1
|
Ardini M, Aboagye SY, Petukhova VZ, Kastrati I, Ippoliti R, Thatcher GRJ, Petukhov PA, Williams DL, Angelucci F. The "Doorstop Pocket" In Thioredoxin Reductases─An Unexpected Druggable Regulator of the Catalytic Machinery. J Med Chem 2024; 67:15947-15967. [PMID: 39250602 DOI: 10.1021/acs.jmedchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pyridine nucleotide-disulfide oxidoreductases are underexplored as drug targets, and thioredoxin reductases (TrxRs) stand out as compelling pharmacological targets. Selective TrxR inhibition is challenging primarily due to the reliance on covalent inhibition strategies. Recent studies identified a regulatory and druggable pocket in Schistosoma mansoni thioredoxin glutathione reductase (TGR), a TrxR-like enzyme, and an established drug target for schistosomiasis. This site is termed the "doorstop pocket" because compounds that bind there impede the movement of an aromatic side-chain necessary for the entry and exit of NADPH and NADP+ during enzymatic turnover. This discovery spearheaded the development of new TGR inhibitors with efficacies surpassing those of current schistosomiasis treatment. Targeting the "doorstop pocket" is a promising strategy, as the pocket is present in all members of the pyridine nucleotide-disulfide oxidoreductase family, opening new avenues for exploring therapeutic approaches in diseases where the importance of these enzymes is established, including cancer and inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sammy Y Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Valentina Z Petukhova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Irida Kastrati
- Department of Cancer Biology, Loyola University Chicago, 60153 Maywood, Illinois 60153, United States
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gregory R J Thatcher
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - David L Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Dalwani S, Metz A, Huschmann FU, Weiss MS, Wierenga RK, Venkatesan R. Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them. Acta Crystallogr D Struct Biol 2024; 80:605-619. [PMID: 39012716 DOI: 10.1107/s2059798324006557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE-fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.
Collapse
Affiliation(s)
- Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Franziska U Huschmann
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Chandraghatgi R, Ji HF, Rosen GL, Sokhansanj BA. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening. J Chem Inf Model 2024; 64:3826-3840. [PMID: 38696451 PMCID: PMC11197033 DOI: 10.1021/acs.jcim.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Recent advances in computational methods provide the promise of dramatically accelerating drug discovery. While mathematical modeling and machine learning have become vital in predicting drug-target interactions and properties, there is untapped potential in computational drug discovery due to the vast and complex chemical space. This paper builds on our recently published computational fragment-based drug discovery (FBDD) method called fragment databases from screened ligand drug discovery (FDSL-DD). FDSL-DD uses in silico screening to identify ligands from a vast library, fragmenting them while attaching specific attributes based on predicted binding affinity and interaction with the target subdomain. In this paper, we further propose a two-stage optimization method that utilizes the information from prescreening to optimize computational ligand synthesis. We hypothesize that using prescreening information for optimization shrinks the search space and focuses on promising regions, thereby improving the optimization for candidate ligands. The first optimization stage assembles these fragments into larger compounds using genetic algorithms, followed by a second stage of iterative refinement to produce compounds with enhanced bioactivity. To demonstrate broad applicability, the methodology is demonstrated on three diverse protein targets found in human solid cancers, bacterial antimicrobial resistance, and the SARS-CoV-2 virus. Combined, the proposed FDSL-DD and a two-stage optimization approach yield high-affinity ligand candidates more efficiently than other state-of-the-art computational FBDD methods. We further show that a multiobjective optimization method accounting for drug-likeness can still produce potential candidate ligands with a high binding affinity. Overall, the results demonstrate that integrating detailed chemical information with a constrained search framework can markedly optimize the initial drug discovery process, offering a more precise and efficient route to developing new therapeutics.
Collapse
Affiliation(s)
- Rohan Chandraghatgi
- Department
of Biology, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hai-Feng Ji
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gail L. Rosen
- Department
of Electrical & Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bahrad A. Sokhansanj
- Department
of Electrical & Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Kunnakkattu IR, Choudhary P, Pravda L, Nadzirin N, Smart OS, Yuan Q, Anyango S, Nair S, Varadi M, Velankar S. PDBe CCDUtils: an RDKit-based toolkit for handling and analysing small molecules in the Protein Data Bank. J Cheminform 2023; 15:117. [PMID: 38042830 PMCID: PMC10693035 DOI: 10.1186/s13321-023-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
While the Protein Data Bank (PDB) contains a wealth of structural information on ligands bound to macromolecules, their analysis can be challenging due to the large amount and diversity of data. Here, we present PDBe CCDUtils, a versatile toolkit for processing and analysing small molecules from the PDB in PDBx/mmCIF format. PDBe CCDUtils provides streamlined access to all the metadata for small molecules in the PDB and offers a set of convenient methods to compute various properties using RDKit, such as 2D depictions, 3D conformers, physicochemical properties, scaffolds, common fragments, and cross-references to small molecule databases using UniChem. The toolkit also provides methods for identifying all the covalently attached chemical components in a macromolecular structure and calculating similarity among small molecules. By providing a broad range of functionality, PDBe CCDUtils caters to the needs of researchers in cheminformatics, structural biology, bioinformatics and computational chemistry.
Collapse
Affiliation(s)
- Ibrahim Roshan Kunnakkattu
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Preeti Choudhary
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Lukas Pravda
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Nurul Nadzirin
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Oliver S Smart
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Qi Yuan
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephen Anyango
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sreenath Nair
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mihaly Varadi
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
6
|
Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. The current role and evolution of X-ray crystallography in drug discovery and development. Expert Opin Drug Discov 2023; 18:1221-1230. [PMID: 37592849 PMCID: PMC10620067 DOI: 10.1080/17460441.2023.2246881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Macromolecular X-ray crystallography and cryo-EM are currently the primary techniques used to determine the three-dimensional structures of proteins, nucleic acids, and viruses. Structural information has been critical to drug discovery and structural bioinformatics. The integration of artificial intelligence (AI) into X-ray crystallography has shown great promise in automating and accelerating the analysis of complex structural data, further improving the efficiency and accuracy of structure determination. AREAS COVERED This review explores the relationship between X-ray crystallography and other modern structural determination methods. It examines the integration of data acquired from diverse biochemical and biophysical techniques with those derived from structural biology. Additionally, the paper offers insights into the influence of AI on X-ray crystallography, emphasizing how integrating AI with experimental approaches can revolutionize our comprehension of biological processes and interactions. EXPERT OPINION Investing in science is crucially emphasized due to its significant role in drug discovery and advancements in healthcare. X-ray crystallography remains an essential source of structural biology data for drug discovery. Recent advances in biochemical, spectroscopic, and bioinformatic methods, along with the integration of AI techniques, hold the potential to revolutionize drug discovery when effectively combined with robust data management practices.
Collapse
Affiliation(s)
- Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Szczygiel
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908
| |
Collapse
|
7
|
Munikishore R, Liu R, Zhang S, Zhao QS, Nian Y, Zuo Z. Structurally modified Cyclovirobuxine-D Buxus alkaloids as effective analgesic agents through Ca v3.2 T-Type calcium channel inhibition. Bioorg Chem 2023; 135:106493. [PMID: 36996509 DOI: 10.1016/j.bioorg.2023.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.
Collapse
Affiliation(s)
- Rachakunta Munikishore
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China; Sadashiva Life Sciences, Research and Development Division, Navodaya Industrial Park, IDA Cherlapally, Hyderabad 500051, India
| | - Rui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
8
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
9
|
Okwei E, Smith ST, Bender BJ, Allison B, Ganguly S, Geanes A, Zhang X, Ledwitch K, Meiler J. Rosetta's Predictive Ability for Low-Affinity Ligand Binding in Fragment-Based Drug Discovery. Biochemistry 2023; 62:700-709. [PMID: 36626571 DOI: 10.1021/acs.biochem.2c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fragment-based drug discovery begins with the identification of small molecules with a molecular weight of usually less than 250 Da which weakly bind to the protein of interest. This technique is challenging for computational docking methods as binding is determined by only a few specific interactions. Inaccuracies in the energy function or slight deviations in the docking pose can lead to the prediction of incorrect binding or difficulties in ranking fragments in in silico screening. Here, we test RosettaLigand by docking a series of fragments to a cysteine-depleted variant of the TIM-barrel protein, HisF (UniProtKB Q9X0C6). We compare the computational results with experimental NMR spectroscopy screens. NMR spectroscopy gives details on binding affinities of individual ligands, which allows assessment of the ligand-ranking ability using RosettaLigand and also provides feedback on the location of the binding pocket, which serves as a reliable test of RosettaLigand's ability to identify plausible binding poses. From a library screen of 3456 fragments, we identified a set of 31 ligands with intrinsic affinities to HisF with dissociation constants as low as 400 μM. The same library of fragments was blindly screened in silico. RosettaLigand was able to rank binders before non-binders with an area under the curve of the receiver operating characteristics of 0.74. The docking poses observed for binders agreed with the binding pocket identified by NMR chemical shift perturbations for all fragments. Taken together, these results provide a baseline performance of RosettaLigand in a fragment-based drug discovery setting.
Collapse
Affiliation(s)
- Elleansar Okwei
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States
| | - Shannon T Smith
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States.,Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee37240, United States
| | - Brian J Bender
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee37240, United States
| | - Brittany Allison
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States
| | - Soumya Ganguly
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Alexander Geanes
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Xuan Zhang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Kaitlyn Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee37240, United States.,Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee37240, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee37240, United States.,Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103Leipzig, Germany
| |
Collapse
|
10
|
Exploring species-level infant gut bacterial biodiversity by meta-analysis and formulation of an optimized cultivation medium. NPJ Biofilms Microbiomes 2022; 8:88. [PMID: 36316342 PMCID: PMC9622858 DOI: 10.1038/s41522-022-00349-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
In vitro gut cultivation models provide host-uncoupled, fast, and cost-efficient solutions to investigate the effects of intrinsic and extrinsic factors impacting on both composition and functionality of the intestinal microbial ecosystem. However, to ensure the maintenance and survival of gut microbial players and preserve their functions, these systems require close monitoring of several variables, including oxygen concentration, pH, and temperature, as well as the use of a culture medium satisfying the microbial nutritional requirements. In this context, in order to identify the macro- and micro-nutrients necessary for in vitro cultivation of the infant gut microbiota, a meta-analysis based on 1669 publicly available shotgun metagenomic samples corresponding to fecal samples of healthy, full-term infants aged from a few days to three years was performed to define the predominant species characterizing the “infant-like” gut microbial ecosystem. A subsequent comparison of growth performances was made using infant fecal samples that contained the most abundant bacterial taxa of the infant gut microbiota, when cultivated on 18 different culture media. This growth analysis was performed by means of flow cytometry-based bacterial cell enumeration and shallow shotgun sequencing, which allowed the formulation of an optimized growth medium, i.e., Infant Gut Super Medium (IGSM), which maintains and sustains the infant gut microbial biodiversity under in vitro growth conditions. Furthermore, this formulation was used to evaluate the in vitro effect of two drugs commonly used in pediatrics, i.e., acetaminophen and simethicone, on the taxonomic composition of the infant gut microbiota.
Collapse
|
11
|
Zhao Y, Mahy W, Willis NJ, Woodward HL, Steadman D, Bayle ED, Atkinson BN, Sipthorp J, Vecchia L, Ruza RR, Harlos K, Jeganathan F, Constantinou S, Costa A, Kjær S, Bictash M, Salinas PC, Whiting P, Vincent JP, Fish PV, Jones EY. Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chem Neurosci 2022; 13:2060-2077. [PMID: 35731924 PMCID: PMC9264368 DOI: 10.1021/acschemneuro.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 μM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 μM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Nicky J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Karl Harlos
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefan Constantinou
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Artur Costa
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| |
Collapse
|
12
|
Kaminski JW, Vera L, Stegmann DP, Vering J, Eris D, Smith KML, Huang CY, Meier N, Steuber J, Wang M, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment- and compound-screening pipeline at the Swiss Light Source. Acta Crystallogr D Struct Biol 2022; 78:328-336. [PMID: 35234147 PMCID: PMC8900825 DOI: 10.1107/s2059798322000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Over the last two decades, fragment-based drug discovery (FBDD) has emerged as an effective and efficient method to identify new chemical scaffolds for the development of lead compounds. X-ray crystallography can be used in FBDD as a tool to validate and develop fragments identified as binders by other methods. However, it is also often used with great success as a primary screening technique. In recent years, technological advances at macromolecular crystallography beamlines in terms of instrumentation, beam intensity and robotics have enabled the development of dedicated platforms at synchrotron sources for FBDD using X-ray crystallography. Here, the development of the Fast Fragment and Compound Screening (FFCS) platform, an integrated next-generation pipeline for crystal soaking, handling and data collection which allows crystallography-based screening of protein crystals against hundreds of fragments and compounds, at the Swiss Light Source is reported.
Collapse
Affiliation(s)
- Jakub W. Kaminski
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Dennis P. Stegmann
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jonatan Vering
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Kate M. L. Smith
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nathalie Meier
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - May E. Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
13
|
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, Ouyang L, Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur J Med Chem 2022; 230:114094. [PMID: 34998039 DOI: 10.1016/j.ejmech.2021.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
PARP1 plays a crucial role in DNA damage repair, making it an essential target for cancer therapy. PARP1 inhibitors are widely used to treat BRCA-deficient malignancies, and six PARP inhibitors have been approved for clinical use. However, excluding the great clinical success of PARP inhibitors, the concomitant toxicity, drug resistance, and limited scope of application restrict their clinical efficacy. To find solutions to these problems, dual-target inhibitors have shown great potential. In recent years, several studies have linked PAPR1 to other primary cancer targets. Many dual-target inhibitors have been developed using structural fusion, linkage, or library construction methods, overcoming the defects of many single-target inhibitors of PARP1 and achieving great success in clinical cancer therapy. This review summarizes the advance of dual-target PARP1 inhibitors in recent years, focusing on their structural optimization process, structure-activity relationships (SARs), and in vitro or in vivo analysis results.
Collapse
Affiliation(s)
- Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Fulun Jiao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Riu F, Ruda A, Engström O, Muheim C, Mobarak H, Ståhle J, Kosma P, Carta A, Daley DO, Widmalm G. A Lead-Based Fragment Library Screening of the Glycosyltransferase WaaG from Escherichia coli. Pharmaceuticals (Basel) 2022; 15:ph15020209. [PMID: 35215321 PMCID: PMC8877264 DOI: 10.3390/ph15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glucosyl transferase I (WaaG) in E. coli catalyzes the transfer of an α-d-glucosyl group to the inner core of the lipopolysaccharide (LPS) and plays an important role in the biogenesis of the outer membrane. If its activity could be inhibited, the integrity of the outer membrane would be compromised and the bacterium would be susceptible to antibiotics that are normally prevented from entering the cell. Herein, three libraries of molecules (A, B and C) were docked in the binding pocket of WaaG, utilizing the docking binding affinity as a filter to select fragment-based compounds for further investigations. From the results of the docking procedure, a selection of compounds was investigated by molecular dynamics (MD) simulations to obtain binding free energy (BFE) and KD values for ligands as an evaluation for the binding to WaaG. Derivatives of 1,3-thiazoles (A7 and A4) from library A and 1,3,4-thiadiazole (B33) from library B displayed a promising profile of BFE, with KD < mM, viz., 0.11, 0.62 and 0.04 mM, respectively. Further root-mean-square-deviation (RMSD), electrostatic/van der Waals contribution to the binding and H-bond interactions displayed a favorable profile for ligands A4 and B33. Mannose and/or heptose-containing disaccharides C1–C4, representing sub-structures of the inner core of the LPS, were also investigated by MD simulations, and compound C42− showed a calculated KD = 0.4 µM. In the presence of UDP-Glc2−, the best-docked pose of disaccharide C42− is proximate to the glucose-binding site of WaaG. A study of the variation in angle and distance was performed on the different portions of WaaG (N-, the C- domains and the hinge region). The Spearman correlation coefficient between the two variables was close to unity, where both variables increase in the same way, suggesting a conformational rearrangement of the protein during the MD simulation, revealing molecular motions of the enzyme that may be part of the catalytic cycle. Selected compounds were also analyzed by Saturation Transfer Difference (STD) NMR experiments. STD effects were notable for the 1,3-thiazole derivatives A4, A8 and A15 with the apo form of the protein as well as in the presence of UDP for A4.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Alessandro Ruda
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Olof Engström
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Claudio Muheim
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Hani Mobarak
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Jonas Ståhle
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences—Vienna, 1190 Vienna, Austria;
| | - Antonio Carta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (F.R.); (A.C.)
| | - Daniel O. Daley
- Arrhenius Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden; (C.M.); (D.O.D.)
| | - Göran Widmalm
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (O.E.); (H.M.); (J.S.)
- Correspondence:
| |
Collapse
|
15
|
Miao J, Yuan H, Rao J, Zou J, Yang K, Peng G, Cao S, Chen H, Song Y. Identification of a small compound that specifically inhibits Zika virus in vitro and in vivo by targeting the NS2B-NS3 protease. Antiviral Res 2022; 199:105255. [PMID: 35143853 DOI: 10.1016/j.antiviral.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
Zika virus (ZIKV) has rapid become a global threat, but no ZIKV-specific vaccines or drugs are currently available. In this study, inhibitors of ZIKV NS2B-NS3 protease were screened from a library containing 4,452 compound fragments. One of the compounds, 6-bromo-1,2-naphthalenedione, exhibited high specific inhibition against ZIKV NS2B-NS3 protease, but had no inhibitory effects against other viral proteases. A microscale thermophoresis (MST) assay confirmed that the compound bound to ZIKV NS2B-NS3 protein with a binding constant (Kd) of 12.26 μM. Indirect immunofluorescence assays, Western blots, and plaque assays indicated that the compound inhibited virus replication in cells. Virus titer was reduced by more than 75% when the compound was present at 1 μM. A time-of-addition assay showed that inhibition occurred at the virus replication stage, but not at the adsorption or invasion stages. The half cytotoxicity concentration (CC50) of the compound on HeLa, Vero, and BHK-21 cells were 445.44 μM, 123.87 μM, and 123.64 μM, respectively. In vivo tests using infected AG129 mice demonstrated that treatment with the compound reduced mortality by up to 60%. Mice treated with the compound showed a reduction in histopathological lesions in brain, testis, and ovary. Viral RNA, IL-1β, and IL-6 mRNA levels decreased significantly in these tissues. In summary, this study has identified a small compound with high and specific inhibitory effects on ZIKV. The compound can be used as a therapeutic agent and is also an ideal starting point for drug optimization.
Collapse
Affiliation(s)
- Juan Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwei Rao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kelu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Sachdeo RA, Anthwal T, Nain S. Fragment based drug design. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2018-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rational approaches towards drug development have emerged as one of the most promising ways among the tedious conventional procedures with the aim of redefining the drug discovery process. The need of current medical system is demanding a much precise, faster and reliable approaches in parallel to faster growing technology for development of drugs with more intrinsic action and fewer side effects. Systematic and well-defined diagnostic studies have revealed the specific causes of disease and related targets for drug development. Designing a drug as per the specific target, studying it in-silico prior to its development has been proved as an added benefit to the studies. Many approaches like structure based drug design, fragment based drug design and ligand based drug design are been in practice for the drug discovery and development with the similar fundamental theory. Fragment based drug design utilizes a library of fragments designed specifically for the concerned target and these fragments are studied further before screening with virtual methods as well as with biophysical methods. The process follows a well-defined pathway which moulds a fragment into a perfect drug candidate. In this chapter we have tried to cover all the basic aspects of fragment based drug design and related technologies.
Collapse
Affiliation(s)
- Rahul Ashok Sachdeo
- Department of Pharmaceutical Chemistry , Government College of Pharmacy , Karad , Maharashtra , 415124 , India
| | - Tulika Anthwal
- Department of Pharmacy , Banasthali Vidyapith , Banasthali , Rajasthan , 304022 , India
| | - Sumitra Nain
- Department of Pharmacy , Banasthali Vidyapith , Banasthali , Rajasthan , 304022 , India
| |
Collapse
|
17
|
Ajjarapu SM, Tiwari A, Ramteke PW, Singh DB, Kumar S. Ligand-based drug designing. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
19
|
Galy R, Ballereau S, Génisson Y, Mourey L, Plaquevent JC, Maveyraud L. Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Mycobacterium tuberculosis: A Crystallographic and Molecular Modelling Study. Pharmaceuticals (Basel) 2021; 14:ph14121282. [PMID: 34959681 PMCID: PMC8708032 DOI: 10.3390/ph14121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The mycolic acid biosynthetic pathway represents a promising source of pharmacological targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated modifications. Crystallographic screening of a library of fragments allowed the identification of seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the conformation of residues 147–154. These residues are disordered in apo-Hma but fold upon binding of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of the short η1-helix. One of the observed conformations would be incompatible with the presence of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric compounds were designed by fusing some of the bound fragments, and the relative binding affinities of initial fragments and evolved compounds were investigated using molecular dynamics simulation and generalised Born and Poisson–Boltzmann calculations coupled to the surface area continuum solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the structural plasticity of the unliganded protein. Our results indicate a significant improvement in the binding properties of the designed compounds, suggesting that they could be further optimised to inhibit Hma activity.
Collapse
Affiliation(s)
- Romain Galy
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
| | - Jean-Christophe Plaquevent
- Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31062 Toulouse, France; (S.B.); (Y.G.); (J.-C.P.)
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III—Paul Sabatier, Centre National de la Recherche Scientifique, 31077 Toulouse, France; (R.G.); (L.M.)
- Correspondence: ; Tel.: +33-561-17-54-35
| |
Collapse
|
20
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
21
|
Fata F, Silvestri I, Ardini M, Ippoliti R, Di Leandro L, Demitri N, Polentarutti M, Di Matteo A, Lyu H, Thatcher GR, Petukhov PA, Williams DL, Angelucci F. Probing the Surface of a Parasite Drug Target Thioredoxin Glutathione Reductase Using Small Molecule Fragments. ACS Infect Dis 2021; 7:1932-1944. [PMID: 33950676 DOI: 10.1021/acsinfecdis.0c00909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment screening is a powerful drug discovery approach particularly useful for enzymes difficult to inhibit selectively, such as the thiol/selenol-dependent thioredoxin reductases (TrxRs), which are essential and druggable in several infectious diseases. Several known inhibitors are reactive electrophiles targeting the selenocysteine-containing C-terminus and thus often suffering from off-target reactivity in vivo. The lack of structural information on the interaction modalities of the C-terminus-targeting inhibitors, due to the high mobility of this domain and the lack of alternative druggable sites, prevents the development of selective inhibitors for TrxRs. In this work, fragments selected from actives identified in a large screen carried out against Thioredoxin Glutathione Reductase from Schistosoma mansoni (SmTGR) were probed by X-ray crystallography. SmTGR is one of the most promising drug targets for schistosomiasis, a devastating, neglected disease. Utilizing a multicrystal method to analyze electron density maps, structural analysis, and functional studies, three binding sites were characterized in SmTGR: two sites are close to or partially superposable with the NADPH binding site, while the third one is found between two symmetry related SmTGR subunits of the crystal lattice. Surprisingly, one compound bound to this latter site stabilizes, through allosteric effects mediated by the so-called guiding bar residues, the crucial redox active C-terminus of SmTGR, making it finally visible at high resolution. These results further promote fragments as small molecule probes for investigating functional aspects of the target protein, exemplified by the allosteric effect on the C-terminus, and providing fundamental chemical information exploitable in drug discovery.
Collapse
Affiliation(s)
- Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ilaria Silvestri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Nicola Demitri
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Maurizio Polentarutti
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences “A Rossi Fanelli” - Sapienza University of Rome, 00185 Rome, Italy
| | - Haining Lyu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Gregory R.J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, the University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
22
|
Zhang L, Domeniconi G, Yang CC, Kang SG, Zhou R, Cong G. CASTELO: clustered atom subtypes aided lead optimization-a combined machine learning and molecular modeling method. BMC Bioinformatics 2021; 22:338. [PMID: 34157976 PMCID: PMC8218488 DOI: 10.1186/s12859-021-04214-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023] Open
Abstract
Background Drug discovery is a multi-stage process that comprises two costly major steps: pre-clinical research and clinical trials. Among its stages, lead optimization easily consumes more than half of the pre-clinical budget. We propose a combined machine learning and molecular modeling approach that partially automates lead optimization workflow in silico, providing suggestions for modification hot spots. Results The initial data collection is achieved with physics-based molecular dynamics simulation. Contact matrices are calculated as the preliminary features extracted from the simulations. To take advantage of the temporal information from the simulations, we enhanced contact matrices data with temporal dynamism representation, which are then modeled with unsupervised convolutional variational autoencoder (CVAE). Finally, conventional and CVAE-based clustering methods are compared with metrics to rank the submolecular structures and propose potential candidates for lead optimization. Conclusion With no need for extensive structure-activity data, our method provides new hints for drug modification hotspots which can be used to improve drug potency and reduce the lead optimization time. It can potentially become a valuable tool for medicinal chemists. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04214-4.
Collapse
Affiliation(s)
- Leili Zhang
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd, 10598, Yorktown Heights, NY, USA.
| | - Giacomo Domeniconi
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd, 10598, Yorktown Heights, NY, USA.
| | - Chih-Chieh Yang
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd, 10598, Yorktown Heights, NY, USA
| | - Seung-Gu Kang
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd, 10598, Yorktown Heights, NY, USA
| | - Ruhong Zhou
- ZheJiang University, 688 Yuhangtang Road, Hangzhou, 310027, China
| | - Guojing Cong
- Oak Ridge national laboratory, 1 Bethel Valley Rd, 37830, Oak Ridge, TN, USA
| |
Collapse
|
23
|
Yu Y, Guo J, Cai Z, Ju Y, Xu J, Gu Q, Zhou H. Identification of new building blocks by fragment screening for discovering GyrB inhibitors. Bioorg Chem 2021; 114:105040. [PMID: 34098257 DOI: 10.1016/j.bioorg.2021.105040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
DNA gyrase is an essential DNA topoisomerase that exists only in bacteria. Since novobiocin was withdrawn from the market, new scaffolds and new mechanistic GyrB inhibitors are urgently needed. In this study, we employed fragment screening and X-ray crystallography to identify new building blocks, as well as their binding mechanisms, to support the discovery of new GyrB inhibitors. In total, 84 of the 618 chemical fragments were shown to either thermally stabilize the ATPase domain of Escherichia coli GyrB or inhibit the ATPase activity of E. coli gyrase. Among them, the IC50 values of fragments 10 and 23 were determined to be 605.3 μM and 446.2 μM, respectively. Cocrystal structures of the GyrB ATPase domain with twelve fragment hits were successfully determined at a high resolution. All twelve fragments were deeply inserted in the pocket and formed H-bonds with Asp73 and Thr165, and six fragments formed an additional H-bond with the backbone oxygen of Val71. Fragment screening further highlighted the capability of Asp73, Thr165 and Val71 to bind chemicals and provided diverse building blocks for the design of GyrB inhibitors.
Collapse
Affiliation(s)
- Ying Yu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junsong Guo
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjun Cai
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingchen Ju
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery and Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Ling X, Lu W, Miao L, Marcaurelle LA, Wang X, Ding Y, Lu X. Divergent On-DNA Transformations from DNA-Linked Piperidones. J Org Chem 2021; 87:1971-1976. [PMID: 33960188 DOI: 10.1021/acs.joc.1c00670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A group of highly efficient and divergent transformations for constructing multiple DNA-linked chemotypes based on a piperidone core were successfully developed. We reported the first procedure for the synthesis of a DNA-conjugated piperidine intermediate under basic conditions. Subsequently, this substructure was subjected to additional reactions to generate several privileged scaffolds, including 4-aminopiperidine, fused [1,2,4]triazolo[1,5-a]pyrimidine, and a quinoline derivative. These transformations paved the way for constructing focused scaffold-based DNA-encoded libraries with druglike properties.
Collapse
Affiliation(s)
- Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Lin Miao
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, Zhejiang 315100, P. R. China
| | - Lisa A Marcaurelle
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yun Ding
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Maksimov AY, Balandina SY, Topanov PA, Mashevskaya IV, Chaudhary S. Organic Antifungal Drugs and Targets of Their Action. Curr Top Med Chem 2021; 21:705-736. [PMID: 33423647 DOI: 10.2174/1568026621666210108122622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, there has been a significant increase in the number of fungal diseases. This is due to a wide spectrum of action, immunosuppressants and other group drugs. In terms of frequency, rapid spread and globality, fungal infections are approaching acute respiratory infections. Antimycotics are medicinal substances endorsed with fungicidal or fungistatic properties. For the treatment of fungal diseases, several groups of compounds are used that differ in their origin (natural or synthetic), molecular targets and mechanism of action, antifungal effect (fungicidal or fungistatic), indications for use (local or systemic infections), and methods of administration (parenteral, oral, outdoor). Several efforts have been made by various medicinal chemists around the world for the development of antifungal drugs with high efficacy with the least toxicity and maximum selectivity in the area of antifungal chemotherapy. The pharmacokinetic properties of the new antimycotics are also important: the ability to penetrate biological barriers, be absorbed and distributed in tissues and organs, get accumulated in tissues affected by micromycetes, undergo drug metabolism in the intestinal microflora and human organs, and in the kinetics of excretion from the body. There are several ways to search for new effective antimycotics: - Obtaining new derivatives of the already used classes of antimycotics with improved activity properties. - Screening of new chemical classes of synthetic antimycotic compounds. - Screening of natural compounds. - Identification of new unique molecular targets in the fungal cell. - Development of new compositions and dosage forms with effective delivery vehicles. The methods of informatics, bioinformatics, genomics and proteomics were extensively investigated for the development of new antimycotics. These techniques were employed in finding and identification of new molecular proteins in a fungal cell; in the determination of the selectivity of drugprotein interactions, evaluation of drug-drug interactions and synergism of drugs; determination of the structure-activity relationship (SAR) studies; determination of the molecular design of the most active, selective and safer drugs for the humans, animals and plants. In medical applications, the methods of information analysis and pharmacogenomics allow taking into account the individual phenotype of the patient, the level of expression of the targets of antifungal drugs when choosing antifungal agents and their dosage. This review article incorporates some of the most significant studies covering the basic structures and approaches for the synthesis of antifungal drugs and the directions for their further development.
Collapse
Affiliation(s)
- Alexander Yu Maksimov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Svetlana Yu Balandina
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Pavel A Topanov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Irina V Mashevskaya
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC lab), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|
26
|
González-Alemán R, Chevrollier N, Simoes M, Montero-Cabrera L, Leclerc F. MCSS-Based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. J Chem Theory Comput 2021; 17:2599-2618. [PMID: 33764770 DOI: 10.1021/acs.jctc.0c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Computational fragment-based approaches are widely used in drug design and discovery. One of their limitations is the lack of performance of docking methods, mainly the scoring functions. With the emergence of fragment-based approaches for single-stranded RNA ligands, we analyze the performance in docking and screening powers of an MCSS-based approach. The performance is evaluated on a benchmark of protein-nucleotide complexes where the four RNA residues are used as fragments. The screening power can be considered the major limiting factor for the fragment-based modeling or design of sequence-selective oligonucleotides. We show that the MCSS sampling is efficient even for such large and flexible fragments. Hybrid solvent models based on some partial explicit representations improve both the docking and screening powers. Clustering of the n best-ranked poses can also contribute to a lesser extent to better performance. A detailed analysis of molecular features suggests various ways to optimize the performance further.
Collapse
Affiliation(s)
- Roy González-Alemán
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France.,Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, 10400 La Habana, Cuba
| | - Nicolas Chevrollier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France
| | - Manuel Simoes
- CPC Manufacturing Analytics, 67000 Strasbourg, France
| | - Luis Montero-Cabrera
- Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, 10400 La Habana, Cuba
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France
| |
Collapse
|
27
|
Chang X, Sun D, Shi D, Wang G, Chen Y, Zhang K, Tan H, Liu J, Liu B, Ouyang L. Design, synthesis, and biological evaluation of quinazolin-4(3 H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharm Sin B 2021; 11:156-180. [PMID: 33532187 PMCID: PMC7838034 DOI: 10.1016/j.apsb.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.
Collapse
Key Words
- BC, breast cancer
- BET, bromodomain and extra-terminal domain
- BRCA1/2, breast cancer susceptibility gene 1/2
- BRD4
- BRD4, bromodomain 4
- CDK4/6, cyclin-dependent kinase 4/6
- DSB, DNA double-strand break
- Dual-target inhibitor
- EGFR, epidermal growth factor receptor
- ELISA, enzyme linked immunosorbent assay
- ER, estrogen receptor
- ESI-HR-MS, high-resolution mass spectra
- FDA, U.S. Food and Drug Administration
- FITC, fluorescein isothiocyanate isomer I
- HE, hematoxylin-eosin
- HPLC, high-performance liquid chromatography
- HR, homologous recombination
- HRD, homologous recombination deficiency
- IHC, immunohistochemistry
- NHEJ, nonhomologous end-joining
- PARP1
- PARP1, poly(ADP-ribose) polymerase-1
- PI, propidium iodide
- PK, pharmacokinetics
- PPI, protein−protein interaction
- Quinazolin-4(3H)-one derivatives
- SAR, structure–activity relationship
- SOP, standard operation process
- Synthetic lethality
- TCGA, the cancer genome atlas
- TGI, tumor growth inhibition
- TLC, thin-layer chromatography
- TNBC, triple-negative breast cancer
- TR-FRET, time-resolved fluorescence resonance energy transfer.
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Bo Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Liang Ouyang
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| |
Collapse
|
28
|
Chachulski L, Windshügel B. LEADS-FRAG: A Benchmark Data Set for Assessment of Fragment Docking Performance. J Chem Inf Model 2020; 60:6544-6554. [PMID: 33289563 DOI: 10.1021/acs.jcim.0c00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragment-based drug design is a popular approach in drug discovery, which makes use of computational methods such as molecular docking. To assess fragment placement performance of molecular docking programs, we constructed LEADS-FRAG, a benchmark data set containing 93 high-quality protein-fragment complexes that were selected from the Protein Data Bank using a rational and unbiased process. The data set contains fully prepared protein and fragment structures and is publicly available. Moreover, we used LEADS-FRAG for evaluating the small-molecule docking programs AutoDock, AutoDock Vina, FlexX, and GOLD for their fragment docking performance. GOLD in combination with the scoring function ChemPLP and AutoDock Vina performed best and generated near-native conformations (root mean square deviation <1.5 Å) for more than 50% of the data set considering the top-ranked docking pose. Taking into account all docking poses, the tested programs generated near-native conformations for up to 86% of the fragments in LEADS-FRAG. By rescoring all docking poses with the GOLD scoring functions and the Protein-Ligand Informatics force field, the number of near-native conformations increased up to 40% with respect to the top-rescored poses. Our results show that conventional small-molecule docking programs achieve a satisfactory fragment docking performance when utilizing rescoring.
Collapse
Affiliation(s)
- Laura Chachulski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg 22525, Germany.,Jacobs University Bremen gGmbH, Bremen 28759, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg 22525, Germany.,Institute for Biochemistry and Molecular Biology, Department of Chemistry, Universität Hamburg, Hamburg 20146, Germany
| |
Collapse
|
29
|
Wolter M, Valenti D, Cossar PJ, Levy LM, Hristeva S, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering. Angew Chem Int Ed Engl 2020; 59:21520-21524. [PMID: 32816380 PMCID: PMC7756862 DOI: 10.1002/anie.202008585] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Small‐molecule stabilization of protein–protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a “bottom‐up” approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine‐forming fragments. The imine bond offers a covalent anchor for site‐directed fragment targeting, whereas its transient nature enables efficient analysis of structure–activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65‐subunit‐derived peptide of NF‐κB with the adapter protein 14‐3‐3. Those fragments that subsequently establish contacts with the p65‐derived peptide, rather than with 14‐3‐3, efficiently stabilize the 14‐3‐3/p65 complex and offer novel starting points for molecular glues.
Collapse
Affiliation(s)
- Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Laura M Levy
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Stanimira Hristeva
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Thorsten Genski
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Torsten Hoffmann
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dimitrios Tzalis
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
30
|
Wolter M, Valenti D, Cossar PJ, Levy LM, Hristeva S, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. Fragment‐Based Stabilizers of Protein–Protein Interactions through Imine‐Based Tethering. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Madita Wolter
- Laboratory of Chemical Biology Department of Biomedical, Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Dario Valenti
- Laboratory of Chemical Biology Department of Biomedical, Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Peter J. Cossar
- Laboratory of Chemical Biology Department of Biomedical, Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Laura M. Levy
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Stanimira Hristeva
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Thorsten Genski
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Torsten Hoffmann
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology Department of Biomedical, Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Dimitrios Tzalis
- Taros Chemicals GmbH & Co. KG Emil-Figge-Straße 76a 44227 Dortmund Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical, Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Chemistry University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
31
|
Guillory X, Wolter M, Leysen S, Neves JF, Kuusk A, Genet S, Somsen B, Morrow JK, Rivers E, van Beek L, Patel J, Goodnow R, Schoenherr H, Fuller N, Cao Q, Doveston RG, Brunsveld L, Arkin MR, Castaldi P, Boyd H, Landrieu I, Chen H, Ottmann C. Fragment-based Differential Targeting of PPI Stabilizer Interfaces. J Med Chem 2020; 63:6694-6707. [PMID: 32501690 PMCID: PMC7356319 DOI: 10.1021/acs.jmedchem.9b01942] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3. The fragments discriminately bind to the interface of 14-3-3 with the recognition motif of either the tumor suppressor protein p53 or the oncogenic transcription factor TAZ. This X-ray crystallography driven study shows that the rim of the interface of individual 14-3-3 complexes can be targeted in a differential manner with fragments that represent promising starting points for the development of specific 14-3-3 PPI stabilizers.
Collapse
Affiliation(s)
- Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Ave Kuusk
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Sylvia Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Bente Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - John Kenneth Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emma Rivers
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Lotte van Beek
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Joe Patel
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Robert Goodnow
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Heike Schoenherr
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Nathan Fuller
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Qing Cao
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Paola Castaldi
- Oncology and Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gatehouse Park, Waltham, Massachusetts 02451, United States
| | - Helen Boyd
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Hongming Chen
- Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Gothenburg, 431 50 Mölndal, Sweden
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Department of Organic Chemistry, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
32
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
33
|
Li S, Wan F, Shu H, Jiang T, Zhao D, Zeng J. MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities. Cell Syst 2020. [DOI: 10.1016/j.cels.2020.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Yoshimori A, Kawasaki E, Kanai C, Tasaka T. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning. Chem Pharm Bull (Tokyo) 2020; 68:227-233. [DOI: 10.1248/cpb.c19-00625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
O. Salas C, Zarate AM, Kryštof V, Mella J, Faundez M, Brea J, Loza MI, Brito I, Hendrychová D, Jorda R, Cabrera AR, Tapia RA, Espinosa-Bustos C. Promising 2,6,9-Trisubstituted Purine Derivatives for Anticancer Compounds: Synthesis, 3D-QSAR, and Preliminary Biological Assays. Int J Mol Sci 2019; 21:ijms21010161. [PMID: 31881717 PMCID: PMC6981454 DOI: 10.3390/ijms21010161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.
Collapse
Affiliation(s)
- Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
- Correspondence: (C.O.S.); (C.E.-B.); Tel.: +56-22-354-4427 (C.O.S.); +56-22-354-4838 (C.E.-B.)
| | - Ana Maria Zarate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
| | - Vladimir Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile;
| | - Mario Faundez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
| | - Jose Brea
- Innopharma Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela 15706, Spain; (J.B.); (M.I.L.)
| | - María Isabel Loza
- Innopharma Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela 15706, Spain; (J.B.); (M.I.L.)
| | - Ivan Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile;
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 77900 Olomouc, Czech Republic
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
| | - Ricardo A. Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
- Correspondence: (C.O.S.); (C.E.-B.); Tel.: +56-22-354-4427 (C.O.S.); +56-22-354-4838 (C.E.-B.)
| |
Collapse
|
36
|
Moreno-Chicano T, Ebrahim A, Axford D, Appleby MV, Beale JH, Chaplin AK, Duyvesteyn HME, Ghiladi RA, Owada S, Sherrell DA, Strange RW, Sugimoto H, Tono K, Worrall JAR, Owen RL, Hough MA. High-throughput structures of protein-ligand complexes at room temperature using serial femtosecond crystallography. IUCRJ 2019; 6:1074-1085. [PMID: 31709063 PMCID: PMC6830213 DOI: 10.1107/s2052252519011655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/21/2019] [Indexed: 05/09/2023]
Abstract
High-throughput X-ray crystal structures of protein-ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein-ligand complexes using SFX.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Martin V. Appleby
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Amanda K. Chaplin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Helen M. E. Duyvesteyn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, England
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | | | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England
| |
Collapse
|
37
|
Küppers J, Benkel T, Annala S, Schnakenburg G, Kostenis E, Gütschow M. BIM-46174 fragments as potential ligands of G proteins. MEDCHEMCOMM 2019; 10:1838-1843. [PMID: 32180917 DOI: 10.1039/c9md00269c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
The 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine derivative BIM-46174 has received attention as Gαq inhibitor. We conducted structural reductions to monocyclic and bicyclic substructures to explore the chemical space of BIM fragments and to gain insights into the pharmacophore of BIM-type Gαq inhibitors. Two piperazin-2-one-containing fragments and a small library of bicyclic lactams featuring fused pyrazine and diazepine rings were synthesized and evaluated. The results of a second messenger-based cellular assay indicate that the entire BIM structure is required for efficient Gαq inhibition.
Collapse
Affiliation(s)
- Jim Küppers
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany.,Research Training Group 1873 , University of Bonn , Bonn , Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Michael Gütschow
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| |
Collapse
|
38
|
Oláh J, Ovádi J. Pharmacological targeting of α-synuclein and TPPP/p25 in Parkinson's disease: challenges and opportunities in a Nutshell. FEBS Lett 2019; 593:1641-1653. [PMID: 31148150 DOI: 10.1002/1873-3468.13464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
With the aging of population, neurological disorders, and especially disorders involving defects in protein conformation (also known as proteopathies) pose a serious socio-economic problem. So far there is no effective treatment for most proteopathies, including Parkinson's disease (PD). The mechanism underlying PD pathogenesis is largely unknown, and the hallmark proteins, α-synuclein (SYN) and tubulin polymerization promoting protein (TPPP/p25) are challenging drug targets. These proteins are intrinsically disordered with high conformational plasticity, and have diverse physiological and pathological functions. In the healthy brain, SYN and TPPP/p25 occur in neurons and oligodendrocytes, respectively; however, in PD and multiple system atrophy, they are co-enriched and co-localized in both cell types, thereby marking pathogenesis. Although large inclusions appear at a late disease stage, small, soluble assemblies of SYN promoted by TPPP/p25 are pathogenic. In the light of these issues, we established a new innovative strategy for the validation of a specific drug target based upon the identification of contact surfaces of the pathological SYN-TPPP/p25 complex that may lead to the development of peptidomimetic foldamers suitable for pharmaceutical intervention.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
39
|
Machiraju PK, Yedla P, Gubbala SP, Bohari T, Abdul JK, Xu S, Patel R, Chittireddy VRR, Boppana K, Jagarlapudi SA, Neamati N, Syed R, Amanchy R. Identification, synthesis and evaluation of CSF1R inhibitors using fragment based drug design. Comput Biol Chem 2019; 80:374-383. [DOI: 10.1016/j.compbiolchem.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
|
40
|
Simon RP, Rumpf T, Linkuviene V, Matulis D, Akhtar A, Jung M. Cofactor Analogues as Active Site Probes in Lysine Acetyltransferases. J Med Chem 2019; 62:2582-2597. [PMID: 30785747 DOI: 10.1021/acs.jmedchem.8b01887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lysine acetyltransferases (KATs, also termed histone acetyltransferases, HATs) catalyze the acetylation of substrate lysine residues by employing the cofactor acetyl-coenzyme A (AcCoA), thereby providing a dynamic control mechanism of protein function. Because of their major involvement in cell development and homeostasis, small-molecule modulators of KAT activity are urgently needed to assess their therapeutic potential and for probing their underlying biology. Recent advances in the field suggest that targeting the cofactor binding site represents a promising strategy for identifying potent and selective ligands. Here, we present the synthesis of two functional cofactor-based chemical probes and their usage as mechanistic tools in a broadly applicable assay platform. A fluorescence polarization (FP)-based binding assay was combined with biolayer interferometry competition analysis and a FP competition activity immunoassay to enable easy, reliable, and profound evaluation of ligands that target the KAT cofactor binding site.
Collapse
Affiliation(s)
- Roman P Simon
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg im Breisgau , Germany
| | - Tobias Rumpf
- Department of Chromatin Regulation , Max-Planck-Institute of Immunobiology and Epigenetics , Stuebeweg 51 , 79108 Freiburg , Germany
| | - Vaida Linkuviene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center , Vilnius University , Saulėtekio 7 , 10257 Vilnius , Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center , Vilnius University , Saulėtekio 7 , 10257 Vilnius , Lithuania
| | - Asifa Akhtar
- Department of Chromatin Regulation , Max-Planck-Institute of Immunobiology and Epigenetics , Stuebeweg 51 , 79108 Freiburg , Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg im Breisgau , Germany
| |
Collapse
|
41
|
Tripathi VC, Satish S, Horam S, Raj S, lal A, Arockiaraj J, Pasupuleti M, Dikshit DK. Natural products from polar organisms: Structural diversity, bioactivities and potential pharmaceutical applications. POLAR SCIENCE 2018; 18:147-166. [DOI: 10.1016/j.polar.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
42
|
Drwal MN, Bret G, Perez C, Jacquemard C, Desaphy J, Kellenberger E. Structural Insights on Fragment Binding Mode Conservation. J Med Chem 2018; 61:5963-5973. [PMID: 29906118 DOI: 10.1021/acs.jmedchem.8b00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aiming at a deep understanding of fragment binding to ligandable targets, we performed a large scale analysis of the Protein Data Bank. Binding modes of 1832 drug-like ligands and 1079 fragments to 235 proteins were compared. We observed that the binding modes of fragments and their drug-like superstructures binding to the same protein are mostly conserved, thereby providing experimental evidence for the preservation of fragment binding modes during molecular growing. Furthermore, small chemical changes in the fragment are tolerated without alteration of the fragment binding mode. The exceptions to this observation generally involve conformational variability of the molecules. Our data analysis also suggests that, provided enough fragments have been crystallized within a protein, good interaction coverage of the binding pocket is achieved. Last, we extended our study to 126 crystallization additives and discuss in which cases they provide information relevant to structure-based drug design.
Collapse
Affiliation(s)
- Malgorzata N Drwal
- Laboratoire d'Innovation Thérapeutique , UMR7200, Université de Strasbourg , 74 Route du Rhin , 67401 Illkirch , France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique , UMR7200, Université de Strasbourg , 74 Route du Rhin , 67401 Illkirch , France
| | - Carlos Perez
- Eli Lilly Research Laboratories , Avenida de la Industria, 30 , 28108 Alcobendas , Madrid , Spain
| | - Célien Jacquemard
- Laboratoire d'Innovation Thérapeutique , UMR7200, Université de Strasbourg , 74 Route du Rhin , 67401 Illkirch , France
| | - Jérémy Desaphy
- Lilly Research Laboratories, Eli Lilly and Company , Lilly Corporate Center , Indianapolis , Indiana 46285 , United States
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique , UMR7200, Université de Strasbourg , 74 Route du Rhin , 67401 Illkirch , France
| |
Collapse
|
43
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
44
|
van Montfort RLM, Workman P. Structure-based drug design: aiming for a perfect fit. Essays Biochem 2017; 61:431-437. [PMID: 29118091 PMCID: PMC5869280 DOI: 10.1042/ebc20170052] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Knowledge of the three-dimensional structure of therapeutically relevant targets has informed drug discovery since the first protein structures were determined using X-ray crystallography in the 1950s and 1960s. In this editorial we provide a brief overview of the powerful impact of structure-based drug design (SBDD), which has its roots in computational and structural biology, with major contributions from both academia and industry. We describe advances in the application of SBDD for integral membrane protein targets that have traditionally proved very challenging. We emphasize the major progress made in fragment-based approaches for which success has been exemplified by over 30 clinical drug candidates and importantly three FDA-approved drugs in oncology. We summarize the articles in this issue that provide an excellent snapshot of the current state of the field of SBDD and fragment-based drug design and which offer key insights into exciting new developments, such as the X-ray free-electron laser technology, cryo-electron microscopy, open science approaches and targeted protein degradation. We stress the value of SBDD in the design of high-quality chemical tools that are used to interrogate biology and disease pathology, and to inform target validation. We emphasize the need to maintain the scientific rigour that has been traditionally associated with structural biology and extend this to other methods used in drug discovery. This is particularly important because the quality and robustness of any form of contributory data determines its usefulness in accelerating drug design, and therefore ultimately in providing patient benefit.
Collapse
Affiliation(s)
- Rob L M van Montfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, U.K
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|