16 other derivatives are also reported. These data pave the way for downstream development of more selective molecules by utilizing the oligomeric interfaces showing higher species sequence divergence than the MDH active site. Romero et al. perform NMR-based screening of 1500 fragments to identify fragments that bind at the oligomeric interface of malate dehydrogenase (MDH). Their study indicates an allosteric mechanism impacting enzymatic activity, paving the way for development of more selective molecules and a starting point for the future development of specific MDH inhibitors.
Collapse
Affiliation(s)
- Atilio Reyes Romero
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Serjey Lunev
- EV Biotech, Zernikelaan 8, Groningen, the Netherlands
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Vito Calderone
- CERM and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | | | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Alexander S S Dömling
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands
| | - Matthew R Groves
- Drug Design, University of Groningen, Department of Pharmacy, Groningen, The Netherlands.
| |
Collapse
|
37
|
Elaboration of a benzofuran scaffold and evaluation of binding affinity and inhibition of Escherichia coli DsbA: A fragment-based drug design approach to novel antivirulence compounds. Bioorg Med Chem 2021; 45:116315. [PMID: 34364222 DOI: 10.1016/j.bmc.2021.116315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.
Collapse
|
38
|
Kleandrova VV, Speck-Planche A. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling. Mini Rev Med Chem 2021; 20:1357-1374. [PMID: 32013845 DOI: 10.2174/1389557520666200204123156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Fragment-Based Drug Design (FBDD) has established itself as a promising approach in modern drug discovery, accelerating and improving lead optimization, while playing a crucial role in diminishing the high attrition rates at all stages in the drug development process. On the other hand, FBDD has benefited from the application of computational methodologies, where the models derived from the Quantitative Structure-Activity Relationships (QSAR) have become consolidated tools. This mini-review focuses on the evolution and main applications of the QSAR paradigm in the context of FBDD in the last five years. This report places particular emphasis on the QSAR models derived from fragment-based topological approaches to extract physicochemical and/or structural information, allowing to design potentially novel mono- or multi-target inhibitors from relatively large and heterogeneous databases. Here, we also discuss the need to apply multi-scale modeling, to exemplify how different datasets based on target inhibition can be simultaneously integrated and predicted together with other relevant endpoints such as the biological activity against non-biomolecular targets, as well as in vitro and in vivo toxicity and pharmacokinetic properties. In this context, seminal papers are briefly analyzed. As huge amounts of data continue to accumulate in the domains of the chemical, biological and biomedical sciences, it has become clear that drug discovery must be viewed as a multi-scale optimization process. An ideal multi-scale approach should integrate diverse chemical and biological data and also serve as a knowledge generator, enabling the design of potentially optimal chemicals that may become therapeutic agents.
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe Shosse 11, 125080, Moscow, Russian Federation
| | - Alejandro Speck-Planche
- Department of Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., 8, b. 2, 119992, Moscow, Russian Federation
| |
Collapse
|
39
|
Hoarau M, Vanichtanankul J, Srimongkolpithak N, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S. Discovery of new non-pyrimidine scaffolds as Plasmodium falciparum DHFR inhibitors by fragment-based screening. J Enzyme Inhib Med Chem 2021; 36:198-206. [PMID: 33530764 PMCID: PMC8759724 DOI: 10.1080/14756366.2020.1854244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 μM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
40
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
41
|
Varela‐Rial A, Majewski M, De Fabritiis G. Structure based virtual screening: Fast and slow. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Varela‐Rial
- Acellera Labs Barcelona Spain
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Maciej Majewski
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| |
Collapse
|
42
|
Davoine C, Fillet M, Pochet L. Capillary electrophoresis as a fragment screening tool to cross-validate hits from chromogenic assay: Application to FXIIa. Talanta 2021; 226:122163. [PMID: 33676706 DOI: 10.1016/j.talanta.2021.122163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, a partial-filling affinity capillary electrophoresis (pf-ACE) method was developed for the cross-validation of fragment hits revealed by chromogenic factor XIIa (FXIIa) assay. Chromogenic assay produces false positives, mainly due to spectrophotometric interferences and sample purity issues. pf-ACE was selected as counter-screening technology because of its separative character and the fact that the target does not have to be attached or tagged. The effects of protein plug length, applied voltage and composition of the running buffer were examined and optimized. Detection limit in terms of dissociation constant was estimated at 400 μM. The affinity evaluation was performed close to physiological conditions (pH 7.4, ionic strength 0.13 mol L-1) in a poly (ethylene oxide)-coated capillary of 75 μm internal diameter x 33 cm length with an applied voltage of 3 kV. This method uncovered chromogenic assay's false positives due to zinc contamination. Moreover, pf-ACE supported the evaluation of compounds absorbing at 405 nm.
Collapse
Affiliation(s)
- C Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - M Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - L Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
43
|
Egbert M, Porter KA, Ghani U, Kotelnikov S, Nguyen T, Ashizawa R, Kozakov D, Vajda S. Conservation of binding properties in protein models. Comput Struct Biotechnol J 2021; 19:2549-2566. [PMID: 34025942 PMCID: PMC8114079 DOI: 10.1016/j.csbj.2021.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
We study the models submitted to round 12 of the Critical Assessment of protein Structure Prediction (CASP) experiment to assess how well the binding properties are conserved when the X-ray structures of the target proteins are replaced by their models. To explore small molecule binding we generate distributions of molecular probes - which are fragment-sized organic molecules of varying size, shape, and polarity - around the protein, and count the number of interactions between each residue and the probes, resulting in a vector of interactions we call a binding fingerprint. The similarity between two fingerprints, one for the X-ray structure and the other for a model of the protein, is determined by calculating the correlation coefficient between the two vectors. The resulting correlation coefficients are shown to correlate with global measures of accuracy established in CASP, and the relationship yields an accuracy threshold that has to be reached for meaningful binding surface conservation. The clusters formed by the probe molecules reliably predict binding hot spots and ligand binding sites in both X-ray structures and reasonably accurate models of the target, but ensembles of models may be needed for assessing the availability of proper binding pockets. We explored ligand docking to the few targets that had bound ligands in the X-ray structure. More targets were available to assess the ability of the models to reproduce protein-protein interactions by docking both the X-ray structures and models to their interaction partners in complexes. It was shown that this application is more difficult than finding small ligand binding sites, and the success rates heavily depend on the local structure in the potential interface. In particular, predicted conformations of flexible loops are frequently incorrect in otherwise highly accurate models, and may prevent predicting correct protein-protein interactions.
Collapse
Affiliation(s)
- Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Kathryn A. Porter
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thu Nguyen
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
44
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Carvalho Martins L, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, Aimon A, Bennett JM, Brandao Neto J, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs MR, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rack JGM, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, O'Brien P, Jura N, Ashworth A, Irwin JJ, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. SCIENCE ADVANCES 2021; 7:eabf8711. [PMID: 33853786 PMCID: PMC8046379 DOI: 10.1126/sciadv.abf8711] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/19/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dominique H Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tristan W Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aye C Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Justin T Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jessica K Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Huong T Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
| | - Matteo P Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin R Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tyler J Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - James M Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ailsa J Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexei S Soares
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jennifer L Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, San Francisco, CA 94158, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael C Thompson
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA 94158, USA
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA UK
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
45
|
Kölmel DK, Zhu H, Flanagan ME, Sakata SK, Harris AR, Wan J, Morgan BA. Employing Photocatalysis for the Design and Preparation of DNA‐Encoded Libraries: A Case Study. CHEM REC 2021; 21:616-630. [DOI: 10.1002/tcr.202000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Dominik K. Kölmel
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Hongyao Zhu
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Mark E. Flanagan
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Sylvie K. Sakata
- Worldwide Research and Development Pfizer Inc 10770 Science Center Drive San Diego CA 92121 United States
| | - Anthony R. Harris
- Worldwide Research and Development Pfizer Inc Eastern Point Road Groton CT 06340 United States
| | - Jinqiao Wan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
| | - Barry A. Morgan
- HitGen Inc Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District Chengdu City Sichuan Province P. R. China
- HitGen Pharmaceuticals Inc PO Box 88240 Houston TX 77288 United States
| |
Collapse
|
46
|
Di Fruscia P, Edfeldt F, Shamovsky I, Collie GW, Aagaard A, Barlind L, Börjesson U, Hansson EL, Lewis RJ, Nilsson MK, Öster L, Pemberton J, Ripa L, Storer RI, Käck H. Fragment-Based Discovery of Novel Allosteric MEK1 Binders. ACS Med Chem Lett 2021; 12:302-308. [PMID: 33603979 PMCID: PMC7883464 DOI: 10.1021/acsmedchemlett.0c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
The MEK1 kinase plays a critical role in key cellular processes, and as such, its dysfunction is strongly linked to several human diseases, particularly cancer. MEK1 has consequently received considerable attention as a drug target, and a significant number of small-molecule inhibitors of this kinase have been reported. The majority of these inhibitors target an allosteric pocket proximal to the ATP binding site which has proven to be highly druggable, with four allosteric MEK1 inhibitors approved to date. Despite the significant attention that the MEK1 allosteric site has received, chemotypes which have been shown structurally to bind to this site are limited. With the aim of discovering novel allosteric MEK1 inhibitors using a fragment-based approach, we report here a screening method which resulted in the discovery of multiple allosteric MEK1 binders, one series of which was optimized to sub-μM affinity for MEK1 with promising physicochemical and ADMET properties.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Fredrik Edfeldt
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Igor Shamovsky
- Medicinal
Chemistry, Research & Early Development, Respiratory & Immunology,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Gavin W. Collie
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Anna Aagaard
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Louise Barlind
- Discovery
Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Ulf Börjesson
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Eva L. Hansson
- Mechanistic
Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Richard J. Lewis
- Medicinal
Chemistry, Research & Early Development, Respiratory & Immunology,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Magnus K. Nilsson
- Medicinal
Chemistry, Research & Early Development, Respiratory & Immunology,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Linda Öster
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Josefine Pemberton
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Lena Ripa
- Medicinal
Chemistry, Research & Early Development, Respiratory & Immunology,
BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - R. Ian Storer
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Helena Käck
- Structure
Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| |
Collapse
|
47
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
48
|
Discovery of small molecules targeting the tandem tudor domain of the epigenetic factor UHRF1 using fragment-based ligand discovery. Sci Rep 2021; 11:1121. [PMID: 33441849 PMCID: PMC7806715 DOI: 10.1038/s41598-020-80588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the established roles of the epigenetic factor UHRF1 in oncogenesis, no UHRF1-targeting therapeutics have been reported to date. In this study, we use fragment-based ligand discovery to identify novel scaffolds for targeting the isolated UHRF1 tandem Tudor domain (TTD), which recognizes the heterochromatin-associated histone mark H3K9me3 and supports intramolecular contacts with other regions of UHRF1. Using both binding-based and function-based screens of a ~ 2300-fragment library in parallel, we identified 2,4-lutidine as a hit for follow-up NMR and X-ray crystallography studies. Unlike previous reported ligands, 2,4-lutidine binds to two binding pockets that are in close proximity on TTD and so has the potential to be evolved into more potent inhibitors using a fragment-linking strategy. Our study provides a useful starting point for developing potent chemical probes against UHRF1.
Collapse
|
49
|
Abstract
Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: a nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. Traditionally, treatments for bacterial infection have focused on killing the microbe or preventing its growth. As antimicrobial resistance becomes more ubiquitous, the feasibility of this approach is beginning to wane and attention has begun to shift toward disrupting the host-pathogen interaction by improving the host defense. Using a high-throughput, fragment-based screen to identify compounds that alleviate Pseudomonas aeruginosa-mediated killing of Caenorhabditis elegans, we identified over 20 compounds that stimulated host defense gene expression. Five of these molecules were selected for further characterization. Four of five compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. Each of the compounds activated several host defense pathways, but the pathways were generally dispensable for compound-mediated rescue in liquid killing, suggesting redundancy or that the activation of unknown pathway(s) may be driving compound effects. A genetic mechanism was identified for LK56, which required the Mediator subunit MDT-15/MED15 and NHR-49/HNF4 for its function. Interestingly, LK32, LK34, LK38, and LK56 also rescued C. elegans from P. aeruginosa in an agar-based assay, which uses different virulence factors and defense mechanisms. Rescue in an agar-based assay for LK38 entirely depended upon the PMK-1/p38 MAPK pathway. Three compounds—LK32, LK34, and LK56—also conferred resistance to Enterococcus faecalis, and the two lattermost, LK34 and LK56, also reduced pathogenesis from Staphylococcus aureus. This study supports a growing role for MDT-15 and NHR-49 in immune response and identifies five molecules that have significant potential for use as tools in the investigation of innate immunity. IMPORTANCE Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: the nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. One idea is to stimulate host defense pathways to improve the clearance of bacterial infection. Here, we describe five small molecules that promote resistance to infectious bacteria by activating C. elegans’ innate immune pathways. Several are effective against both Gram-positive and Gram-negative pathogens. One of the compounds was mapped to the action of MDT-15/MED15 and NHR-49/HNF4, a pair of transcriptional regulators more generally associated with fatty acid metabolism, potentially highlighting a new link between these biological functions. These studies pave the way for future characterization of the anti-infective activity of the molecules in higher organisms and highlight the compounds’ potential utility for further investigation of immune modulation as a novel therapeutic approach.
Collapse
|
50
|
Wakefield AE, Yueh C, Beglov D, Castilho MS, Kozakov D, Keserű GM, Whitty A, Vajda S. Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery. J Chem Inf Model 2020; 60:6612-6623. [PMID: 33291870 DOI: 10.1021/acs.jcim.0c00877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding hot spots are regions of proteins that, due to their potentially high contribution to the binding free energy, have high propensity to bind small molecules. We present benchmark sets for testing computational methods for the identification of binding hot spots with emphasis on fragment-based ligand discovery. Each protein structure in the set binds a fragment, which is extended into larger ligands in other structures without substantial change in its binding mode. Structures of the same proteins without any bound ligand are also collected to form an unbound benchmark. We also discuss a set developed by Astex Pharmaceuticals for the validation of hot and warm spots for fragment binding. The set is based on the assumption that a fragment that occurs in diverse ligands in the same subpocket identifies a binding hot spot. Since this set includes only ligand-bound proteins, we added a set with unbound structures. All four sets were tested using FTMap, a computational analogue of fragment screening experiments to form a baseline for testing other prediction methods, and differences among the sets are discussed.
Collapse
Affiliation(s)
- Amanda E Wakefield
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christine Yueh
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Dmitri Beglov
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Marcelo S Castilho
- Faculdade de Farmácia da Universidade Federal da Bahia, Bahia, Salvador, BA 40170-115, Brazil
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|