1
|
Yamaguchi H, Meyer MD, He L, Senavirathna L, Pan S, Komatsu Y. The molecular complex of ciliary and golgin protein is crucial for skull development. Development 2021; 148:270770. [PMID: 34128978 DOI: 10.1242/dev.199559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/13/2023]
Abstract
Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Li He
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Fonteles CSR, Finnell RH, George TM, Harshbarger RJ. Craniosynostosis: current conceptions and misconceptions. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCranial bones articulate in areas called sutures that must remain patent until skull growth is complete. Craniosynostosis is the condition that results from premature closure of one or more of the cranial vault sutures, generating facial deformities and more importantly, skull growth restrictions with the ability to severely affect brain growth. Typically, craniosynostosis can be expressed as an isolated event, or as part of syndromic phenotypes. Multiple signaling mechanisms interact during developmental stages to ensure proper and timely suture fusion. Clinical outcome is often a product of craniosynostosis subtypes, number of affected sutures and timing of premature suture fusion. The present work aimed to review the different aspects involved in the establishment of craniosynostosis, providing a close view of the cellular, molecular and genetic background of these malformations.
Collapse
Affiliation(s)
- Cristiane Sá Roriz Fonteles
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Richard H. Finnell
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children's Medical Center, Professor, Department of Surgery, Dell Medical School, Austin, TX, USA
| | - Raymond J. Harshbarger
- Plastic Surgery, Craniofacial Team at the Dell Children's Medical Center of Central Texas, Austin, USA
| |
Collapse
|
3
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
4
|
Watanabe M, Kawasaki M, Kawasaki K, Kitamura A, Nagai T, Kodama Y, Meguro F, Yamada A, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Arch Oral Biol 2019; 101:43-50. [PMID: 30878609 DOI: 10.1016/j.archoralbio.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS Ift88 limits bone formation in the maxillary process by suppressing apoptosis.
Collapse
Affiliation(s)
- Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK.
| |
Collapse
|
5
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
6
|
Abstract
Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form protein binding sites involved in cell signaling cascades and other important cellular physiological and pathophysiological functions. Specific protein affinities of the chains vary among different tissues and are determined by the arrangements of sulfated residues in discreet regions along the chains which in turn appear to be determined by the expression levels of particular enzymes in the biosynthetic pathway. Although not all the rules governing synthesis and modification are known, analytical procedures have been developed to determine composition, and all of the biosynthetic enzymes have been identified and cloned. Thus, through cell engineering, it is now possible to direct cellular synthesis of heparin and HS to particular compositions and therefore particular functional characteristics. For example, directing heparin producing cells to reduce the level of a particular type of polysaccharide modification may reduce the risk of heparin induced thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS has been linked to several biological areas including wound healing, cancer and lipid metabolism among others. Presumably, these roles involve specific HS compositions that could be produced by engineering cells. Providing HS reagents with a range of identified compositions should help accelerate this research and lead to new clinical applications for specific HS compositions. Here I review progress in engineering CHO cells to produce heparin and HS with compositions directed to improved properties and advancing medical research.
Collapse
|
7
|
Lee KKL, Peskett E, Quinn CM, Aiello R, Adeeva L, Moulding DA, Stanier P, Pauws E. Overexpression of Fgfr2c causes craniofacial bone hypoplasia and ameliorates craniosynostosis in the Crouzon mouse. Dis Model Mech 2018; 11:dmm035311. [PMID: 30266836 PMCID: PMC6262810 DOI: 10.1242/dmm.035311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;βact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;βact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;βact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.
Collapse
Affiliation(s)
- Kevin K L Lee
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Emma Peskett
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Charlotte M Quinn
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Rosanna Aiello
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Liliya Adeeva
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dale A Moulding
- ICH GOSH Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Erwin Pauws
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
8
|
Vastardis H, Mulliken JB, Glowacki J. Unilateral Coronal Synostosis: A Histomorphometric Study. Cleft Palate Craniofac J 2017; 41:439-46. [PMID: 15222790 DOI: 10.1597/03-012.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective This histomorphometric study compared the open and prematurely fused side of the coronal suture in subjects with unilateral coronal synostosis (UCS). Methods Sutures and parasutural bone were obtained from seven subjects with nonsyndromic UCS during operative correction at 3 to 24 months of age. Histological and cellular analyses were performed for the affected and open sutures. Specimens were examined by light and polarizing microscopy. Sutural patterns, osseous morphology, calvarial thickness, tartrate-resistant acid phosphatase (TRAP)-positive cells, and marrow spaces were evaluated histomorphologically, qualitatively, and semiquantitatively. Histomorphometry was performed to determine total projected area of marrow space as a percentage of unit area, total number of TRAP-positive cells per specimen, and perisutural cranial thickness. Results Polarizing microscopy showed that affected sutures were composed of more lamellar bone than the normal sutures. By light microscopy, the clinically fused sutures were 1.7-fold thicker (p < .02), had twofold larger marrow spaces (p < .0006), and contained sixfold more TRAP-positive osteoclasts in marrow spaces near the suture (p < .04) than the normal sutures. Quantitative analysis of the normal sutures revealed that calvarial thickness was greater with age and that there was an inverse correlation between medullary area and age. For the affected sutures, there was also an age-related increase in calvarial thickness. There were also trends for age-related declines in numbers of osteoclasts in both open and affected sides. Conclusions These results question the hypothesis that defective osteoclastic activity is pivotal in the pathogenesis of UCS and support the hypothesis that this condition results from abnormally active bony remodeling.
Collapse
Affiliation(s)
- H Vastardis
- Department of Growth and Development, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
9
|
Abstract
Craniosynostosis is the premature fusion of the calvarial sutures that is associated with a number of physical and intellectual disabilities spanning from pediatric to adult years. Over the past two decades, techniques in molecular genetics and more recently, advances in high-throughput DNA sequencing have been used to examine the underlying pathogenesis of this disease. To date, mutations in 57 genes have been identified as causing craniosynostosis and the number of newly discovered genes is growing rapidly as a result of the advances in genomic technologies. While contributions from both genetic and environmental factors in this disease are increasingly apparent, there remains a gap in knowledge that bridges the clinical characteristics and genetic markers of craniosynostosis with their signaling pathways and mechanotransduction processes. By linking genotype to phenotype, outlining the role of cell mechanics may further uncover the specific mechanotransduction pathways underlying craniosynostosis. Here, we present a brief overview of the recent findings in craniofacial genetics and cell mechanics, discussing how this information together with animal models is advancing our understanding of craniofacial development.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Craniofacial Medicine and the, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Seattle WA, 98105, USA
| |
Collapse
|
10
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
11
|
Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, Akiyoshi K, Moriyama K. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS One 2014; 9:e101693. [PMID: 25003957 PMCID: PMC4086955 DOI: 10.1371/journal.pone.0101693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/11/2014] [Indexed: 11/30/2022] Open
Abstract
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.
Collapse
Affiliation(s)
- Masako Yokota
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Jumpei Morita
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Suzuki
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yoshihiro Sasaki
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazunari Akiyoshi
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- ERATO, Japan Science and Technology Agency, Tokyo, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Dwivedi PP, Grose RH, Filmus J, Hii CST, Xian CJ, Anderson PJ, Powell BC. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3. Bone 2013; 55:367-76. [PMID: 23624389 DOI: 10.1016/j.bone.2013.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis.
Collapse
Affiliation(s)
- Prem P Dwivedi
- Women's and Children's Health Research Institute, North Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Komatsu Y, Yu PB, Kamiya N, Pan H, Fukuda T, Scott GJ, Ray MK, Yamamura KI, Mishina Y. Augmentation of Smad-dependent BMP signaling in neural crest cells causes craniosynostosis in mice. J Bone Miner Res 2013; 28:1422-33. [PMID: 23281127 PMCID: PMC3638058 DOI: 10.1002/jbmr.1857] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/19/2012] [Accepted: 12/05/2012] [Indexed: 11/12/2022]
Abstract
Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN-193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad-dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paul B. Yu
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 505, 50 Blossom Street, Boston, MA 02114, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomokazu Fukuda
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Gregory J. Scott
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Manas K. Ray
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ken-ichi Yamamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
14
|
Li S, Meyer NP, Quarto N, Longaker MT. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts. PLoS One 2013; 8:e58610. [PMID: 23536803 PMCID: PMC3607600 DOI: 10.1371/journal.pone.0058610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Neural crest-derived (FOb) and mesoderm-derived (POb) calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.
Collapse
Affiliation(s)
- Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli, Italy
- * E-mail: (NQ); (MTL)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- * E-mail: (NQ); (MTL)
| |
Collapse
|
15
|
Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 2013; 14:5978-97. [PMID: 23502464 PMCID: PMC3634461 DOI: 10.3390/ijms14035978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal regenerative capacity, with frontal neural crest derived osteoblasts benefitting from greater osteogenic potential. We outline how this model has been used to elucidate some of the molecular mechanisms which underlie these differences and place these findings into the context of our current understanding of the key, highly conserved, pathways which govern the osteoblast lineage including FGF, BMP, Wnt and TGFβ signaling. Furthermore, we explore recent studies which have provided a tantalizing insight into way these pathways interact, with evidence accumulating for certain transcription factors, such as Runx2, acting as a nexus for cross-talk.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Department of Advanced Biomedical Science, University of Studies of Naples Federico II, Naples 80131, Italy
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| |
Collapse
|
16
|
Holmes G, Basilico C. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 2012; 368:283-93. [PMID: 22664175 DOI: 10.1016/j.ydbio.2012.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/19/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Microbiology, New York University School of Medicine, 550 1st Ave, New York, NY 10016, USA.
| | | |
Collapse
|
17
|
Clendenning DE, Mortlock DP. The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One 2012; 7:e36789. [PMID: 22693558 PMCID: PMC3365063 DOI: 10.1371/journal.pone.0036789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 01/28/2023] Open
Abstract
Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.
Collapse
Affiliation(s)
- Dawn E. Clendenning
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
18
|
Veistinen L, Takatalo M, Tanimoto Y, Kesper DA, Vortkamp A, Rice DPC. Loss-of-Function of Gli3 in Mice Causes Abnormal Frontal Bone Morphology and Premature Synostosis of the Interfrontal Suture. Front Physiol 2012; 3:121. [PMID: 22563320 PMCID: PMC3342524 DOI: 10.3389/fphys.2012.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling. The Gli3 loss-of-function (Gli3Xt-J/Xt-J) mouse largely phenocopies the human syndrome with the mice exhibiting polydactyly and several craniofacial abnormalities. Here we show that Gli3Xt-J/Xt-J mice exhibit ectopic ossification in the interfrontal suture and in the most severe cases the suture fuses already prior to birth. We show that abnormalities in frontal bones occur early in calvarial development, before the establishment of the interfrontal suture. It provides a model for the metopic suture pathology that can occur in GCPS.
Collapse
Affiliation(s)
- Lotta Veistinen
- Department of Orthodontics, Institute of Dentistry, University of Helsinki Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
19
|
Miraoui H, Marie PJ. Pivotal role of Twist in skeletal biology and pathology. Gene 2010; 468:1-7. [DOI: 10.1016/j.gene.2010.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 07/28/2010] [Accepted: 07/31/2010] [Indexed: 01/05/2023]
|
20
|
Zhang X, Zara J, Siu RK, Ting K, Soo C. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 2010; 89:865-78. [PMID: 20647499 DOI: 10.1177/0022034510376401] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to enhance bone regeneration in orthopedic and dental cases have grown steadily for the past decade, in line with increasingly sophisticated regenerative medicine. To meet the unprecedented demand for novel osteospecific growth factors with fewer adverse effects compared with those of existing adjuncts such as BMPs, our group has identified a craniosynostosis-associated secreted molecule, NELL-1, which is a potent growth factor that is highly specific to the osteochondral lineage, and has demonstrated robust induction of bone in multiple in vivo models from rodents to pre-clinical large animals. NELL-1 is preferentially expressed in osteoblasts under direct transcriptional control of Runx2, and is well-regulated during skeletal development. NELL-1/Nell-1 can promote orthotopic bone regeneration via either intramembranous or endochondral ossification, both within and outside of the craniofacial complex. Unlike BMP-2, Nell-1 cannot initiate ectopic bone formation in muscle, but can induce bone marrow stromal cells (BMSCs) to form bone in a mouse muscle pouch model, exhibiting specificity that BMPs lack. In addition, synergistic osteogenic effects of Nell-1 and BMP combotherapy have been observed, and are likely due to distinct differences in their signaling pathways. NELL-1's unique role as a novel osteoinductive growth factor makes it an attractive alternative with promise for future clinical applications. [Note: NELL-1 and NELL-1 indicate the human gene and protein, respectively; Nell-1 and Nell-1 indicate the mouse gene and protein, respectively.]
Collapse
Affiliation(s)
- X Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 73-060, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
21
|
Kesper DA, Didt-Koziel L, Vortkamp A. Gli2 activator function in preosteoblasts is sufficient to mediate ihh-dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification. Dev Dyn 2010; 239:1818-26. [DOI: 10.1002/dvdy.22301] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Choi KY, Kim HJ, Cho BC, Kim IS, Kim HJ, Ryoo HM. A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion. J Cell Biochem 2009; 107:818-25. [PMID: 19415673 DOI: 10.1002/jcb.22180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TGF-beta3, TbetaR-I, and TGF-beta-activated Smad2 has been suggested to be a series of signaling molecules for secondary palate fusion. In this article, we show that a gene induced by TGF-beta, betaig-h3, is coincidentally expressed with TGF-beta3 in medial edge epithelial (MEE) cells undergoing apoptosis during normal palatal fusion. betaig-h3 was also highly expressed in the areas of post-weaning mammary gland cells and developing phalangeal joints in which TGF-beta3 or BMP-4-induced apoptosis occurs, respectively. Blocking of betaig-h3 expression in E12.5 embryos with antisense oligodeoxynucleotides (ODN) resulted in cleft of the secondary palate in 84% of the treated mice that were born. Moreover, the antisense ODN treatment resulted in a failure of apoptosis in the MEE between palatal shelves in physical contact in organ culture. We conclude that betaig-h3 expression in the MEE is stimulated by TGF-beta3, causes cell death, and consequently results in complete fusion of the apposed palatal shelves.
Collapse
Affiliation(s)
- Kang-Young Choi
- Department of Plastic and Reconstructive Surgery, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Zouvelou V, Luder HU, Mitsiadis TA, Graf D. Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:361-74. [DOI: 10.1002/jez.b.21262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Ting MC, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson RE. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 2009; 136:855-64. [PMID: 19201948 DOI: 10.1242/dev.028605] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterozygous loss of Twist1 function causes coronal synostosis in both mice and humans. We showed previously that in mice this phenotype is associated with a defect in the neural crest-mesoderm boundary within the coronal suture, as well as with a reduction in the expression of ephrin A2 (Efna2), ephrin A4 (Efna4) and EphA4 in the coronal suture. We also demonstrated that mutations in human EFNA4 are a cause of non-syndromic coronal synostosis. Here we investigate the cellular mechanisms by which Twist1, acting through Eph-ephrin signaling, regulates coronal suture development. We show that EphA4 mutant mice exhibit defects in the coronal suture and neural crest-mesoderm boundary that phenocopy those of Twist1(+/-) mice. Further, we demonstrate that Twist1 and EphA4 interact genetically: EphA4 expression in the coronal suture is reduced in Twist1 mutants, and compound Twist1-EphA4 heterozygotes have suture defects of greater severity than those of individual heterozygotes. Thus, EphA4 is a Twist1 effector in coronal suture development. Finally, by DiI labeling of migratory osteogenic precursor cells that contribute to the frontal and parietal bones, we show that Twist1 and EphA4 are required for the exclusion of such cells from the coronal suture. We suggest that the failure of this process in Twist1 and EphA4 mutants is the cause of craniosynostosis.
Collapse
Affiliation(s)
- Man-Chun Ting
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wilczak CA, Ousley SD. Test of the relationship between sutural ossicles and cultural cranial deformation: results from Hawikuh, New Mexico. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 139:483-93. [PMID: 19280670 DOI: 10.1002/ajpa.21005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of researchers have hypothesized that the biomechanical forces associated with cultural cranial deformation can influence the formation of sutural ossicles. However, it is still difficult to make definitive conclusions about this relationship because the effects appear to be quite weak, and contradictory results have been obtained when specific sutures and deformation types are compared across studies. This research retests the hypothesis using a single archeological sample of lamdoidally deformed, occipitally deformed, and undeformed crania from Hawikuh, New Mexico (AD 1300-1680). Our results show no significant difference in either the prevalence or number of ossicles between deformed and undeformed crania, suggesting that the abnormal strains generated by cranial shape modification during infancy are not a factor in ossicle development for this population. One significant relationship was detected at the right lambdoid suture in crania with asymmetrical occipital deformation. Crania that were more deformed on the left side showed greater numbers of ossicles on the right side, but the effect was small. Furthermore, the relationship may well reflect a sampling error, due to the small number of crania with greater left side deformation and scorable right side lambdoid ossicles (n = 11). Although it is possible that forms of cranial deformation other than the posterior tabular types examined here may affect ossicle expression, our review of the literature suggests that the relationship in humans is complex and incompletely understood at this time.
Collapse
Affiliation(s)
- Cynthia A Wilczak
- Department of Anthropology, San Francisco State University, San Francisco, CA 94132, USA.
| | | |
Collapse
|
26
|
Jilka RL, O'Brien CA, Ali AA, Roberson PK, Weinstein RS, Manolagas SC. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone 2009; 44:275-86. [PMID: 19010455 PMCID: PMC2655212 DOI: 10.1016/j.bone.2008.10.037] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 10/01/2008] [Indexed: 01/04/2023]
Abstract
Intermittent administration of parathyroid hormone (PTH) stimulates bone formation on the surface of cancellous and periosteal bone by increasing the number of osteoblasts. Previous studies of ours in mice demonstrated that intermittent PTH increases cancellous osteoblast number at least in part by attenuating osteoblast apoptosis, but the mechanism responsible for the anabolic effect of the hormone on periosteal bone is unknown. We report that daily injections of 100 ng/g of PTH(1-34) to 4-6 month old mice increased the number of osteoblasts on the periosteum of lumbar vertebrae by 2-3 fold as early as after 2 days. However, the prevalence of apoptotic periosteal osteoblasts was only 0.2% in vehicle treated animals, which is approximately 20-fold lower than is the case for cancellous osteoblasts. Moreover, PTH did not have a discernable effect on periosteal osteoblast apoptosis. Administration of BrdU for 4 days failed to label periosteal osteoblasts under either basal conditions or following administration of PTH. Cancellous osteoblasts, on the other hand, were labeled under basal conditions, but PTH did not increase the percentage of BrdU-positive cells. Thus, intermittent PTH does not increase cancellous or periosteal osteoblast number by stimulating the proliferation of osteoblast progenitors. Consistent with high turnover of cancellous osteoblasts as compared to that of periosteal osteoblasts, ganciclovir-induced ablation of replicating osteoblast progenitors in mice expressing thymidine kinase under the control of the 3.6 kb rat Col1A1 promoter resulted in disappearance of osteoblasts from cancellous bone over a 7-14 day period, whereas periosteal osteoblasts were unaffected. However, 14 days of pre-treatment with ganciclovir prevented PTH anabolism on periosteal bone. We conclude that in cancellous bone, attenuation of osteoblast apoptosis by PTH increases osteoblast number because their rate of apoptosis is high, making this effect of the hormone profound. However, in periosteal bone where the rate of osteoblast apoptosis is low, PTH must exert pro-differentiating and/or pro-survival effects on post-mitotic pre-osteoblasts. Targeting the latter cells is an effective mechanism for increasing osteoblast number in periosteal bone where the production of osteoblasts from replicating progenitors is slow.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, Slot 587, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Holmes G, Rothschild G, Roy UB, Deng CX, Mansukhani A, Basilico C. Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology. Dev Biol 2009; 328:273-84. [PMID: 19389359 DOI: 10.1016/j.ydbio.2009.01.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Activating mutations of FGFRs1-3 cause craniosynostosis (CS), the premature fusion of cranial bones, in man and mouse. The mechanisms by which such mutations lead to CS have been variously ascribed to increased osteoblast proliferation, differentiation, and apoptosis, but it is not always clear how these disturbances relate to the process of suture fusion. We have reassessed coronal suture fusion in an Apert Fgfr2 (S252W) mouse model. We find that the critical event of CS is the early loss of basal sutural mesenchyme as the osteogenic fronts, expressing activated Fgfr2, unite to form a contiguous skeletogenic membrane. A mild increase in osteoprogenitor proliferation precedes but does not accompany this event, and apoptosis is insignificant. On the other hand, the more apical coronal suture initially forms appropriately but then undergoes fusion, albeit at a slower rate, accompanied by a significant decrease in osteoprogenitor proliferation, and increased osteoblast maturation. Apoptosis now accompanies fusion, but is restricted to bone fronts in contact with one another. We correlated these in vivo observations with the intrinsic effects of the activated Fgfr2 S252W mutation in primary osteoblasts in culture, which show an increased capacity for both proliferation and differentiation. Our studies suggest that the major determinant of Fgfr2-induced craniosynostosis is the failure to respond to signals that would halt the recruitment or the advancement of osteoprogenitor cells at the sites where sutures should normally form.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
28
|
Charoenchaikorn K, Yokomizo T, Rice DP, Honjo T, Matsuzaki K, Shintaku Y, Imai Y, Wakamatsu A, Takahashi S, Ito Y, Takano-Yamamoto T, Thesleff I, Yamamoto M, Yamashiro T. Runx1 is involved in the fusion of the primary and the secondary palatal shelves. Dev Biol 2008; 326:392-402. [PMID: 19000669 DOI: 10.1016/j.ydbio.2008.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 09/15/2008] [Accepted: 10/13/2008] [Indexed: 11/19/2022]
Abstract
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1(-/-) mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.
Collapse
Affiliation(s)
- Kesinee Charoenchaikorn
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dorandeu A, Coulibaly B, Piercecchi-Marti MD, Bartoli C, Gaudart J, Baccino E, Leonetti G. Age-at-death estimation based on the study of frontosphenoidal sutures. Forensic Sci Int 2008; 177:47-51. [PMID: 18191929 DOI: 10.1016/j.forsciint.2007.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 08/20/2007] [Accepted: 10/29/2007] [Indexed: 11/29/2022]
Abstract
Determination of age at the time of death based on the observation of cranial sutures has led to numerous studies with sometimes contradictory results. The initial hypothesis being that suture closure is part of an age-related physiological process, the conflicting results have been interpreted by various authors as secondary to the choice of sutures, under the co-existing influence of pathological factors or genetic factors, or even independent of age. Despite these differences, macroscopic methods remain much used in anthropology and in forensic medicine. In our work, we evaluated the value of the degree of closure of the frontosphenoidal suture in estimating age at death of mature subjects, with the secondary objective of establishing a linear regression which could be used in routine practice. The study concerned bone specimens from individuals whose age, sex and medical history were known. Macroscopic observation was carried out on the ectocranial and endocranial sides according to four stages of closure previously defined. 290 sutures were taken from a population of whom two-thirds were men. The method can be repeated and reproduced and the regression established shows the confidence range for average error to be +/-1.5 years. While this result is of interest in terms of precision in prediction for a group of people, the prediction range is too great (+/-23 years) to be applicable to a single individual as part of a forensic procedure.
Collapse
Affiliation(s)
- Anne Dorandeu
- Service de Médecine Légale, Hôpital Lapeyronie, 34295 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Apoptosis of odontoclasts under physiological root resorption of human deciduous teeth. Cell Tissue Res 2007; 331:423-33. [PMID: 18000684 DOI: 10.1007/s00441-007-0525-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
This study was designed to establish the apoptosis of odontoclasts during physiological root resorption of human deciduous teeth. Deciduous teeth were fixed, decalcified, and embedded in paraffin for immunohistochemical (IHC) observations and in Epon for transmission electron microscopy (TEM). Apoptotic cells were identified by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick-end labeling (TUNEL), and then tartrate-resistant acid phosphatase (TRAP) activity was determined on the same sections. Epon-embedded specimens were sectioned serially into 0.5-microm semithin sections; some of these sections were re-embedded in Epon, sectioned into 0.1-microm ultrathin sections, and observed by TEM. IHC revealed that the nuclei of TRAP-positive odontoclasts on the dentine were generally TUNEL-negative. Around these odontoclasts, a few TRAP-positive structures were present together with TUNEL-positive structures, e.g., a TRAP-positive structure with one TUNEL-positive nucleus, a TRAP-positive structure with one TUNEL-positive nucleus plus one or two TUNEL-negative nuclei, or a TRAP-positive structure with no nucleus. By TEM, some odontoclasts showed nuclear fragments including compacted chromatin. The results suggest that, during apoptosis, odontoclasts fragment into variously sized cellular parts including three or fewer nuclei.
Collapse
|
31
|
Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 2007; 22:1492-501. [PMID: 17542686 DOI: 10.1359/jbmr.070518] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the initial demonstration of the phenomenon in murine and human bone sections approximately 10 yr ago, appreciation of the biologic significance of osteoblast apoptosis has contributed greatly not only to understanding the regulation of osteoblast number during physiologic bone remodeling, but also the pathogenesis of metabolic bone diseases and the pharmacology of some of the drugs used for their treatment. It is now appreciated that all major regulators of bone metabolism including bone morphogenetic proteins (BMPs), Wnts, other growth factors and cytokines, integrins, estrogens, androgens, glucocorticoids, PTH and PTH-related protein (PTHrP), immobilization, and the oxidative stress associated with aging contribute to the regulation of osteoblast and osteocyte life span by modulating apoptosis. Moreover, osteocyte apoptosis has emerged as an important regulator of remodeling on the bone surface and a critical determinant of bone strength, independently of bone mass. The detection of apoptotic osteoblasts in bone sections remains challenging because apoptosis represents only a tiny fraction of the life span of osteoblasts, not unlike a 6-mo-long terminal illness in the life of a 75-yr-old human. Importantly, the phenomenon is 50 times less common in human bone biopsies because human osteoblasts live longer and are fewer in number. Be that as it may, well-controlled assays of apoptosis can yield accurate and reproducible estimates of the prevalence of the event, particularly in rodents where there is an abundance of osteoblasts for inspection. In this perspective, we focus on the biological significance of the phenomenon for understanding basic bone biology and the pathogenesis and treatment of metabolic bone diseases and discuss limitations of existing techniques for quantifying osteoblast apoptosis in human biopsies and their methodologic pitfalls.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
32
|
Lana-Elola E, Rice R, Grigoriadis AE, Rice DPC. Cell fate specification during calvarial bone and suture development. Dev Biol 2007; 311:335-46. [PMID: 17931618 DOI: 10.1016/j.ydbio.2007.08.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/27/2007] [Accepted: 08/13/2007] [Indexed: 01/07/2023]
Abstract
In this study we have addressed the fundamental question of what cellular mechanisms control the growth of the calvarial bones and conversely, what is the fate of the sutural mesenchymal cells when calvarial bones approximate to form a suture. There is evidence that the size of the osteoprogenitor cell population determines the rate of calvarial bone growth. In calvarial cultures we reduced osteoprogenitor cell proliferation; however, we did not observe a reduction in the growth of parietal bone to the same degree. This discrepancy prompted us to study whether suture mesenchymal cells participate in the growth of the parietal bones. We found that mesenchymal cells adjacent to the osteogenic fronts of the parietal bones could differentiate towards the osteoblastic lineage and could become incorporated into the growing bone. Conversely, mid-suture mesenchymal cells did not become incorporated into the bone and remained undifferentiated. Thus mesenchymal cells have different fate depending on their position within the suture. In this study we show that continued proliferation of osteoprogenitors in the osteogenic fronts is the main mechanism for calvarial bone growth, but importantly, we show that suture mesenchyme cells can contribute to calvarial bone growth. These findings help us understand the mechanisms of intramembranous ossification in general, which occurs not only during cranial and facial bone development but also in the surface periosteum of most bones during modeling and remodeling.
Collapse
Affiliation(s)
- Eva Lana-Elola
- Departments of Craniofacial Development and Orthodontics, Floor 27 Guy's Tower, King's College, London, SE1 9RT, UK
| | | | | | | |
Collapse
|
33
|
Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007; 40:1434-46. [PMID: 17517365 PMCID: PMC1995599 DOI: 10.1016/j.bone.2007.03.017] [Citation(s) in RCA: 486] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/14/2007] [Accepted: 03/20/2007] [Indexed: 12/24/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) stimulates bone formation by increasing osteoblast number, but the molecular and cellular mechanisms underlying this effect are not completely understood. In vitro and in vivo studies have shown that PTH directly activates survival signaling in osteoblasts; and that delay of osteoblast apoptosis is a major contributor to the increased osteoblast number, at least in mice. This effect requires Runx2-dependent expression of anti-apoptotic genes like Bcl-2. PTH also causes exit of replicating progenitors from the cell cycle by decreasing expression of cyclin D and increasing expression of several cyclin-dependent kinase inhibitors. Exit from the cell cycle may set the stage for pro-differentiating and pro-survival effects of locally produced growth factors and cytokines, the level and/or activity of which are known to be influenced by PTH. Observations from genetically modified mice suggest that the anabolic effect of intermittent PTH requires insulin-like growth factor-I (IGF-I), fibroblast growth factor-2 (FGF-2), and perhaps Wnts. Attenuation of the negative effects of PPAR gamma may also lead to increased osteoblast number. Daily injections of PTH may add to the pro-differentiating and pro-survival effects of locally produced PTH related protein (PTHrP). As a result, osteoblast number increases beyond that needed to replace the bone removed by osteoclasts during bone remodeling. The pleiotropic effects of intermittent PTH, each of which alone may increase osteoblast number, may explain why this therapy reverses bone loss in most osteoporotic individuals regardless of the underlying pathophysiology.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Slot 587 Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| |
Collapse
|
34
|
Hatch NE. Potential role of PC-1 expression and pyrophosphate elaboration in the molecular etiology of the FGFR-associated craniosynostosis syndromes. Orthod Craniofac Res 2007; 10:53-8. [PMID: 17552941 DOI: 10.1111/j.1601-6343.2007.00387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is associated with the aberrant mineralization phenotype of the craniosynostosis syndromes. One critical aspect of mineralization involves the elaboration and transport of pyrophosphate into the extracellular matrix with subsequent enzymatic hydrolysis into phosphate. We have previously shown that FGF2 up-regulates expression of the pyrophosphate generating enzyme, PC-1, and the pyrophosphate channel, ANK, while down-regulating expression of the pyrophosphate hydrolyzing enzyme, tissue non-specific alkaline phosphatase in pre-osteoblastic, MC3T3E1(C4) cells. These results suggest that FGF/FGFR signaling may affect mineralization via changes in the elaboration and metabolism of pyrophosphate. OBJECTIVES We are currently conducting experiments towards a more systematic analysis of PC-1 expression in osteoblastic cells, in order to more clearly elucidate the significance of pyrophosphate elaboration in the process of normal bone mineralization and in the molecular etiology of the FGFR-associated craniosynostosis syndromes. DESIGN Towards this goal we have constructed a PC-1 gene promoter/firefly luciferase reporter construct, in order to more directly investigate the regulation of PC-1 by FGF/FGFR signaling in osteoblastic and non-osteoblastic cells. RESULTS AND CONCLUSIONS Preliminary results confirm that FGF/FGFR signaling, either via treatment with FGF2 or via expression of a Crouzon syndrome-associated mutant FGFR2, induces PC-1 promoter activity in osteoblastic cells in culture. This appears to be a cell type specific phenomenon. These results suggest that the expression of PC-1 downstream of FGF signaling is an integral aspect of osteoblastic function, and that pyrophosphate elaboration may play a significant role in the pathology of craniosynostosis.
Collapse
Affiliation(s)
- Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Abstract
This study investigates the role of bone resorption in defining interdigitations characteristic of cranial suture waveform. Male mice from the CD-1 (ICR) background were analyzed at six age groups (n = 5 mice per group) in order to study the ontogenetic changes of osteoclast counts using tartrate-resistant acid phosphatase-stained histological sections of sagittal sutures. Additionally, the complexity of suture lines were measured ectocranially from the same age groups (n = 5 per group) using image capture and fractal geometry (ruler dimension method). The results suggest that osteoclast resorption is a contributor to suture patterning. Specifically, osteoclasts show the greatest activity along concave suture regions at 42 and 84 days (Kruskal-Wallis test statistic = 14.9; P < or = 0.01). This coincides with significant increases incrementally in suture complexity as measured with fractal dimension at 42 and 84 days of age (ANOVA F-statistic = 19.84; P < or = 0.001). In congruence with these data, mice given osteoclast-depleting injections of alendronate show a decrease in sagittal suture complexity. Data from this experiment indicate a positive relationship between suture complexity and osteoclast count (P < 0.01; r = 76%). Increases in suture complexity and osteoclast activity occur after peak rates of cranial width growth and coincide with weaning and the transition to a hard chow diet. These data demonstrate osteoclasts along the bone margin of the cranial suture and also indicate that sutures attain their complex shape at the same age when osteoclast number is highest along concave suture margins, underscoring the role of osteoclasts in generating the suture waveform pattern.
Collapse
Affiliation(s)
- Craig Daniel Byron
- Department of Surgery, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
36
|
Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem 2006; 281:27292-305. [PMID: 16844695 DOI: 10.1074/jbc.m600448200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves aberrant development of the craniofacial skeleton. Craniosynostosis syndrome-linked FGFR mutations have been shown to be gain of function in terms of receptor activation and have been presumed to result in increased levels of FGF/FGFR signaling. Unfortunately, studies attempting to link expression of mutant FGFRs with changes in cellular phenotype have yielded conflicting results. In an effort to better understand the biochemical consequences of these mutations on receptor function, here we have investigated the effect of the FGFR2C278F mutation of Crouzon craniosynostosis syndrome on receptor trafficking, ubiquitination, degradation, and signaling. We find that FGFR2C278F exhibits diminished glycosylation, increased degradation, and limited cellular sublocalization in the osteoblastic cell line, MC3T3E1(C4). Additionally, we show that trafficking and autoactivation of wild type FGFR2 is glycosylation-dependent. Both FGFR2C278F and unglycosylated wild type FGFR2 signal through phospholipase Cgamma in a ligand-independent manner as well as exhibit dramatically increased binding to the adaptor protein, Frs2. These findings suggest that autoactive FGFR2 can signal from intracellular compartments. Based upon our results, we propose that the functional signaling of craniosynostosis mutant, autoactive receptors is limited in some cell types by protective cellular responses, such as increased trafficking to lysosomes and proteasomes for degradation.
Collapse
Affiliation(s)
- Nan E Hatch
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
37
|
Wiren KM, Toombs AR, Semirale AA, Zhang X. Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio. Bone 2006; 38:637-51. [PMID: 16413235 DOI: 10.1016/j.bone.2005.10.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/07/2005] [Accepted: 10/14/2005] [Indexed: 01/13/2023]
Abstract
Both the number and the activity of osteoblasts are critical for normal bone growth and maintenance. Although a potential role for estrogen in protection of bone mass through inhibition of osteoblast apoptosis has been proposed, a function for androgen is much less clear. The aim of this study was to establish a direct role for androgen to influence osteoblast apoptosis both in vitro and in vivo. AR-MC3T3-E1 cells, with androgen receptor (AR) overexpression controlled by the type I collagen promoter, were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT). Apoptosis was assessed by three different techniques including DNA fragmentation, caspase-3 activation, and changes in mitochondrial membrane potential. Transactivation of AR by DHT enhanced apoptosis while 17beta-estradiol (E(2)) treatment reduced apoptosis in both proliferating preosteoblasts and mature osteocyte-like cells. To explore mechanism, the apoptosis regulators Bcl-2 (antiapoptotic) and Bax (proapoptotic) were evaluated. Western analysis revealed that DHT decreased Bcl-2 resulting in a significantly increased Bax/Bcl-2 ratio. Regulation of Bcl-2 was post-transcriptional since bcl-2 mRNA levels were unaffected by DHT treatment. Furthermore, ubiquitination of Bcl-2 was increased and serine phosphorylation was reduced, consistent with inhibition of MAP kinase signaling by DHT. Increased Bax/Bcl-2 ratio was essential since either Bcl-2 overexpression or Bax downregulation by RNA interference (RNAi) partially abrogated or reversed DHT-enhanced osteoblastic apoptosis. In order to establish physiologic significance in vivo, AR-transgenic mice with AR overexpression in the osteoblast lineage and thus enhanced androgen sensitivity were characterized. In male AR-transgenic mice, increased osteoblast apoptosis was observed in vivo even in association with new bone formation. Thus, although estrogen can be antiapoptotic, androgen stimulates osteoblast and osteocyte apoptosis through an increased Bax/Bcl-2 ratio even in anabolic settings. These results identify a new mechanism for androgen regulation of osteoblast activity distinct from estrogen, and suggest that enhanced apoptosis can be associated with anabolic stimulation of new bone growth. Androgens thus play a distinct role in skeletal homeostasis.
Collapse
Affiliation(s)
- Kristine M Wiren
- Veterans Affairs Medical Center, 3181 SW U.S. Veterans Hospital Road, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
38
|
Vij K, Mao JJ. Geometry and cell density of rat craniofacial sutures during early postnatal development and upon in vivo cyclic loading. Bone 2006; 38:722-30. [PMID: 16413234 DOI: 10.1016/j.bone.2005.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Cranial sutures are unique to skull bones and consist of multiple connective tissue cell lineages such as mesenchymal cells, fibroblast-like cells, and osteogenic cells, in addition to osteoclasts. Mechanical modulation of intramembranous bone growth in the craniofacial suture is not well understood, especially during postnatal development. This study investigated whether in vivo mechanical forces regulate sutural growth responses in postnatal rats. Cyclic compressive forces with a peak-to-peak magnitude of 300 mN and 4 Hz were applied to the maxilla in each of 17-, 23-and 32-day-old rats for 20 min/day over 5 consecutive days. Computerized histomorphometric analysis revealed that cyclic loading significantly increased the average geometric widths of the premaxillomaxillary suture (PMS) to 86 +/- 7 microm, 99 +/- 12 microm, and 149 +/- 30 microm, representing 32%, 50%, and 39% increases for P17, P23, and P32 in comparison with age-matched sham controls. For the nasofrontal suture (NFS), cyclic loading significantly increased the average sutural widths to 88 +/- 15 microm, 92 +/- 10 microm, and 100 +/- 14 microm, representing 33%, 24%, and 32% increases for P17, P23, and P32 relative to age-matched controls. The average PMS cell density upon cyclic loading was 10182 +/- 132 cells/mm(2), 9752 +/- 661 cells/mm(2), and 9521 +/- 628 cells/mm(2), representing 62%, 35%, and 30% increases for P17, P23, and P32 in comparison with age-matched controls. For the NFS, cyclic loading increased the average cell density to 9884 +/- 893 cells/mm(2), 9818 +/- 1091 cells/mm(2), 9355 +/- 661 cells/mm(2), representing 44%, 46% and 40% increases at P17, P23, and P32 respectively. Osteoblast-occupied sutural bone surface was significantly greater in cyclically loaded sutures for P17, P23, and P32 than corresponding controls for both the PMS and NFS. On the other hand, cyclic loading elicited significantly higher sutural bone surface populated by osteoclast-like cells by P17 and P23 days, but not P32 days, for the PMS. For the NFS, sutural osteoclast surface was significantly higher upon cyclic loading for P23 and P32 days, but not P17. The present data demonstrate that cyclic forces are potent stimuli for modulating postnatal sutural development, potentially by stimulating both osteogenesis and osteoclastogenesis. Cyclic loading may have clinical implications as novel mechanical stimuli for modulating craniofacial growth in patients suffering from craniofacial anomalies and dentofacial deformities.
Collapse
Affiliation(s)
- Kapil Vij
- Tissue Engineering Laboratory, University of Illinois at Chicago MC 841, 801 South Paulina Street, Chicago, IL 60612-7211, USA
| | | |
Collapse
|
39
|
Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AOM, Maxson RE. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 2006; 15:1319-28. [PMID: 16540516 DOI: 10.1093/hmg/ddl052] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Boundaries between cellular compartments often serve as signaling interfaces during embryogenesis. The coronal suture is a major growth center of the skull vault and develops at a boundary between cells derived from neural crest and mesodermal origin, forming the frontal and parietal bones, respectively. Premature fusion of these bones, termed coronal synostosis, is a common human developmental anomaly. Known causes of coronal synostosis include haploinsufficiency of TWIST1 and a gain of function mutation in MSX2. In Twist1(+/-) mice with coronal synostosis, we found that the frontal-parietal boundary is defective. Specifically, neural crest cells invade the undifferentiated mesoderm of the Twist1(+/-) mutant coronal suture. This boundary defect is accompanied by an expansion in Msx2 expression and reduction in ephrin-A4 distribution. Reduced dosage of Msx2 in the Twist1 mutant background restores the expression of ephrin-A4, rescues the suture boundary and inhibits craniosynostosis. Underlining the importance of ephrin-A4, we identified heterozygous mutations in the human orthologue, EFNA4, in three of 81 patients with non-syndromic coronal synostosis. This provides genetic evidence that Twist1, Msx2 and Efna4 function together in boundary formation and the pathogenesis of coronal synostosis.
Collapse
Affiliation(s)
- Amy E Merrill
- Department of Biochemistry and Molecular Biology, Norris Cancer Hospital, University of Southern Califoirnia Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-0176, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cho JY, Lee WB, Kim HJ, Mi Woo K, Baek JH, Choi JY, Hur CG, Ryoo HM. Bone-related gene profiles in developing calvaria. Gene 2006; 372:71-81. [PMID: 16510253 DOI: 10.1016/j.gene.2005.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 01/26/2023]
Abstract
Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.
Collapse
Affiliation(s)
- Je-Yoel Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Opperman LA, Gakunga PT, Carlson DS. Genetic Factors Influencing Morphogenesis and Growth of Sutures and Synchondroses in the Craniofacial Complex. Semin Orthod 2005. [DOI: 10.1053/j.sodo.2005.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M. BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death Differ 2005; 13:1075-87. [PMID: 16311513 DOI: 10.1038/sj.cdd.4401799] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryonic ectoderm is fated to become either neural or epidermal, depending on patterning processes that occur before and during gastrulation. It has been stated that epidermal commitment proceeds from a bone morphogenetic protein-4 (BMP-4)-dependent inhibition of dorsal ectoderm neuralization. We recently demonstrated that murine embryonic stem (ES) cells treated with BMP-4 undergo effective keratinocyte commitment and epidermogenesis. Focusing on the precise role of BMP-4 in the early choice between neural and epidermal commitment, we show here that BMP-4 treatment of ES cells leads to a dramatic apoptotic death of Sox-1+ neural precursors with concomitant epidermal engagement. In addition, neutralization of the Smad pathway prevents both the BMP-4 apoptotic process and the inhibition of neural differentiation. Our results suggest that, in mammals, BMP-4, as an active inducer of epidermal commitment, interferes with the survival of neural precursors through induction of their apoptotic cell death.
Collapse
|
44
|
Rice R, Rice DPC, Thesleff I. Foxc1 integrates Fgf and Bmp signalling independently of twist or noggin during calvarial bone development. Dev Dyn 2005; 233:847-52. [PMID: 15906377 DOI: 10.1002/dvdy.20430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Calvarial bone and suture development is under complex regulation where bone morphogenetic protein (Bmp) and fibroblast growth factor (Fgf) signalling interact with Msx2/Twist and Noggin and regulate frontal bone primordia proliferation and suture fusion, respectively. We have shown previously that the winged helix transcription factor Foxc1, which is necessary for calvarial bone development, is required for the Bmp regulation of Msx2. We now show that FGF2 regulates the expression of Foxc1, indicating that Foxc1 integrates Bmp and Fgf signalling pathways. We also show that Foxc1 is not needed for the acquisition of osteogenic potential or for the differentiation of osteoblasts. The expression of Fgf receptors and Twist were normal in Foxc1-deficient calvarial mesenchyme, and ectopic FGF2 was able to induce the expression Osteopontin. Furthermore, we demonstrate that Foxc1 does not participate in the regulation of Noggin expression. Our findings indicate that Foxc1 integrates the Bmp and Fgf signalling pathways independently of Twist or Noggin. This signalling network is essential for the correct patterning and growth of calvarial bones.
Collapse
Affiliation(s)
- Ritva Rice
- Developmental Biology Programme, Institute of Biotechnology, University of Helsinki, Finland.
| | | | | |
Collapse
|
45
|
Abstract
Apoptosis may be involved in maintenance of suture patency. In mice, the posterior frontal suture fuses by postnatal day 45, whereas all remaining cranial sutures remain patent. There are no published reports documenting differences in apoptosis between fusing and nonfusing mouse cranial sutures beyond postnatal day 6 either in vivo or in vitro. In the current study, we hypothesized that apoptosis is required for maintenance of suture patency. We predicted that after normal suture fusion in the mouse, the posterior frontal suture should have fewer apoptotic cells than the sagittal suture. We also hypothesized that all of the sutures should look similar with respect to the number and arrangement of apoptotic cells before suture fusion. The posterior frontal and sagittal sutures were studied on postnatal days 25 and 45. The fragmentation of DNA or terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling assay assay, as well as the presence of BCL-10, a specific apoptotic protein, were localized to the leading edge of the sagittal suture calvaria of postnatal day 45 mice. These apoptotic markers were not visualized within the fused posterior frontal suture of postnatal day 45 mice. Posterior frontal or sagittal suture mesenchyme of postnatal day 25 mice showed similar amounts of apoptotic cells. These data indicate that apoptotic cells are present in the patent sagittal suture beyond the period of posterior frontal suture fusion in the mouse. We conclude that apoptosis is an integral component to maintain suture patency in the mouse calvaria.
Collapse
Affiliation(s)
- Michael Agresti
- Department of Plastic Surgery, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
46
|
Yoshida T, Phylactou LA, Uney JB, Ishikawa I, Eto K, Iseki S. Twist is required for establishment of the mouse coronal suture. J Anat 2005; 206:437-44. [PMID: 15857364 PMCID: PMC1571510 DOI: 10.1111/j.1469-7580.2005.00411.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cranial sutures are the growth centres of the skull, enabling expansion of the skull to accommodate rapid growth of the brain. Haploinsufficiency of the human TWIST gene function causes the craniosynostosis syndrome, Saethre-Chotzen syndrome (SCS), in which premature fusion of the coronal suture is a characteristic feature. Previous studies have indicated that Twist is expressed in the coronal suture during development, and therefore that it may play an important role in development and maintenance of the suture. The Twist-null mouse is lethal before the onset of osteogenesis, and the heterozygote exhibits coronal suture synostosis postnatally. In this study we investigated the function of Twist in the development of the mouse coronal suture, by inhibiting Twist synthesis using morpholino antisense oligonucleotides in calvarial organ culture. Decreased Twist production resulted in a narrow sutural space and fusion of bone domains within 48 h after the addition of the morpholino oligonucleotides. Proliferation activity in the sutural cells was decreased, and the expression of osteogenic marker genes such as Runx2 and Fgfr2 was up-regulated in the developing bone domain within 4 h. These results suggest that during establishment of the suture area, Twist is required for the regulation of sutural cell proliferation and osteoblast differentiation.
Collapse
Affiliation(s)
- Toshiyuki Yoshida
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
- Departments of Periodontology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Leonidas A Phylactou
- Department of Molecular Genetics C, The Cyprus Institute of Neurology and GeneticsCyprus
| | - James B Uney
- The Henry Wellcome Laboratories for Integrative Neuroscience, University of BristolUK
| | - Isao Ishikawa
- Departments of Periodontology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Kazuhiro Eto
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
| | - Sachiko Iseki
- Departments of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental UniversityJapan
| |
Collapse
|
47
|
Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun 2005; 328:709-20. [PMID: 15694405 DOI: 10.1016/j.bbrc.2004.11.072] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 11/24/2022]
Abstract
In postnatal life, the skeleton undergoes continuous remodeling in which osteoclasts resorb aged or damaged bone, leaving space for osteoblasts to make new bone. The balance of proliferation, differentiation, and apoptosis of bone cells determines the size of osteoclast or osteoblast populations at any given time. Bone cells constantly receive signals from adjacent cells, hormones, and bone matrix that regulate their proliferation, activity, and survival. Thus, the amount of bone and its microarchitecture before and after the menopause or following therapeutic intervention with drugs, such as sex hormones, glucocorticoids, parathyroid hormone, and bisphosphonates, is determined in part by effects of these on survival of osteoclasts, osteoblasts, and osteocytes. Understanding the mechanisms and regulation of bone cell apoptosis will enhance our knowledge of bone cell function and help us to develop better therapeutics for the management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, NY, USA.
| | | |
Collapse
|
48
|
Abstract
The birth prevalence of craniosynostosis (premature suture fusion) is 300-500 per 1,000,000 live births. Surgical management involves the release of the synostosed suture. In many cases, however, the suturectomy site rapidly reossifies, further restricts the growing brain and alters craniofacial growth. This resynostosis requires additional surgery, which increases patient morbidity and mortality. New findings in bone biology and molecular pathways involved with suture fusion, combined with novel tissue engineering techniques, may allow the design of targeted and complementary therapies to decrease complications inherent in high-risk surgical procedures. This paper selectively reviews recent advances in i) identifying genetic mutations and the aetiopathogenesis of a number of craniosynostotic conditions; ii) cranial suture biology and molecular biochemical pathways involved in suture fusion; and iii) the design, development and application of various vehicles and tissue engineered constructs to deliver cytokines and genes to cranial sutures. Such biologically based therapies may be used as surgical adjuncts to rescue fusing sutures or help manage postoperative resynostosis.
Collapse
Affiliation(s)
- Mark P Mooney
- Department of Oral Medicine and Pathology, School of Dental Medicine, 329 Salk Hall, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Kelly A Lenton
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | |
Collapse
|
50
|
Cerri PS. Osteoblasts engulf apoptotic bodies during alveolar bone formation in the rat maxilla. ACTA ACUST UNITED AC 2005; 286:833-40. [PMID: 16047382 DOI: 10.1002/ar.a.20220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During bone formation, as in other tissues and organs, intense cellular proliferation and differentiation are usually observed. It has been described that programmed cell death, i.e., apoptosis, takes place in the control of the cellular population by removing of the excessive and damaged cells. Although it is generally accepted that apoptotic bodies are engulfed by professional phagocytes, the neighboring cells can also take part in the removal of apoptotic bodies. In the present study, regions of initial alveolar bone formation of rat molars were examined with the aim to verify whether osteoblasts are capable of engulfing apoptotic bodies, such as professional phagocytes. Rats aged 11-19 days were sacrificed and the maxillary fragments containing the first molar were removed and immersed in the fixative solution. The specimens fixed in glutaraldehyde-formaldehyde were processed for light microscopy and transmission electron microscopy. For the detection of apoptosis, the specimens were fixed in formaldehyde, embedded in paraffin, and submitted to the TUNEL method. The results revealed round/ovoid structures containing dense bodies on the bone surface in close contact to osteoblasts and in conspicuous osteoblast vacuoles. These round/ovoid structures showed also positivity to the TUNEL method, indicating that bone cells on the bone surface are undergoing apoptosis. Ultrathin sections showed images of apoptotic bodies being engulfed by osteoblasts. Occasionally, the osteoblasts exhibited large vacuoles containing blocks of condensed chromatin and remnants of organelles. Thus, these images suggest that osteoblasts are able to engulf and degrade apoptotic bodies.
Collapse
Affiliation(s)
- Paulo Sérgio Cerri
- Department of Morphology, Laboratory of Histology and Embryology, Dental School, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|