1
|
Abundance and Dynamics of Small Mammals in New Zealand: Sequential Invasions into an Island Ecosystem Like No Other. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010156. [PMID: 36676105 PMCID: PMC9864110 DOI: 10.3390/life13010156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
New Zealand had no people or four-footed mammals of any size until it was colonised by Polynesian voyagers and Pacific rats in c. 1280 AD. Between 1769 and 1920 AD, Europeans brought three more species of commensal rats and mice, and three predatory mustelids, plus rabbits, house cats hedgehogs and Australian brushtail possums. All have in turn invaded the whole country and many offshore islands in huge abundance, at least initially. Three species are now reduced to remnant populations, but the other eight remain widely distributed. They comprise an artificial but interacting and fully functional bottom-up predator-prey system, responding at all levels to interspecific competition, habitat quality and periodic resource pulsing.
Collapse
|
2
|
Ketz AC, Robinson SJ, Johnson CJ, Samuel MD. Pathogen‐mediated selection and management implications for white‐tailed deer exposed to chronic wasting disease. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alison C. Ketz
- Wisconsin Cooperative Research Unit Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| | - Stacie J. Robinson
- NOAA Hawaiian Monk Seal Research Program Pacific Islands Fisheries Science Center Honolulu HI USA
| | - Chad J. Johnson
- Medical Microbiology and Immunology University of Wisconsin Madison WI USA
| | - Michael D. Samuel
- Department of Forest and Wildlife Ecology University of Wisconsin Madison WI USA
| |
Collapse
|
3
|
Identifying Age Cohorts Responsible for Peste Des Petits Ruminants Virus Transmission among Sheep, Goats, and Cattle in Northern Tanzania. Viruses 2020; 12:v12020186. [PMID: 32046120 PMCID: PMC7077219 DOI: 10.3390/v12020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a contagious disease of high morbidity and mortality in global sheep and goat populations. To better control this disease and inform eradication strategies, an improved understanding of how PPRV transmission risk varies by age is needed. Our study used a piece-wise catalytic model to estimate the age-specific force of infection (FOI, per capita infection rate of susceptible hosts) among sheep, goats, and cattle from a cross-sectional serosurvey dataset collected in 2016 in Tanzania. Apparent seroprevalence increased with age, reaching 53.6%, 46.8%, and 11.6% (true seroprevalence: 52.7%, 52.8%, 39.2%) for sheep, goats, and cattle, respectively. Seroprevalence was significantly higher among pastoral animals than agropastoral animals across all ages, with pastoral sheep and goat seroprevalence approaching 70% and 80%, respectively, suggesting pastoral endemicity. The best fitting piece-wise catalytic models merged age groups: two for sheep, three for goats, and four for cattle. The signal of these age heterogeneities were weak, except for a significant FOI peak among 2.5-3.5-year-old pastoral cattle. The subtle age-specific heterogeneities identified in this study suggest that targeting control efforts by age may not be as effective as targeting by other risk factors, such as production system type. Further research should investigate how specific husbandry practices affect PPRV transmission.
Collapse
|
4
|
Reynolds JJH, Carver S, Cunningham MW, Logan KA, Vickers W, Crooks KR, VandeWoude S, Craft ME. Feline immunodeficiency virus in puma: Estimation of force of infection reveals insights into transmission. Ecol Evol 2019; 9:11010-11024. [PMID: 31641451 PMCID: PMC6802039 DOI: 10.1002/ece3.5584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Determining parameters that govern pathogen transmission (such as the force of infection, FOI), and pathogen impacts on morbidity and mortality, is exceptionally challenging for wildlife. Vital parameters can vary, for example across host populations, between sexes and within an individual's lifetime.Feline immunodeficiency virus (FIV) is a lentivirus affecting domestic and wild cat species, forming species-specific viral-host associations. FIV infection is common in populations of puma (Puma concolor), yet uncertainty remains over transmission parameters and the significance of FIV infection for puma mortality. In this study, the age-specific FOI of FIV in pumas was estimated from prevalence data, and the evidence for disease-associated mortality was assessed.We fitted candidate models to FIV prevalence data and adopted a maximum likelihood method to estimate parameter values in each model. The models with the best fit were determined to infer the most likely FOI curves. We applied this strategy for female and male pumas from California, Colorado, and Florida.When splitting the data by sex and area, our FOI modeling revealed no evidence of disease-associated mortality in any population. Both sex and location were found to influence the FOI, which was generally higher for male pumas than for females. For female pumas at all sites, and male pumas from California and Colorado, the FOI did not vary with puma age, implying FIV transmission can happen throughout life; this result supports the idea that transmission can occur from mothers to cubs and also throughout adult life. For Florida males, the FOI was a decreasing function of puma age, indicating an increased risk of infection in the early years, and a decreased risk at older ages.This research provides critical insight into pathogen transmission and impact in a secretive and solitary carnivore. Our findings shed light on the debate on whether FIV causes mortality in wild felids like puma, and our approach may be adopted for other diseases and species. The methodology we present can be used for identifying likely transmission routes of a pathogen and also estimating any disease-associated mortality, both of which can be difficult to establish for wildlife diseases in particular.
Collapse
Affiliation(s)
| | - Scott Carver
- School of Biological SciencesUniversity of TasmaniaHobartTas.Australia
| | | | | | - Winston Vickers
- Wildlife Health CenterUniversity of California DavisDavisCAUSA
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCOUSA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt PaulMNUSA
| |
Collapse
|
5
|
Buddle BM, Vordermeier HM, Chambers MA, de Klerk-Lorist LM. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front Vet Sci 2018; 5:259. [PMID: 30417002 PMCID: PMC6214331 DOI: 10.3389/fvets.2018.00259] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/01/2018] [Indexed: 01/24/2023] Open
Abstract
Bovine tuberculosis (TB) continues to be an intractable problem in many countries, particularly where "test and slaughter" policies cannot be implemented or where wildlife reservoirs of Mycobacterium bovis infection serve as a recurrent source of infection for domestic livestock. Alternative control measures are urgently required and vaccination is a promising option. Although the M. bovis bacille Calmette-Guérin (BCG) vaccine has been used in humans for nearly a century, its use in animals has been limited, principally as protection against TB has been incomplete and vaccination may result in animals reacting in the tuberculin skin test. Valuable insights have been gained over the past 25 years to optimise protection induced by BCG vaccine in animals and in the development of tests to differentiate infected from vaccinated animals (DIVA). This review examines factors affecting the efficacy of BCG vaccine in cattle, recent field trials, use of DIVA tests and the effectiveness of BCG vaccine in other domestic livestock as well as in wildlife. Oral delivery of BCG vaccine to wildlife reservoirs of infection such as European badgers, brushtail possums, wild boar, and deer has been shown to induce protection against TB and could prove to be a practical means to vaccinate these species at scale. Testing of BCG vaccine in a wide range of animal species has indicated that it is safe and vaccination has the potential to be a valuable tool to assist in the control of TB in both domestic livestock and wildlife.
Collapse
Affiliation(s)
- Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand
| | | | - Mark A Chambers
- Animal and Plant Health Agency, Addlestone, United Kingdom.,Faculty of Health & Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lin-Mari de Klerk-Lorist
- Veterinary Wildlife Services, Kruger National Park, Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa
| |
Collapse
|
6
|
Benavides JA, Caillaud D, Scurlock BM, Maichak EJ, Edwards WH, Cross PC. Estimating Loss of Brucella Abortus Antibodies from Age-Specific Serological Data In Elk. ECOHEALTH 2017; 14:234-243. [PMID: 28508154 PMCID: PMC5486471 DOI: 10.1007/s10393-017-1235-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data.
Collapse
Affiliation(s)
- J A Benavides
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, MT, 59717, USA.
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - D Caillaud
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
- Department of Anthropology, The University of California, Davis, Davis, CA, 95616, USA
| | - B M Scurlock
- Wyoming Game and Fish Department, Pinedale, WY, 82941, USA
| | - E J Maichak
- Wyoming Game and Fish Department, Pinedale, WY, 82941, USA
| | - W H Edwards
- Wyoming Game and Fish Department, Laramie, WY, 82071, USA
| | - P C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way Suite 2, Bozeman, MT, 59715, USA
| |
Collapse
|
7
|
Pepin KM, Kay SL, Golas BD, Shriner SS, Gilbert AT, Miller RS, Graham AL, Riley S, Cross PC, Samuel MD, Hooten MB, Hoeting JA, Lloyd‐Smith JO, Webb CT, Buhnerkempe MG. Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecol Lett 2017; 20:275-292. [PMID: 28090753 PMCID: PMC7163542 DOI: 10.1111/ele.12732] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022]
Abstract
Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research CenterUnited States Department of Agriculture4101 Laporte Ave.Fort CollinsCO80521USA
| | - Shannon L. Kay
- National Wildlife Research CenterUnited States Department of Agriculture4101 Laporte Ave.Fort CollinsCO80521USA
| | - Ben D. Golas
- Department of BiologyColorado State UniversityFort CollinsCO80523USA
| | - Susan S. Shriner
- National Wildlife Research CenterUnited States Department of Agriculture4101 Laporte Ave.Fort CollinsCO80521USA
| | - Amy T. Gilbert
- National Wildlife Research CenterUnited States Department of Agriculture4101 Laporte Ave.Fort CollinsCO80521USA
| | - Ryan S. Miller
- Animal and Plant Health Inspection ServiceUnited States Department of AgricultureVeterinary Services2155 Center DriveBuilding BFort CollinsCO80523USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJ08544USA
| | - Steven Riley
- MRC Centre for Outbreak Analysis and ModellingImperial CollegeLondonUK
| | - Paul C. Cross
- U.S. Geological SurveyNorthern Rocky Mountain Science Center2327 University WayBozemanMT59715USA
| | - Michael D. Samuel
- U. S. Geological SurveyWisconsin Cooperative Wildlife Research Unit1630 Linden DroveUniversity of WisconsinMadisonWI53706USA
| | - Mevin B. Hooten
- U.S. Geological SurveyColorado Cooperative Fish and Wildlife Research Unit; Departments of FishWildlife& Conservation Biology and StatisticsColorado State University1484 Campus DeliveryFort CollinsCO80523USA
| | | | | | - Colleen T. Webb
- Department of BiologyColorado State UniversityFort CollinsCO80523USA
| | | |
Collapse
|
8
|
Samuel MD, Storm DJ. Chronic wasting disease in white-tailed deer: infection, mortality, and implications for heterogeneous transmission. Ecology 2016; 97:3195-3205. [PMID: 27870037 DOI: 10.1002/ecy.1538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 11/08/2022]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease affecting free-ranging and captive cervids that now occurs in 24 U.S. states and two Canadian provinces. Despite the potential threat of CWD to deer populations, little is known about the rates of infection and mortality caused by this disease. We used epidemiological models to estimate the force of infection and disease-associated mortality for white-tailed deer in the Wisconsin and Illinois CWD outbreaks. Models were based on age-prevalence data corrected for bias in aging deer using the tooth wear and replacement method. Both male and female deer in the Illinois outbreak had higher corrected age-specific prevalence with slightly higher female infection than deer in the Wisconsin outbreak. Corrected ages produced more complex models with different infection and mortality parameters than those based on apparent prevalence. We found that adult male deer have a more than threefold higher risk of CWD infection than female deer. Males also had higher disease mortality than female deer. As a result, CWD prevalence was twofold higher in adult males than females. We also evaluated the potential impacts of alternative contact structures on transmission dynamics in Wisconsin deer. Results suggested that transmission of CWD among male deer during the nonbreeding season may be a potential mechanism for producing higher rates of infection and prevalence characteristically found in males. However, alternatives based on high environmental transmission and transmission from females to males during the breeding season may also play a role.
Collapse
Affiliation(s)
- Michael D Samuel
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin , Madison, Wisconsin, 53706, USA
| | - Daniel J Storm
- Department of Forest and Wildlife Ecology, University of Wisconsin , Madison, Wisconsin, 53706, USA.,Wisconsin Department of Natural Resources, Rhinelander, Wisconsin, 54501, USA
| |
Collapse
|
9
|
Byrom AE, Caley P, Paterson BM, Nugent G. Feral ferrets (Mustela furo) as hosts and sentinels of tuberculosis in New Zealand. N Z Vet J 2015; 63 Suppl 1:42-53. [PMID: 25495945 PMCID: PMC4699325 DOI: 10.1080/00480169.2014.981314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The control and eventual eradication of bovine tuberculosis (TB) poses major challenges in New Zealand, given the variety of wildlife species susceptible to TB, many of which are capable of onwards transmission of Mycobacterium bovis infection. Here we discuss the role of feral ferrets (Mustela furo), focussing on potential transmission or risk pathways that have implications for management of TB. Firstly inter-specific transmission to ferrets. Ferrets scavenge potentially infected wildlife, including other ferrets, thus prevalence of TB can be amplified through ferrets feeding on tuberculous carcasses, particularly brushtail possums (Trichosurus vulpecula). Secondly intra-specific transmission between ferrets. The rate of ferret-ferret transmission depends on population density, and in some places ferret densities exceed the estimated threshold for disease persistence. TB can therefore potentially be maintained independently of other sources of infection. Thirdly transmission from ferrets to other wildlife. These include the main wildlife maintenance host, brushtail possums, that will occasionally scavenge potentially tuberculous ferret carcasses. Fourthly transmission from ferrets to livestock. This is considered to occur occasionally, but the actual rate of transmission has never been measured. Fifthly geographical spread. M. bovis-infected ferrets can travel large distances and cause new outbreaks of TB at locations previously free of TB, which may have caused an expansion of TB-endemic areas.Ferrets play a complex role in the TB cycle in New Zealand; they are capable of contracting, amplifying and transmitting M. bovis infection, sometimes resulting in ferret populations with a high prevalence of TB. However, ferret population densities are usually too low to sustain infection independently, and transmission to other wildlife or livestock appears a rarer event than with possums. Nevertheless, management of ferrets remains a key part of the National Pest Management Strategy for TB. Control is prudent where M. bovis-infected ferret populations exist in high numbers, to reduce the onward transmission risk of any self-sustained infection to livestock. When ferret numbers are well below the theoretical disease maintenance threshold, ferret control is still sometimes warranted because of the animals’ ability to acquire infection when young and, through dispersal, transport it outside TB-endemic areas. Ferrets can also be used as disease sentinels for TB, especially in areas where alternative sentinel species are rare or expensive to survey, and when sampling of possums is not cost-effective.
Collapse
Affiliation(s)
- A E Byrom
- a Wildlife Ecology and Management Team , Landcare Research , Lincoln , New Zealand
| | | | | | | |
Collapse
|
10
|
Magnuson W. Uncertainty and the design of in-situ biodiversity-monitoring programs. NATURE CONSERVATION 2014. [DOI: 10.3897/natureconservation.8.5929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Hénaux V, Parmley J, Soos C, Samuel MD. Estimating transmission of avian influenza in wild birds from incomplete epizootic data: implications for surveillance and disease spread. J Appl Ecol 2013. [DOI: 10.1111/1365-2664.12031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viviane Hénaux
- Department of Forest and Wildlife Ecology; University of Wisconsin; Madison; WI; 53706; USA
| | - Jane Parmley
- Canadian Cooperative Wildlife Health Centre, University of Guelph; Guelph; ON; N1G 2W1; Canada
| | - Catherine Soos
- Science & Technology Branch; Environment Canada; Saskatoon; SK; S7N 0X4; Canada
| | - Michael D. Samuel
- U. S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; Madison; WI; 53706; USA
| |
Collapse
|
12
|
Robinson SJ, Samuel MD, Johnson CJ, Adams M, McKenzie DI. Emerging prion disease drives host selection in a wildlife population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1050-9. [PMID: 22645831 DOI: 10.1890/11-0907.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an evolutionarily short time frame. Our work provides a rare example of a quantifiable disease-driven selection process in a wildlife population, demonstrating the potential for infectious diseases to alter host populations. This will have direct bearing on the epidemiology, dynamics, and future trends in CWD transmission and spread. Understanding genotype-specific epidemiology will improve predictive models and inform management strategies for CWD-affected cervid populations.
Collapse
Affiliation(s)
- Stacie J Robinson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Room 208 Russell Labs, 1630 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
13
|
Identifying the age cohort responsible for transmission in a natural outbreak of Bordetella bronchiseptica. PLoS Pathog 2010; 6:e1001224. [PMID: 21187891 PMCID: PMC3002977 DOI: 10.1371/journal.ppat.1001224] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
Identifying the major routes of disease transmission and reservoirs of infection are needed to increase our understanding of disease dynamics and improve disease control. Despite this, transmission events are rarely observed directly. Here we had the unique opportunity to study natural transmission of Bordetella bronchiseptica--a directly transmitted respiratory pathogen with a wide mammalian host range, including sporadic infection of humans--within a commercial rabbitry to evaluate the relative effects of sex and age on the transmission dynamics therein. We did this by developing an a priori set of hypotheses outlining how natural B. bronchiseptica infections may be transmitted between rabbits. We discriminated between these hypotheses by using force-of-infection estimates coupled with random effects binomial regression analysis of B. bronchiseptica age-prevalence data from within our rabbit population. Force-of-infection analysis allowed us to quantify the apparent prevalence of B. bronchiseptica while correcting for age structure. To determine whether transmission is largely within social groups (in this case litter), or from an external group, we used random-effect binomial regression to evaluate the importance of social mixing in disease spread. Between these two approaches our results support young weanlings--as opposed to, for example, breeder or maternal cohorts--as the age cohort primarily responsible for B. bronchiseptica transmission. Thus age-prevalence data, which is relatively easy to gather in clinical or agricultural settings, can be used to evaluate contact patterns and infer the likely age-cohort responsible for transmission of directly transmitted infections. These insights shed light on the dynamics of disease spread and allow an assessment to be made of the best methods for effective long-term disease control.
Collapse
|
14
|
Castillo L, Fernández-Llario P, Mateos C, Carranza J, Benítez-Medina JM, García-Jiménez W, Bermejo-Martín F, Hermoso de Mendoza J. Management practices and their association with Mycobacterium tuberculosis complex prevalence in red deer populations in Southwestern Spain. Prev Vet Med 2010; 98:58-63. [PMID: 21131079 DOI: 10.1016/j.prevetmed.2010.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Intensification of game management may increase the prevalence of tuberculosis (TB) in wildlife despite eradication programs implemented in cattle herds in the same areas. In this cross-sectional study, we investigated the association between wild game management practices and the presence of tuberculosis in red deer populations in Southwestern Spain. Five hundred and fifty-one animals were examined by necropsy to detect tuberculosis-like lesions in the main lymph nodes. Prevalence, as determined by TB-like lesions, was estimated to be 5.1% of animals, with 77% of TB-like lesions confirmed by PCR. Our results suggest that population density, in addition to factors which promote the local aggregation of animals, is factors associated with increased prevalence of TB in red deer populations. We suggest that management practices including supplementary feeding, fencing, water ponds and interaction with domestic livestock should be revised in order to prevent TB in wild deer both.
Collapse
Affiliation(s)
- L Castillo
- Red de Recursos Faunísticos, Universidad de Extremadura, Cáceres, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lachish S, McCallum H, Mann D, Pukk CE, Jones ME. Evaluation of selective culling of infected individuals to control tasmanian devil facial tumor disease. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2010; 24:841-851. [PMID: 20088958 DOI: 10.1111/j.1523-1739.2009.01429.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sustainable strategies to manage infectious diseases in threatened wildlife are still lacking despite considerable concern over the global increase in emerging infectious diseases of wildlife and their potential to drive populations to extinction. Selective culling of infected individuals will often be the most feasible option to control infectious disease in a threatened wildlife host, but has seldom been implemented or evaluated as a management tool for the conservation of threatened species. The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction by an infectious cancer, devil facial tumor disease (DFTD). We assess the success of an adaptive management trial involving selective culling of infected Tasmanian devils to control DFTD. Demographic and epidemiological parameters indicative of disease progression and impact were compared between the management site and a comparable unmanaged control site. Selective culling of infected individuals neither slowed rate of disease progression nor reduced population-level impacts of this debilitating disease. Culling mortality simply compensated for disease mortality in this system. Failure of selective culling to impede DFTD progress and reduce its impacts in the managed population was attributed to DFTD's frequency-dependent nature, its long latent period and high degree of infectivity, and the presence of a cryptic hidden disease reservoir or continual immigration of diseased individuals. We suggest that increasing the current removal rate and focusing removal efforts prior to the breeding season are options worth pursuing for future management of DFTD in this population. On the basis of our experience, we suggest that disease-management programs for threatened wildlife populations be developed on the principles of adaptive management and utilize a wide variety of strategies with regular reviews and adaptation of strategies undertaken as new information is obtained.
Collapse
Affiliation(s)
- Shelly Lachish
- School of Integrative Biology, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
16
|
Gavier-Widén D, Cooke MM, Gallagher J, Chambers MA, Gortázar C. A review of infection of wildlife hosts with Mycobacterium bovis and the diagnostic difficulties of the 'no visible lesion' presentation. N Z Vet J 2009; 57:122-31. [PMID: 19521460 DOI: 10.1080/00480169.2009.36891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathology, frequency and diagnostic implications of 'no visible lesion' (NVL) tuberculosis (Tb), i.e. infection with Mycobacterium bovis in the absence of macroscopic lesions, are described in a wide taxonomic range of wildlife hosts. Information collected and evaluated on the definition and occurrence of NVL Tb, histopathological characteristics, post-mortem techniques to detect minimal lesions, and diagnostic difficulties revealed most Tb-infected individuals with NVL had minute tuberculous lesions, which were difficult to see by eye. Acid-fast organisms (AFO) were sometimes detected in the lesions. Ideally, mycobacterial culture of pools of lymph nodes and/or oropharyngeal tonsils is necessary for the accurate diagnosis of Tb in the absence of macroscopic lesions. At a very minimum, the diagnostic methods applied for studying the prevalence of Tb in the population should be clearly described, to allow comparison between studies.
Collapse
Affiliation(s)
- D Gavier-Widén
- National Veterinary Institute (SVA) and Department of Biomedical Sciences and Veterinary Public Health, University of Agricultural Sciences (SLU), SE-75189 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Osnas EE, Heisey DM, Rolley RE, Samuel MD. Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:1311-22. [PMID: 19688937 DOI: 10.1890/08-0578.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, U.S.A. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization.
Collapse
Affiliation(s)
- Erik E Osnas
- Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
18
|
Ozgul A, Oli MK, Bolker BM, Perez-Heydrich C. Upper respiratory tract disease, force of infection, and effects on survival of gopher tortoises. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:786-798. [PMID: 19425439 DOI: 10.1890/08-0219.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii has been hypothesized to contribute to the decline of some wild populations of gopher tortoises (Gopherus polyphemus). However, the force of infection (FOI) and the effect of URTD on survival in free-ranging tortoise populations remain unknown. Using four years (2003-2006) of mark-recapture and epidemiological data collected from 10 populations of gopher tortoises in central Florida, USA, we estimated the FOI (probability per year of a susceptible tortoise becoming infected) and the effect of URTD (i.e., seropositivity to M. agassizii) on apparent survival rates. Sites with high (> or = 25%) seroprevalence had substantially higher FOI (0.22 +/- 0.03; mean +/- SE) than low (< 25%) seroprevalence sites (0.04 +/- 0.01). Our results provide the first quantitative evidence that the rate of transmission of M. agassizii is directly related to the seroprevalence of the population. Seropositive tortoises had higher apparent survival (0.99 +/- 0.0001) than seronegatives (0.88 +/- 0.03), possibly because seropositive tortoises represent individuals that survived the initial infection, developed chronic disease, and experienced lower mortality during the four-year span of our study. However, two lines of evidence suggested possible effects of mycoplasmal URTD on tortoise survival. First, one plausible model suggested that susceptible (seronegative) tortoises in high seroprevalence sites had lower apparent survival rates than did susceptible tortoises in low seroprevalence sites, indicating a possible acute effect of infection. Second, the number of dead tortoise remains detected during annual site surveys increased significantly with increasing site seroprevalence, from approximately 1 to approximately 5 shell remains per 100 individuals. If (as our results suggest) URTD in fact reduces adult survival, it could adversely influence the population dynamics and persistence of this late- maturing, long-lived species.
Collapse
Affiliation(s)
- Arpat Ozgul
- Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
19
|
Keane DP, Barr DJ, Bochsler PN, Hall SM, Gidlewski T, O'Rourke KI, Spraker TR, Samuel MD. Chronic wasting disease in a Wisconsin white-tailed deer farm. J Vet Diagn Invest 2008; 20:698-703. [PMID: 18776116 DOI: 10.1177/104063870802000534] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In September 2002, chronic wasting disease (CWD), a prion disorder of captive and wild cervids, was diagnosed in a white-tailed deer (Odocoileus virginianus) from a captive farm in Wisconsin. The facility was subsequently quarantined, and in January 2006 the remaining 76 deer were depopulated. Sixty animals (79%) were found to be positive by immunohistochemical staining for the abnormal prion protein (PrP(CWD)) in at least one tissue; the prevalence of positive staining was high even in young deer. Although none of the deer displayed clinical signs suggestive of CWD at depopulation, 49 deer had considerable accumulation of the abnormal prion in the medulla at the level of the obex. Extraneural accumulation of the abnormal protein was observed in 59 deer, with accumulation in the retropharyngeal lymph node in 58 of 59 (98%), in the tonsil in 56 of 59 (95%), and in the rectal mucosal lymphoid tissue in 48 of 58 (83%). The retina was positive in 4 deer, all with marked accumulation of prion in the obex. One deer was considered positive for PrP(CWD) in the brain but not in the extraneural tissue, a novel observation in white-tailed deer. The infection rate in captive deer was 20-fold higher than in wild deer. Although weakly related to infection rates in extraneural tissues, prion genotype was strongly linked to progression of prion accumulation in the obex. Antemortem testing by biopsy of recto-anal mucosal-associated lymphoid tissue (or other peripheral lymphoid tissue) may be a useful adjunct to tonsil biopsy for surveillance in captive herds at risk for CWD infection.
Collapse
Affiliation(s)
- Delwyn P Keane
- University of Wisconsin, Wisconsin Veterinary Diagnostic Laboratory, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gauthier DT, Latour RJ, Heisey DM, Bonzek CF, Gartland J, Burge EJ, Vogelbein WK. Mycobacteriosis-associated mortality in wild striped bass (Morone saxatilis) from Chesapeake Bay, U.S.A. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2008; 18:1718-27. [PMID: 18839766 DOI: 10.1890/07-2083.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The striped bass (Morone saxatilis) is an economically and ecologically important finfish species along the Atlantic seaboard of the United States. Recent stock assessments in Chesapeake Bay (U.S.A.) indicate that non-fishing mortality in striped bass has increased since 1999, concomitant with very high (>50%) prevalence of visceral and dermal disease caused by Mycobacterium spp. Current fishery assessment models do not differentiate between disease and other components of non-fishing mortality (e.g., senescence, predation); therefore, disease impact on the striped bass population has not been established. Specific measurement of mortality associated with mycobacteriosis in wild striped bass is complicated because the disease is chronic and mortality is cryptic. Epidemiological models have been developed to estimate disease-associated mortality from cross-sectional prevalence data and have recently been generalized to represent disease processes more realistically. Here, we used this generalized approach to demonstrate disease-associated mortality in striped bass from Chesapeake Bay. To our knowledge this is the first demonstration of cryptic mortality associated with a chronic infectious disease in a wild finfish. This finding has direct implications for management and stock assessment of striped bass, as it demonstrates population-level negative impacts of a chronic disease. Additionally, this research provides a framework by which disease-associated mortality may be specifically addressed within fisheries models for resource management.
Collapse
Affiliation(s)
- D T Gauthier
- Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, Gloucester Point, Virginia 23062, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
King CM, McDonald RM, Martin RD, MacKenzie DI, Tempero GW, Holmes SJ. Continuous monitoring of predator control operations at landscape scale. ECOLOGICAL MANAGEMENT & RESTORATION 2007. [DOI: 10.1111/j.1442-8903.2007.00350.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Stephens PA, Buskirk SW, del Rio CM. Inference in ecology and evolution. Trends Ecol Evol 2006; 22:192-7. [PMID: 17174005 DOI: 10.1016/j.tree.2006.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 11/22/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Most ecologists and evolutionary biologists continue to rely heavily on null hypothesis significance testing, rather than on recently advocated alternatives, for inference. Here, we briefly review null hypothesis significance testing and its major alternatives. We identify major objectives of statistical analysis and suggest which analytical approaches are appropriate for each. Any well designed study can improve our understanding of biological systems, regardless of the inferential approach used. Nevertheless, an awareness of available techniques and their pitfalls could guide better approaches to data collection and broaden the range of questions that can be addressed. Although we should reduce our reliance on significance testing, it retains an important role in statistical education and is likely to remain fundamental to the falsification of scientific hypotheses.
Collapse
Affiliation(s)
- Philip A Stephens
- Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | | | | |
Collapse
|
23
|
Abstract
Researchers and wildlife managers increasingly find themselves in situations where they must deal with infectious wildlife diseases such as chronic wasting disease, brucellosis, tuberculosis, and West Nile virus. Managers are often charged with designing and implementing control strategies, and researchers often seek to determine factors that influence and control the disease process. All of these activities require the ability to measure some indication of a disease's foothold in a population and evaluate factors affecting that foothold. The most common type of data available to managers and researchers is apparent prevalence data. Apparent disease prevalence, the proportion of animals in a sample that are positive for the disease, might seem like a natural measure of disease's foothold, but several properties, in particular, its dependency on age structure and the biasing effects of disease-associated mortality, make it less than ideal. In quantitative epidemiology, the "force of infection," or infection hazard, is generally the preferred parameter for measuring a disease's foothold, and it can be viewed as the most appropriate way to "adjust" apparent prevalence for age structure. The typical ecology curriculum includes little exposure to quantitative epidemiological concepts such as cumulative incidence, apparent prevalence, and the force of infection. The goal of this paper is to present these basic epidemiological concepts and resulting models in an ecological context and to illustrate how they can be applied to understand and address basic epidemiological questions. We demonstrate a practical approach to solving the heretofore intractable problem of fitting general force-of-infection models to wildlife prevalence data using a generalized regression approach. We apply the procedures to Mycobacterium bovis (bovine tuberculosis) prevalence in bison (Bison bison) in Wood Buffalo National Park, Canada, and demonstrate strong age dependency in the force of infection as well as an increased mortality hazard in positive animals.
Collapse
Affiliation(s)
- Dennis M Heisey
- USGS-National Wildlife Health Center, Madison, Wisconsin 53711, USA.
| | | | | |
Collapse
|
24
|
Corner LAL. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: How to assess the risk. Vet Microbiol 2006; 112:303-12. [PMID: 16326039 DOI: 10.1016/j.vetmic.2005.11.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tuberculosis is present in wild animal populations in North America, Europe, Africa and New Zealand. Some wild animal populations are a source of infection for domestic livestock and humans. An understanding of the potential of each wild animal population as a reservoir of infection for domestic animals is reached by determining the nature of the disease in each wild animal species, the routes of infection for domestic species and the risk of domestic animals encountering an infectious dose. The mere presence of infection in a wild animal population does not of itself provide evidence of a significant wildlife reservoir. Although at times counterintuitive, wildlife populations with high disease prevalence may not necessarily have a role in the epidemiology of disease in domestic livestock. The key concepts used in deciding whether an infected wild animal population is involved in the epidemiology of tuberculosis in domestic livestock is illustrated by reference to six well-researched cases: the feral pig (Suis scrofa) and feral Asian water buffalo (Bubalus bubalis) in Australia, white tailed deer (Odocoileus virginianus) in Michigan, and the brushtail possum (Trichosurus vulpecula) and other species, such as the ferret (Mustela furo), in New Zealand. A detailed analysis of Mycobacterium bovis infection in the Eurasian badger (Meles meles) in Ireland and their role as a reservoir of infection for cattle is also presented.
Collapse
Affiliation(s)
- L A L Corner
- Department of Large Animal Clinical Studies, University College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Lunn JA, Martin P, Zaki S, Malik R. Pneumonia due to Mycobacterium abscessus in two domestic ferrets (Mustelo putorius furo). Aust Vet J 2005; 83:542-6. [PMID: 16164141 DOI: 10.1111/j.1751-0813.2005.tb13325.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two ferrets were diagnosed with pneumonia due to Mycobacterium abscessus. Both cases were treated successfully using clarithromycin after positive cultures were obtained via unguided bronchoalveolar lavage. This is the first time M abscessus has been isolated in our laboratory and the first report of this organism causing disease in companion animals in Australia. Underlying respiratory tract disease was thought to be an important factor in the development of the infections. Thorough investigation of chronic lower respiratory tract disease in ferrets is recommended as this species appears predisposed to atypical infections.
Collapse
Affiliation(s)
- J A Lunn
- Faculty of Veterinary Science, University of Sydney, New South Wales 2006
| | | | | | | |
Collapse
|
26
|
Garnett B, Delahay R, Roper T. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl Anim Behav Sci 2005. [DOI: 10.1016/j.applanim.2005.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
CALEY PETER, HONE JIM. Assessing the host disease status of wildlife and the implications for disease control: Mycobacterium bovis infection in feral ferrets. J Appl Ecol 2005. [DOI: 10.1111/j.1365-2664.2005.01053.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
de Lisle GW, Yates GF, Caley P, Corboy RJ. Surveillance of wildlife forMycobacterium bovisinfection using culture of pooled tissue samples from ferrets (Mustela furo). N Z Vet J 2005; 53:14-8. [PMID: 15731829 DOI: 10.1080/00480169.2005.36463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM To compare culture results of homogenates of pooled lymph nodes from individual ferrets with and without macroscopic lesions of bovine tuberculosis for the presence of Mycobacterium bovis, and to determine whether homogenates from 10-30 ferrets could be combined and cultured without loss of sensitivity as a possible method for improving cost-effectiveness of surveillance for M. bovis infection in wildlife populations. METHODS Numbers of colony forming units (cfu) of M. bovis present in cultures of homogenates of pooled lymph nodes from individual ferrets known to be infected and having no visible lesions (NVL) or macroscopic lesions consistent with bovine tuberculosis were determined. Prevalences of M. bovis infection in populations of ferrets in the Marlborough region of the South Island of New Zealand were determined by culturing homogenates of pooled lymph nodes from individual animals. Samples from homogenates from North Canterbury were combined to form pools representing 10, 20 and 30 animals and also cultured for M. bovis. RESULTS Fewer M. bovis cfu were isolated from ferrets with NVL (mean=0.77 log10) compared with ferrets with macroscopic lesions (mean=3.22 log10; p<0.05). The mean prevalence of infection in eight different surveys involving 427 ferrets from the Marlborough region was 18% (range 8-44%), which included a small number of animals with macroscopic lesions of tuberculosis. Pooling of samples from up to 30 different ferrets with NVL did not reduce the sensitivity of detecting M. bovis infected populations. CONCLUSION Culturing of pools of lymph node samples detected a significant proportion of M. bovis-infected ferrets that would otherwise have gone unnoticed based on samples that had only macroscopic lesions. Culturing of samples pooled from up to 30 different ferrets could provide significant cost savings in surveys of wildlife for the presence of M. bovis infection without any apparent loss of sensitivity.
Collapse
Affiliation(s)
- G W de Lisle
- AgResearch, Wallaceville Animal Research Centre, PO Box 40-063, Upper Hutt, New Zealand.
| | | | | | | |
Collapse
|
29
|
DRAKE JOHNM. Risk Analysis For Invasive Species And Emerging Infectious Diseases: Concepts And Applications. AMERICAN MIDLAND NATURALIST 2005. [DOI: 10.1674/0003-0031(2005)153[0004:rafisa]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Caley P, Hone J. Disease transmission between and within species, and the implications for disease control. J Appl Ecol 2004. [DOI: 10.1111/j.1365-2664.2004.00867.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Jackson R. The role of wildlife inMycobacterium bovisinfection of livestock in New Zealand. N Z Vet J 2002; 50:49-52. [DOI: 10.1080/00480169.2002.36267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|