1
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
3
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
4
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu M, Zhang K, Li Q, Pang H, Pan Z, Huang X, Wang L, Wu F, He G. Recent Advances on Small-Molecule Bromodomain-Containing Histone Acetyltransferase Inhibitors. J Med Chem 2023; 66:1678-1699. [PMID: 36695774 DOI: 10.1021/acs.jmedchem.2c01638] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years, substantial research has been conducted on molecular mechanisms and inhibitors targeting bromodomains (BRDs) and extra-terminal (BET) family proteins. On this basis, non-BET BRD is gradually becoming a research hot spot. BRDs are abundant in histone acetyltransferase (HAT)-associated activating transcription factors, and BRD-containing HATs have been linked to cancer, inflammation, and viral replication. Therefore, the development of BRD-containing HATs as chemical probes is useful for understanding the specific biological roles of BRDs in diseases and drug discovery. Several types of BRD-containing HATs, including CBP/P300, PCAF/GCN5, and TAF1, are discussed in this context in terms of their structures, functions, and small-molecule inhibitors. Additionally, progress in BRD inhibitors/chemical probes and proteolysis targeting chimeras in terms of drug design, biological activity, and disease application are summarized. These findings provide insights into the development of BRD inhibitors as potential drug candidates for various diseases.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaiyao Zhang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qinjue Li
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiying Pang
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaowei Huang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lian Wang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fengbo Wu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gu He
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
6
|
Janssen BDE, van den Boogaard MJH, Lichtenbelt K, Seaby EG, Stals K, Ellard S, Newbury-Ecob R, Dixit A, Roht L, Pajusalu S, Õunap K, Firth HV, Buckley M, Wilson M, Roscioli T, Tidwell T, Mao R, Ennis S, Holwerda SJ, van Gassen K, van Jaarsveld RH. De novo putative loss-of-function variants in TAF4 are associated with a neuro-developmental disorder. Hum Mutat 2022; 43:1844-1851. [PMID: 35904126 PMCID: PMC10087332 DOI: 10.1002/humu.24444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.
Collapse
Affiliation(s)
- Beau D E Janssen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Klaske Lichtenbelt
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleanor G Seaby
- Genomic Informatics Group, University of Southampton, Southampton, UK
| | - Karen Stals
- Exeter Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Exeter Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Abhijit Dixit
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Laura Roht
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | | | - Michael Buckley
- Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, and Discipline of Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Tony Roscioli
- Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia.,Neurosciences Research Australia, University of NSW, Kensington, New South Wales, Australia.,Randwick Genomics laboratory, New South Wales Health Pathology, Sydney, New South Wales, Australia
| | | | - Rong Mao
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sarah Ennis
- Genomic Informatics Group, University of Southampton, Southampton, UK
| | - Sjoerd J Holwerda
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
7
|
Coursimault J, Cassinari K, Lecoquierre F, Quenez O, Coutant S, Derambure C, Vezain M, Drouot N, Vera G, Schaefer E, Philippe A, Doray B, Lambert L, Ghoumid J, Smol T, Rama M, Legendre M, Lacombe D, Fergelot P, Olaso R, Boland A, Deleuze JF, Goldenberg A, Saugier-Veber P, Nicolas G. Deep intronic NIPBL de novo mutations and differential diagnoses revealed by whole genome and RNA sequencing in Cornelia de Lange syndrome patients. Hum Mutat 2022; 43:1882-1897. [PMID: 35842780 DOI: 10.1002/humu.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023]
Abstract
Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.
Collapse
Affiliation(s)
- Juliette Coursimault
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Myriam Vezain
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Nathalie Drouot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anaïs Philippe
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bérénice Doray
- Service de Génétique Médicale, Centre Hospitalier Universitaire Félix Guyon, Bellepierre Saint Denis, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU NANCY, F-54000 France, UMR INSERM U 1256 N-GERE, F-54000, Nancy, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique « Guy Fontaine », and FHU-G4 Génomique, F-59000, Lille, France
| | - Thomas Smol
- Université de Lille, ULR7364 RADEME, CHU Lille, Institut de Génétique Médicale, and FHU-G4 Génomique, F-59000, Lille, France
| | - Mélanie Rama
- Institut de Génétique Médicale, CHU de Lille, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| |
Collapse
|
8
|
D'Ignazio L, Jacomini RS, Qamar B, Benjamin KJM, Arora R, Sawada T, Evans TA, Diffenderfer KE, Pankonin AR, Hendriks WT, Hyde TM, Kleinman JE, Weinberger DR, Bragg DC, Paquola ACM, Erwin JA. Variation in TAF1 expression in female carrier induced pluripotent stem cells and human brain ontogeny has implications for adult neostriatum vulnerability in X-linked Dystonia Parkinsonism. eNeuro 2022; 9:ENEURO.0129-22.2022. [PMID: 35868859 PMCID: PMC9428949 DOI: 10.1523/eneuro.0129-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due, in part, to a partial loss of TAF1 function. A disease-specific SINE-VNTR-Alu (SVA) retrotransposon insertion occurs within intron 32 of TAF1, a subunit of TFIID involved in transcription initiation. While all XDP males are usually clinically affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight iPSC lines from three XDP female carrier individuals for X chromosome inactivation status and identified clonal lines that express either the wild-type X or XDP haplotype. Furthermore, we characterized XDP-relevant transcript expression in neurotypical humans, and found that SVA-F expression decreases after 30 years of age in the brain and that TAF1 is decreased in most female samples. Uniquely in the caudate nucleus, TAF1 expression is not sexually dimorphic and decreased after adolescence. These findings indicate that regional-, age- and sex-specific mechanisms regulate TAF1, highlighting the importance of disease-relevant models and postmortem tissue. We propose that the decreased TAF1 expression in the adult caudate may synergize with the XDP-specific partial loss of TAF1 function in patients, thereby passing a minimum threshold of TAF1 function, and triggering degeneration in the neostriatum.Significance StatementXDP is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due to a partial loss of TAF1 function. While all XDP males are usually affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight stem cell lines from XDP female carrier individuals. Furthermore, we found that, uniquely in the caudate nucleus, TAF1 expression decreases after adolescence in healthy humans. We hypothesize that the decrease of TAF1 after adolescence in human caudate, in general, may underlie the vulnerability of the adult neostriatum in XDP.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ricardo S Jacomini
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bareera Qamar
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Cirnaru MD, Creus-Muncunill J, Nelson S, Lewis TB, Watson J, Ellerby LM, Gonzalez-Alegre P, Ehrlich ME. Striatal Cholinergic Dysregulation after Neonatal Decrease in X-Linked Dystonia Parkinsonism-Related TAF1 Isoforms. Mov Disord 2021; 36:2780-2794. [PMID: 34403156 DOI: 10.1002/mds.28750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND X-linked dystonia parkinsonism is a generalized, progressive dystonia followed by parkinsonism with onset in adulthood and accompanied by striatal neurodegeneration. Causative mutations are located in a noncoding region of the TATA-box binding protein-associated factor 1 (TAF1) gene and result in aberrant splicing. There are 2 major TAF1 isoforms that may be decreased in symptomatic patients, including the ubiquitously expressed canonical cTAF1 and the neuronal-specific nTAF1. OBJECTIVE The objective of this study was to determine the behavioral and transcriptomic effects of decreased cTAF1 and/or nTAF1 in vivo. METHODS We generated adeno-associated viral (AAV) vectors encoding microRNAs targeting Taf1 in a splice-isoform selective manner. We performed intracerebroventricular viral injections in newborn mice and rats and intrastriatal infusions in 3-week-old rats. The effects of Taf1 knockdown were assayed at 4 months of age with evaluation of motor function, histology, and RNA sequencing of the striatum, followed by its validation. RESULTS We report motor deficits in all cohorts, more pronounced in animals injected at P0, in which we also identified transcriptomic alterations in multiple neuronal pathways, including the cholinergic synapse. In both species, we show a reduced number of striatal cholinergic interneurons and their marker mRNAs after Taf1 knockdown in the newborn. CONCLUSION This study provides novel information regarding the requirement for TAF1 in the postnatal maintenance of striatal cholinergic neurons, the dysfunction of which is involved in other inherited forms of dystonia. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shareen Nelson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Travis B Lewis
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jaime Watson
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, California, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Dhanalakshmi C, Janakiraman U, Moutal A, Fukunaga K, Khanna R, Nelson MA. Evaluation of the effects of the T-type calcium channel enhancer SAK3 in a rat model of TAF1 deficiency. Neurobiol Dis 2021; 149:105224. [PMID: 33359140 PMCID: PMC8230513 DOI: 10.1016/j.nbd.2020.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) is part of the TFIID complex that plays a key role during the initiation of transcription. Variants of TAF1 are associated with neurodevelopmental disorders. Previously, we found that CRISPR/Cas9 based editing of the TAF1 gene disrupts the morphology of the cerebral cortex and blunts the expression as well as the function of the CaV3.1 (T-type) voltage gated calcium channel. Here, we tested the efficacy of SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate), a T-type calcium channel enhancer, in an animal model of TAF1 intellectual disability (ID) syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21, the rat pups were given SAK3 (0.25 mg/kg, p.o.) or vehicle for 14 days (i.e. till post-natal day 35) and then subjected to behavioral, morphological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued locomotion abnormalities associated with TAF1 gene editing. SAK3 treatment prevented the loss of cortical neurons and GFAP-positive astrocytes observed after TAF1 gene editing. In addition, SAK3 protected cells from apoptosis. SAK3 also restored the Brain-derived neurotrophic factor/protein kinase B/Glycogen Synthase Kinase 3 Beta (BDNF/AKT/GSK3β) signaling axis in TAF1 edited animals. Finally, SAK3 normalized the levels of three GSK3β substrates - CaV3.1, FOXP2, and CRMP2. We conclude that the T-type calcium channel enhancer SAK3 is beneficial against the deleterious effects of TAF1 gene-editing, in part, by stimulating the BDNF/AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States; The BIO5 Institute, University of Arizona, United States
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States; The BIO5 Institute, University of Arizona, United States
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
11
|
Al Ali J, Vaine CA, Shah S, Campion L, Hakoum A, Supnet ML, Acuña P, Aldykiewicz G, Multhaupt-Buell T, Ganza NGM, Lagarde JBB, De Guzman JK, Go C, Currall B, Trombetta B, Webb PK, Talkowski M, Arnold SE, Cheah PS, Ito N, Sharma N, Bragg DC, Ozelius L, Breakefield XO. TAF1 Transcripts and Neurofilament Light Chain as Biomarkers for X-linked Dystonia-Parkinsonism. Mov Disord 2020; 36:206-215. [PMID: 32975318 PMCID: PMC7891430 DOI: 10.1002/mds.28305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background X‐linked dystonia‐parkinsonism is a rare neurological disease endemic to the Philippines. Dystonic symptoms appear in males at the mean age of 40 years and progress to parkinsonism with degenerative pathology in the striatum. A retrotransposon inserted in intron 32 of the TAF1 gene leads to alternative splicing in the region and a reduction of the full‐length mRNA transcript. Objectives The objective of this study was to discover cell‐based and biofluid‐based biomarkers for X‐linked dystonia‐parkinsonism. Methods RNA from patient‐derived neural progenitor cells and their secreted extracellular vesicles were used to screen for dysregulation of TAF1 expression. Droplet‐digital polymerase chain reaction was used to quantify the expression of TAF1 mRNA fragments 5′ and 3′ to the retrotransposon insertion and the disease‐specific splice variant TAF1‐32i in whole‐blood RNA. Plasma levels of neurofilament light chain were measured using single‐molecule array. Results In neural progenitor cells and their extracellular vesicles, we confirmed that the TAF1‐3′/5′ ratio was lower in patient samples, whereas TAF1‐32i expression is higher relative to controls. In whole‐blood RNA, both TAF1‐3′/5′ ratio and TAF1‐32i expression can differentiate patient (n = 44) from control samples (n = 18) with high accuracy. Neurofilament light chain plasma levels were significantly elevated in patients (n = 43) compared with both carriers (n = 16) and controls (n = 21), with area under the curve of 0.79. Conclusions TAF1 dysregulation in blood serves as a disease‐specific biomarker that could be used as a readout for monitoring therapies targeting TAF1 splicing. Neurofilament light chain could be used in monitoring neurodegeneration and disease progression in patients. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jamal Al Ali
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Shivangi Shah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Lindsey Campion
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Ahmad Hakoum
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Melanie L Supnet
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Patrick Acuña
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Sunshine Care Foundation, Roxas City, Philippines
| | - Gabrielle Aldykiewicz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Trisha Multhaupt-Buell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jan K De Guzman
- Sunshine Care Foundation, Roxas City, Philippines.,Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines
| | - Criscely Go
- Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines
| | - Benjamin Currall
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for Genomic Medicine, Mass General Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bianca Trombetta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Pia K Webb
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Center for Genomic Medicine, Mass General Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Pike S Cheah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Naoto Ito
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
12
|
Janakiraman U, Dhanalakshmi C, Yu J, Moutal A, Boinon L, Fukunaga K, Khanna R, Nelson MA. The investigation of the T-type calcium channel enhancer SAK3 in an animal model of TAF1 intellectual disability syndrome. Neurobiol Dis 2020; 143:105006. [PMID: 32622085 PMCID: PMC7422587 DOI: 10.1016/j.nbd.2020.105006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA; The BIO5 Institute, University of Arizona, USA
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
13
|
Understanding the Landscape of X-linked Variants Causing Intellectual Disability in Females Through Extreme X Chromosome Inactivation Skewing. Mol Neurobiol 2020; 57:3671-3684. [DOI: 10.1007/s12035-020-01981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
|
14
|
Janakiraman U, Yu J, Moutal A, Chinnasamy D, Boinon L, Batchelor SN, Anandhan A, Khanna R, Nelson MA. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex. Neurobiol Dis 2019; 132:104539. [PMID: 31344492 PMCID: PMC7197880 DOI: 10.1016/j.nbd.2019.104539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022] Open
Abstract
TAF1/MRSX33 intellectual disability syndrome is an X-linked disorder caused by loss-of-function mutations in the TAF1 gene. How these mutations cause dysmorphology, hypotonia, intellectual and motor defects is unknown. Mouse models which have embryonically targeted TAF1 have failed, possibly due to TAF1 being essential for viability, preferentially expressed in early brain development, and intolerant of mutation. Novel animal models are valuable tools for understanding neuronal pathology. Here, we report the development and characterization of a novel animal model for TAF1 ID syndrome in which the TAF1 gene is deleted in embryonic rats using clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) technology and somatic brain transgenesis mediated by lentiviral transduction. Rat pups, post-natal day 3, were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 vectors. Rats were subjected to a battery of behavioral tests followed by histopathological analyses of brains at post-natal day 14 and day 35. TAF1-edited rats exhibited behavioral deficits at both the neonatal and juvenile stages of development. Deletion of TAF1 lead to a hypoplasia and loss of the Purkinje cells. We also observed a decreased in GFAP positive astrocytes and an increase in Iba1 positive microglia within the granular layer of the cerebellum in TAF1-edited animals. Immunostaining revealed a reduction in the expression of the CaV3.1 T-type calcium channel. Abnormal motor symptoms in TAF1-edited rats were associated with irregular cerebellar output caused by changes in the intrinsic activity of the Purkinje cells due to loss of pre-synaptic CaV3.1. This animal model provides a powerful new tool for studies of neuronal dysfunction in conditions associated with TAF1 abnormalities and should prove useful for developing therapeutic strategies to treat TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Dhanalakshmi Chinnasamy
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Shelby N Batchelor
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Annaduri Anandhan
- Department of Pharmacology and Toxicology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States of America; The BIO5 Institute, University of Arizona, United States of America
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine and College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
15
|
Cheng H, Capponi S, Wakeling E, Marchi E, Li Q, Zhao M, Weng C, Piatek SG, Ahlfors H, Kleyner R, Rope A, Lumaka A, Lukusa P, Devriendt K, Vermeesch J, Posey JE, Palmer EE, Murray L, Leon E, Diaz J, Worgan L, Mallawaarachchi A, Vogt J, de Munnik SA, Dreyer L, Baynam G, Ewans L, Stark Z, Lunke S, Gonçalves AR, Soares G, Oliveira J, Fassi E, Willing M, Waugh JL, Faivre L, Riviere JB, Moutton S, Mohammed S, Payne K, Walsh L, Begtrup A, Sacoto MJG, Douglas G, Alexander N, Buckley MF, Mark PR, Adès LC, Sandaradura SA, Lupski JR, Roscioli T, Agrawal PB, Kline AD, Wang K, Timmers HTM, Lyon GJ. Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Hum Mutat 2019; 41:10.1002/humu.23936. [PMID: 31646703 PMCID: PMC7187541 DOI: 10.1002/humu.23936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022]
Abstract
We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Simona Capponi
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Emma Wakeling
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Elaine Marchi
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mengge Zhao
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Stefan G. Piatek
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Helena Ahlfors
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Alan Rope
- Kaiser Permanente Center for Health Research, Portland, Oregon
- Genome Medical, South San Francisco, California
| | - Aimé Lumaka
- Department of Biomedical and Preclinical Sciences, GIGA-R, Laboratory of Human Genetics, University of Liège, Liège, Belgium
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
| | - Prosper Lukusa
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Joris Vermeesch
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth E. Palmer
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Lucinda Murray
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Eyby Leon
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Jullianne Diaz
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Sonja A. de Munnik
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lauren Dreyer
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Ewans
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Ana R. Gonçalves
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Jorge Oliveira
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
- unIGENe, and Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Institute of Health Research and Innovation (i3S), University of Porto, Porto, Portugal
| | - Emily Fassi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Jeff L. Waugh
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatrics, Division of Pediatric Neurology, University of Texas Southwestern, Dallas, Texas
| | - Laurence Faivre
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
| | | | - Sebastien Moutton
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
- Department of Medical Genetics, Reference Center for Developmental Anomalies, Bordeaux University Hospital, Bordeaux, France
| | | | - Katelyn Payne
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurence Walsh
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | - Michael F. Buckley
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Paul R. Mark
- Spectrum Health Division of Medical and Molecular Genetics, Grand Rapids, Michigan
| | - Lesley C. Adès
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sarah A. Sandaradura
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Texas Children’s Hospital, Houston, Texas
| | - Tony Roscioli
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Pankaj B. Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Maryland
| | - Antonie D. Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland
| | | | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Gholson J. Lyon
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Our understanding of X-Linked Dystonia-Parkinsonism (XDP) has advanced considerably in recent years because of a wealth of new data describing its genetic basis, cellular phenotypes, neuroimaging features, and response to deep brain stimulation (DBS). This review provides a concise summary of these studies. RECENT FINDINGS XDP is associated with a SINE-VNTR-Alu (SVA)-type retrotransposon insertion within the TAF1 gene. This element includes a hexameric DNA repeat expansion, (CCCTCT)n, the length of which varies among patients and is inversely correlated to age of disease onset. In cell models, the SVA alters TAF1 splicing and reduces levels of full-length transcript. Neuroimaging data have confirmed previous neuropathology studies that XDP involves a progressive striatal atrophy, while further detecting functional alterations in additional brain regions. In patients exhibiting features of both dystonia and parkinsonism, pallidal DBS has resulted in rapid improvement of hyperkinetic movements, but effects on hypokinetic features have been inconsistent. SUMMARY The discovery that XDP is linked to a polymorphic hexameric sequence suggests that it could share mechanisms with other DNA repeat disorders, whereas the transcriptional defect in cell models raises the possibility that strategies to correct TAF1 splicing could provide therapeutic benefit.
Collapse
Affiliation(s)
- D. Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Laurie J. Ozelius
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|
17
|
Gudmundsson S, Wilbe M, Filipek-Górniok B, Molin AM, Ekvall S, Johansson J, Allalou A, Gylje H, Kalscheuer VM, Ledin J, Annerén G, Bondeson ML. TAF1, associated with intellectual disability in humans, is essential for embryogenesis and regulates neurodevelopmental processes in zebrafish. Sci Rep 2019; 9:10730. [PMID: 31341187 PMCID: PMC6656882 DOI: 10.1038/s41598-019-46632-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Beata Filipek-Górniok
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Josefin Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Amin Allalou
- Department of Information Technology, Uppsala University, Sweden and Science for Life Laboratory, Uppsala, 751 05, Sweden
| | - Hans Gylje
- Department of Paediatrics, Central Hospital, Västerås, 721 89, Sweden
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 141 95, Germany
| | - Johan Ledin
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| |
Collapse
|