1
|
Kadyan P, Singh L. Harmaline attenuates chemotherapy-induced peripheral neuropathy: Modulation of Nrf-2 pathway and NK-1 receptor signaling. Neurosci Lett 2024; 842:138003. [PMID: 39341332 DOI: 10.1016/j.neulet.2024.138003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Peripheral neuropathy, resulting from damage to peripheral nerves, manifests as weakness, numbness, and pain, primarily affecting extremities and significantly impairing quality of life, especially in the elderly. Current treatments often entail severe side effects, necessitating the exploration of alternative therapies. Harmaline, a β-carboline alkaloid derived from Peganum harmala, exhibits promising antioxidant and anti-inflammatory properties. This study aimed to assess the efficacy of harmaline in a vincristine-induced mouse model of peripheral neuropathy. Swiss albino mice received vincristine (0.1 mg/kg, i.p.) for 10 days to induce neuropathy. Harmaline (5 and 10 mg/kg, i.p.) was administered 30 min before vincristine and continued until day 14 to evaluate its protective effects. Behavioral assessments were conducted on days 7 and 14. Vincristine treatment significantly heightened sensitivity to cold, measured by cold plate and acetone drop tests, and to heat, assessed via the hot plate test, while also impairing motor coordination. Biochemical analyses revealed decreased levels of GSH and Nrf-2, alongside elevated TBARS and IL-1β levels in sciatic nerve tissue. Harmaline administration markedly alleviated both behavioral and biochemical alterations induced by vincristine, with the 10 mg/kg dose exhibiting the most pronounced effects. Notably, harmaline treatment elevated GSH and Nrf-2 levels while reducing TBARS and IL-1β. Furthermore, substance-P treatment reversed the protective effects of harmaline, implicating the NK-1 receptor in its mechanism of action. In conclusion, harmaline demonstrates significant potential in mitigating vincristine-induced peripheral neuropathy by reducing oxidative stress through Nrf-2 activation and lowering IL-1β levels, likely via NK-1 receptor inhibition.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab 140413, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
2
|
Fahimi S, Oryan S, Ahmadi R, Eidi A. Downregulation of Bax/Bcl-2 Expression During Apoptosis in the Hippocampus of Diabetic Male Wistar Rats: Ameliorative Effects of Peganum harmala Seed Extract. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e132071. [PMID: 36915407 PMCID: PMC10007996 DOI: 10.5812/ijpr-132071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Background Apoptosis is proposed as a possible mechanism for diabetes-induced hippocampal neuronal cell death. Numerous studies have suggested that the therapeutic properties of plants, such as antioxidant and anti-apoptotic, are effective in improving the complications of diabetes in the hippocampus. Objectives This study aimed to evaluate the anti-apoptotic properties of Peganum harmala (P. harmala) in the brain hippocampal cells of diabetic rats. Methods In this experimental study, 48 male Wistar rats were divided into six groups (n = 8) as follows: Control (C), diabetic (D), harmine (H), diabetic plus harmine (DH), seed extract (S), and diabetic plus seed extract (DS). A single dose of streptozotocin (STZ) (60 mg/kg) was enough to cause diabetes. Seed extract and harmine were given at 150 mg/kg and 6.5 mg/kg, respectively (daily by oral gavage for 28 days). The glucose levels in the blood were measured, and the histological staining of the hippocampus was examined. Percentages of apoptotic hippocampal cells were identified with flow cytometry. Bax and Bcl-2 expression was assayed via Real time- polymerase chain reaction (PCR) and Western blot. Results In DH (P = 0.001) and DS (P = 0.01) rats, the mean fasting blood glucose level significantly reduced compared with the D group. Bax and Bcl-2 expression at both mRNA and protein levels significantly differed between the D group and other groups (P = 0.01). Harmine and the seed extract considerably reduced the Bax/Bcl-2 ratio in the hippocampal cells compared to the D group (P = 0.001). Conclusions Streptozotocin-induced apoptosis in the hippocampus of diabetic rats was reduced by administering the seed extract of Peganum harmala. The P. harmala seed extract and its active ingredient, harmine, could be used as anti-apoptotic drugs.
Collapse
Affiliation(s)
- Saeedeh Fahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Animal Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ramesh Ahmadi
- Department of Animal Sciences, Faculty of Basic Sciences, Islamic Azad University of Qom, Qom, Iran
- Corresponding Author: Department of Animal Sciences, Faculty of Basic Sciences, Islamic Azad University of Qom, Qom, Iran.
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Harmine prevents 3-nitropropionic acid-induced neurotoxicity in rats via enhancing NRF2-mediated signaling: Involvement of p21 and AMPK. Eur J Pharmacol 2022; 927:175046. [PMID: 35623405 DOI: 10.1016/j.ejphar.2022.175046] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
Oxidative stress induced neurotoxicity is increasingly perceived as an important neuropathologic mechanism underlying the motor and behavioral phenotypes associated with Huntington's disease (HD). Repeated exposure to 3-nitropropionic acid (3-NP) induces neurotoxic changes which closely simulate the neuropathological and behavioral characteristics of HD. This study aimed at evaluating the prophylactic effects of the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) inhibitor "harmine" against 3-NP-indued neurotoxicity and HD-like symptoms. The potential prophylactic effect of harmine (10 mg/kg/day; intraperitoneal) was investigated on 3-NP-induced motor and cognitive HD-like deficits, nuclear factor erythroid 2 like 2 (NRF2), AMP kinase (AMPK) and p21 protein levels and the gene expression of haem oxygenase-1 (Ho-1), NAD(P)H: quinone oxidoreductase-1 (Nqo-1) and p62 in addition to redox imbalance and histological neurotoxic changes in the striatum, prefrontal cortex, and hippocampus of male Wistar rats. Harmine successfully increased the protein levels of NRF2, AMPK and p21 and the gene expression of Ho-1, Nqo-1 and p62, restored redox homeostasis, and reduced CASPASE-3 level. This was reflected in attenuation of 3-NP-induced neurodegenerative changes and improvement of rats' motor and cognitive performance. This study draws attention to the protective role of harmine against 3-NP-induced motor and cognitive dysfunction that could be mediated via enhancing NRF2-mediated signaling with subsequent amelioration of oxidative stress injury via NRF2 activators, p21 and AMPK, in the striatum, prefrontal cortex, and hippocampus which could offer a promising therapeutic tool to slow the progression of HD.
Collapse
|
4
|
Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules 2021; 26:molecules26030728. [PMID: 33573300 PMCID: PMC7866829 DOI: 10.3390/molecules26030728] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Alkaloids are a class of secondary metabolites that can be derived from plants, fungi and marine sponges. They are widely known as a continuous source of medicine for the management of chronic disease including cancer, diabetes and neurodegenerative diseases. For example, galanthamine and huperzine A are alkaloid derivatives currently being used for the symptomatic management of neurodegenerative disease. The etiology of neurodegenerative diseases is polygenic and multifactorial including but not limited to inflammation, oxidative stress and protein aggregation. Therefore, natural-product-based alkaloids with polypharmacology modulation properties are potentially useful for further drug development or, to a lesser extent, as nutraceuticals to manage neurodegeneration. This review aims to discuss and summarise recent developments in relation to naturally derived alkaloids for neurodegenerative diseases.
Collapse
|
5
|
Parkinson's Disease Master Regulators on Substantia Nigra and Frontal Cortex and Their Use for Drug Repositioning. Mol Neurobiol 2020; 58:1517-1534. [PMID: 33211252 DOI: 10.1007/s12035-020-02203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases. Available evidences support the view of PD as a complex disease, being the outcome of interactions between genetic and environmental factors. In face of diagnosis and therapy challenges, and the elusive PD etiology, the use of alternative methodological approaches for the elucidation of the disease pathophysiological mechanisms and proposal of novel potential therapeutic interventions has become increasingly necessary. In the present study, we first reconstructed the transcriptional regulatory networks (TN), centered on transcription factors (TF), of two brain regions affected in PD, the substantia nigra pars compacta (SNc) and the frontal cortex (FCtx). Then, we used case-control studies data from these regions to identify TFs working as master regulators (MR) of the disease, based on region-specific TNs. Twenty-nine regulatory units enriched with differentially expressed genes were identified for the SNc, and twenty for the FCtx, all of which were considered MR candidates for PD. Three consensus MR candidates were found for SNc and FCtx, namely ATF2, SLC30A9, and ZFP69B. In order to search for novel potential therapeutic interventions, we used these consensus MR candidate signatures as input to the Connectivity Map (CMap), a computational drug repositioning webtool. This analysis resulted in the identification of four drugs that reverse the expression pattern of all three MR consensus simultaneously, benperidol, harmaline, tubocurarine chloride, and vorinostat, thus suggested as novel potential PD therapeutic interventions.
Collapse
|
6
|
Genus Ophiorrhiza: A Review of Its Distribution, Traditional Uses, Phytochemistry, Biological Activities and Propagation. Molecules 2020; 25:molecules25112611. [PMID: 32512727 PMCID: PMC7321107 DOI: 10.3390/molecules25112611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022] Open
Abstract
Almost 50 species of Ophiorrhiza plants were reviewed in this work and the main objective is to critically analyse their distribution, phytochemical content, biological activity, and propagation. Moreover, the information would be useful in promoting the relevant uses of the plant, especially in the medicinal fields based on in vitro and in vivo studies. To this end, scientific sources, including theses, PubMed, Google Scholar, International Islamic University Malaysia IIUM EBSCO, PubChem, and Elsevier, were accessed for publications regarding the Ophiorrhiza genus in this review. Scientific literature regarding the Ophiorrhiza plants revealed their wide distribution across Asia and the neighbouring countries, whereby they were utilised as traditional medicine to treat various diseases. In particular, various active compounds, such as alkaloids, flavonoids, and terpenoids, were reported in the plant. Furthermore, the Ophiorrhiza species showed highly diverse biological activities, such as anti-cancer, antiviral, antimicrobial, and more. The genus propagation reported could produce a high quality and quantity of potent anticancer compound, namely camptothecin (CPT). Hence, it is believed that the relevant uses of natural compounds present in the plants can replace the existing crop of synthetic anticancer drugs associated with a multitude of unbearable side effects. Additionally, more future studies on the Ophiorrhiza species should be undertaken to establish the links between its traditional uses, active compounds, and pharmacological activities reported.
Collapse
|
7
|
Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna) 2020; 127:213-230. [DOI: 10.1007/s00702-019-02133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
|
8
|
Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia 2019; 137:104196. [PMID: 31175948 DOI: 10.1016/j.fitote.2019.104196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Depressive disorders remain a current public health problem whose prevalence has increased in the past decades. In the constant search for new therapeutic alternatives, β-carboline alkaloids have been identified as good candidates for new antidepressant drugs. In this systematic review, we summarized all pre-clinical investigations involving the use of natural or semisynthetic β-carboline in depression models. A literature search was conducted in August 2018, using PubMed, Scopus and Science Direct databases. All reports were carefully analyzed, and data extraction was conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed. The entire systematic review was performed according to PRISMA statement. From a total of 373 articles, 26 met all inclusion criteria. In vitro and in vivo studies have evaluated a wide variety of β-carbolines through enzymatic and binding assays, and acute or chronic animal models. Most of the in vivo and in vitro studies is concentrated on two molecules: harman and harmine. They have been investigated in several animal models and some mechanisms of action have been proposed for their antidepressant activity. In general, β-carbolines modulate 5-HT and GABA systems, promote neurogenesis, induce neuroendocrine response and restore astrocytic function, being effective when administrated acutely or chronically in different animal models, including chronic mild stress protocols. In short, β-carbolines are multi-target antidepressant compounds and may be useful in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Laurent Picot
- Littoral Environnement et Sociétés (LIENSs), Université de La Rochelle, UMRi CNRS 7266, La Rochelle 17042, France
| | | | - Xirley Pereira Nunes
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil.
| |
Collapse
|
9
|
Liu F, Wu J, Gong Y, Wang P, Zhu L, Tong L, Chen X, Ling Y, Huang C. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Prog Neuropsychopharmacol Biol Psychiatry 2017. [PMID: 28625859 DOI: 10.1016/j.pnpbp.2017.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Depression is a world-wide disease with no effective therapeutic methods. Increasing evidence indicates that astrocytic pathology contributes to the formation of depression. In this study, we investigated the effects of harmine, a natural β-carboline alkaloid and potent hallucinogen, known to modulate astrocytic glutamate transporters, on chronic unpredictable stress (CUS)-induced depressive-like behaviors and astrocytic dysfunctions. Results showed that harmine treatment (10, 20mg/kg) protected the mice against the CUS-induced increases in the immobile time in the tail suspension test (TST) and forced swimming test (FST), and also reversed the reduction in sucrose intake in the sucrose preference experiment. Harmine treatment (20mg/kg) prevented the reductions in brain-derived neurotrophic factor (BDNF) protein levels and hippocampal neurogenesis induced by CUS. In addition, harmine treatment (20mg/kg) increased the protein expression levels of glutamate transporter 1 (GLT-1) and prevented the CUS-induced decreases in glial fibrillary acidic protein (GFAP) protein expressions in the prefrontal cortex and hippocampus, suggesting that restoration of astrocytic functions may be a potential mechanism underlying the antidepressant-like effects of harmine. This opinion was proved by the results that administration of mice with l-Alpha-Aminoadipic Acid (L-AAA), a gliotoxin specific for astrocytes, attenuated the antidepressant-like effects of harmine, and prevented the improvement effects of harmine on BDNF protein levels and hippocampal neurogenesis. These results provide further evidence to confirm that astrocytic dysfunction contributes critically to the development of depression and that harmine exerts antidepressant-like effects likely through restoration of astrocytic functions.
Collapse
Affiliation(s)
- Fengguo Liu
- Department of Neurology, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lei Zhu
- Department of Pharmacy, First People's Hospital of Yancheng, Yulong Western Road, Yancheng 224006, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xiangfan Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yong Ling
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
10
|
Correa-Netto NF, Masukawa MY, Nishide F, Galfano GS, Tamura F, Shimizo MK, Marcato MP, Santos JG, Linardi A. An ontogenic study of the behavioral effects of chronic intermittent exposure to ayahuasca in mice. ACTA ACUST UNITED AC 2017; 50:e6036. [PMID: 28591379 PMCID: PMC5463532 DOI: 10.1590/1414-431x20176036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/11/2017] [Indexed: 11/30/2022]
Abstract
Ayahuasca is a beverage obtained from decoctions of the Banisteriopsis caapi plus Psychotria viridis. In religious contexts, ayahuasca is used by different age groups. However, little is known of the effects of ayahuasca during ontogenic development, particularly with regard to the functional characteristics of the central nervous system. Animal models are useful for studying the ontogenic effects of ayahuasca because they allow exclusion of the behavioral influence associated with the ritualistic use. We investigated the effects of exposure to ayahuasca (1.5 mL/kg, orally, twice a week) on memory and anxiety in C57BL/6 mice, with the post-natal day (PND) being used as the ontogenic criterion for classification: childhood (PND21 to PND35), adolescence (PND35 to PND63), adulthood (PND90-PND118), childhood-adolescence (PND21 to PND63), childhood-adulthood (PND21 to PND118) and adolescence-adulthood (PND35 to PND118). One day after the last ayahuasca exposure, the mice were subjected to the Morris water maze (MWM), open field and elevated plus maze tasks (EPM). Ayahuasca did not affect locomotion in the open field or open arms exploration in the EPM, but increased the risk assessment behavior in the childhood group. Ayahuasca did not cause any change in acquisition of spatial reference memory in the MWM task, but decreased the time spent on the platform quadrant during the test session in the adolescence group. These results suggest that, in mice, exposure to ayahuasca in childhood and adolescence promoted anxiety and memory impairment, respectively. However, these behavioral changes were not long-lasting since they were not observed in the childhood-adulthood and adolescence-adulthood groups.
Collapse
Affiliation(s)
- N F Correa-Netto
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - M Y Masukawa
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - F Nishide
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - G S Galfano
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - F Tamura
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - M K Shimizo
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - M P Marcato
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - J G Santos
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| | - A Linardi
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
11
|
López-Orenes A, Bueso MC, Conesa HM, Calderón AA, Ferrer MA. Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:437-447. [PMID: 27750140 DOI: 10.1016/j.scitotenv.2016.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Soil pollution by heavy metals/metalloids (HMMs) is a problem worldwide. To prevent dispersion of contaminated particles by erosion, the maintenance of a vegetative cover is needed. Successful plant establishment in multi-polluted soils can be hampered not only by HMM toxicities, but also by soil nutrient deficiencies and the co-occurrence of abiotic stresses. Some plant species are able to thrive under these multi-stress scenarios often linked to marked fluctuations in environmental factors. This study aimed to investigate the metabolic adjustments involved in Zygophyllum fabago acclimative responses to conditions prevailing in HMM-enriched mine-tailings piles, during Mediterranean spring and summer. To this end, fully expanded leaves, and rhizosphere soil, of three contrasting mining and non-mining populations of Z. fabago grown spontaneously in south-eastern Spain were sampled in two consecutive years. Approximately 50 biochemical, physiological and edaphic parameters were examined, including leaf redox components, primary and secondary metabolites, endogenous levels of salicylic acid, and physicochemical properties of soil (fertility parameters and total concentration of HMMs). Multivariate data analysis showed a clear distinction in antioxidative/oxidative profiles between and within the populations studied. Levels of chlorophylls, proteins and proline characterized control plants whereas antioxidant capacity and C- and S-based antioxidant compounds were biomarkers of mining plants. Seasonal variations were characterized by higher levels of alkaloids and PAL and soluble peroxidase activities in summer, and by soluble sugars and hydroxycinnamic acids in spring irrespective of the population considered. Although the antioxidant systems are subjected to seasonal variations, the way and the intensity with which every population changes its antioxidative/oxidative profile seem to be determined by soil conditions. In short, Z. fabago displays a high physiological plasticity that allow it to successfully shift its metabolism to withstand the multiple stresses that plants must cope with in mine tailings piles under Mediterranean climatic conditions.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Doctor Fleming s/n, ETSII, 30202 Cartagena, Murcia, Spain
| | - Héctor M Conesa
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain.
| |
Collapse
|
12
|
dos Santos RG, Hallak JEC. Effects of the Naturalβ-Carboline Alkaloid Harmine, a Main Constituent of Ayahuasca, in Memory and in the Hippocampus: A Systematic Literature Review of Preclinical Studies. J Psychoactive Drugs 2016; 49:1-10. [DOI: 10.1080/02791072.2016.1260189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rafael G. dos Santos
- Postdoctoral Fellow, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Advisory Board, International Center for Ethnobotanical Education, Research & Service, Barcelona, Spain
- National Institute of Science and Technology, Ribeirão Preto, Brazil
| | - Jaime E. C. Hallak
- Professor, Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Researcher, National Institute of Science and Technology, Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Perviz S, Khan H, Pervaiz A. Plant Alkaloids as an Emerging Therapeutic Alternative for the Treatment of Depression. Front Pharmacol 2016; 7:28. [PMID: 26913004 PMCID: PMC4753303 DOI: 10.3389/fphar.2016.00028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/31/2016] [Indexed: 11/13/2022] Open
Abstract
Depression is a heterogeneous mood disorder that has been classified and treated in a variety of ways. Although, a number of synthetic drugs are being used as standard treatment for clinically depressed patients, but they have adverse effects that can compromise the therapeutic treatments and patient's compliance. Unlike, synthetic medications, herbal medicines are widely used across the globe due to their wide applicability and therapeutic efficacy associated with least side effects, which in turn has initiated the scientific research regarding the antidepressant activity. This review is mostly based on the literature of the last decade, aimed at exploring the preclinical profile of plant-based alkaloids (the abundant secondary metabolite) as an emerging therapy for depression.
Collapse
Affiliation(s)
- Sadia Perviz
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| | - Aini Pervaiz
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| |
Collapse
|
14
|
Chen D, Su A, Fu Y, Wang X, Lv X, Xu W, Xu S, Wang H, Wu Z. Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress. Antiviral Res 2015; 123:27-38. [DOI: 10.1016/j.antiviral.2015.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/16/2022]
|
15
|
Stanković D, Mehmeti E, Svorc L, Kalcher K. New electrochemical method for the determination of β-carboline alkaloids, harmalol and harmine, in human urine samples and in Banisteriopsis caapi. Microchem J 2015. [DOI: 10.1016/j.microc.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:57-66. [PMID: 25240264 DOI: 10.1016/j.plaphy.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Ascensión Martínez-Pérez
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| |
Collapse
|
17
|
Hydroxyl radical reactions and the radical scavenging activity of β-carboline alkaloids. Food Chem 2014; 172:640-9. [PMID: 25442601 DOI: 10.1016/j.foodchem.2014.09.091] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/02/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022]
Abstract
β-Carbolines are bioactive pyridoindole alkaloids occurring in foods, plants and the human body. Their activity as hydroxyl radical (OH) scavengers is reported here by using three different methods: deoxyribose degradation, hydroxylation of benzoate and hydroxylation of 2'-deoxyguanosine to give 8-hydroxy-2'-deoxyguanosine (8-OHdG) as assessed by RP-HPLC (MS). Fenton reactions (Fe(2+)/Fe(3+) plus H2O2) were used for OH generation, and the radical increased in the presence of ascorbic acid or 6-hydroxydopamine as pro-oxidants. β-Carbolines were scavengers of OH in the three assays and in the presence of pro-oxidants. Tetrahydro-β-carboline-3-carboxylic acids were active against the hydroxylation of 2'-deoxyguanosine. β-Carbolines reacted with hydroxyl radicals (OH) affording hydroxy-β-carbolines, whereas tetrahydro-β-carbolines gave oxidative and degradation products. On the basis of IC50 and reaction rates (k), β-carbolines (norharman and harman), and tetrahydro-β-carbolines (tetrahydro-β-carboline, 1-methyltetrahydro-β-carboline and pinoline) were good OH radical scavengers and their activity was comparable to that of the indole, melatonin, which is an effective hydroxyl radical scavenger and antioxidant.
Collapse
Key Words
- 1,2,3,4-Tetrahydro-beta-carboline (PubChem CID: 107838)
- 1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid (PubChem CID: 98285)
- 1-Methyl-1,2,3,4-tetrahydro-beta-carboline (PubChem CID: 91522)
- 1-Methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (PubChem CID: 73530)
- 6-Hydroxydopamine (PubChem CID: 4624)
- 8-Hydroxy-2′-deoxyguanosine
- Antioxidants
- Ascorbic acid (PubChem CID: 54678501)
- Benzoate
- Deoxyribose
- Harman (PubChem CID: 5281404)
- Hydroxyl radical scavengers
- Indoles
- Melatonin
- Melatonin (PubChem CID: 896)
- Norharman (PubChem CID: 64961)
- Pinoline (PubChem CID: 1868)
- Pyridoindoles
- Tetrahydro-β-carbolines
- β-Carboline alkaloids
Collapse
|
18
|
Jaeger RJR, Lamshöft M, Gottfried S, Spiteller M, Spiteller P. HR-MALDI-MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata. JOURNAL OF NATURAL PRODUCTS 2013; 76:127-134. [PMID: 23330951 DOI: 10.1021/np300455a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fruiting bodies of Mycena metata were screened for the presence of new secondary metabolites by means of HPLC-UV, LC-HR-ESIMS, and high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (HR-MALDI-MS imaging). Thus, a new β-carboline alkaloid, 6-hydroxymetatacarboline D (1d), was isolated from fruiting bodies of M. metata. 6-Hydroxymetatacarboline D consists of a highly substituted β-carboline skeleton, which is likely to be derived biosynthetically from l-tryptophan, 2-oxoglutaric acid, l-threonine, and l-proline. The structure of the alkaloid was established by 2D NMR spectroscopic methods and HR-ESIMS. Moreover, by extensive application of LC-HR-ESIMS, LC-HR-ESIMS/MS, and LC-HR-ESIMS(3) techniques we were able to elucidate the structures of a number of accompanying β-carboline alkaloids, 1a-1c, 1e-1i, and 2a-2g, structurally closely related to 6-hydroxymetatacarboline D, which are present in M. metata in minor amounts. The absolute configuration of the stereogenic centers of the β-carboline alkaloids was determined by GC-MS comparison with authentic synthetic samples after hydrolytic cleavage and derivatization of the resulting amino acids.
Collapse
Affiliation(s)
- Robert J R Jaeger
- Institut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße NW2C, Bremen, Germany
| | | | | | | | | |
Collapse
|
19
|
Brierley DI, Davidson C. Developments in harmine pharmacology--implications for ayahuasca use and drug-dependence treatment. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:263-72. [PMID: 22691716 DOI: 10.1016/j.pnpbp.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/16/2012] [Accepted: 06/03/2012] [Indexed: 12/14/2022]
Abstract
Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions.
Collapse
Affiliation(s)
- Daniel I Brierley
- Pharmacology & Cell Physiology, Division of Biomedical Science, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | |
Collapse
|
20
|
Herraiz T. Evaluation of the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to toxic pyridinium cations by monoamine oxidase (MAO) enzymes and its use to search for new MAO inhibitors and protective agents. J Enzyme Inhib Med Chem 2012; 27:810-7. [PMID: 21992679 DOI: 10.3109/14756366.2011.616946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish National Research Council, (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Madrid, Spain.
| |
Collapse
|
21
|
Intracerebral injection of low amounts of norharman induces moderate Parkinsonism-like behavioral symptoms in rat. Neurotoxicol Teratol 2012; 34:489-94. [PMID: 22789434 DOI: 10.1016/j.ntt.2012.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 06/05/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
β-Carbolines (BCs) are considered to be endogenous toxins and have been proposed as possible causative candidates inducing Parkinson's disease (PD). However, there is controversy about the effect and also effective dose of these compounds in the etiology of PD. This study was designed to further examine the effect of norharman (NH), a BC which in mammalian brain occurs at high levels in the substantia nigra, on the development of Parkinsonism-like behaviors in rats. A small amount (4μl) of NH solution at 2 or 200ng/ml was unilaterally injected into either striatum or substantia nigra (SN) by stereotaxic surgery. The development of Parkinsonism was assessed by three conventional behavioral tests, compared to the effects of unilateral 6-hydroxydopamine (6-OHDA) - induced lesions in the nigrostriatal pathway. An apomorphine-induced rotational test revealed no Parkinsonism-like behavior in the NH treated groups. However, rats that received the high concentration of NH into their SN showed significant biased swings in the elevated body swing test. In a rotarod test, NH treated groups showed relatively weak motor performance and their learning patterns were close to that of the 6-OHDA treated rats. Considering that the rotational test is only valid in animals with severe Parkinsonism, but time spent on the rotating rod correlates inversely with severity of Parkinsonism, our results indicate that a single exposure to low amounts of NH is effective in producing moderate Parkinsonism-like behavioral symptoms, possibly through a neurotoxic effect of this agent on the SN dopaminergic neurons.
Collapse
|
22
|
Administration of harmine and imipramine alters creatine kinase and mitochondrial respiratory chain activities in the rat brain. DEPRESSION RESEARCH AND TREATMENT 2012; 2012:987397. [PMID: 21969912 PMCID: PMC3182396 DOI: 10.1155/2012/987397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/29/2011] [Indexed: 12/17/2022]
Abstract
The present study evaluated mitochondrial respiratory chain and creatine kinase activities after administration of harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rat brain. After acute treatment occurred an increase of creatine kinase in the prefrontal with imipramine (20 and 30 mg/kg) and harmine in all doses, in the striatum with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg); harmine (15 mg/kg) decreased creatine kinase. In the chronic treatment occurred an increase of creatine kinase with imipramine (20 mg/kg), harmine (5 mg/kg) in the prefrontal with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg) in the striatum. In the acute treatment, the complex I increased in the prefrontal with harmine (15 mg/kg) and in the striatum with harmine (10 mg/kg); the complex II decreased with imipramine (20 and 30 mg/kg) in the striatum; the complex IV increased with imipramine (30 mg/kg) in the striatum. In the chronic treatment, the complex I increased with harmine (5 mg/kg) in the prefrontal; the complex II increased with imipramine (20 mg/kg) in the prefrontal; the complex IV increased with harmine (5 mg/kg) in the striatum. Finally, these findings further support the hypothesis that harmine and imipramine could be involved in mitochondrial function.
Collapse
|
23
|
Novel β-carboline-tripeptide conjugates attenuate mesenteric ischemia/reperfusion injury in the rat. Eur J Med Chem 2011; 46:2441-52. [DOI: 10.1016/j.ejmech.2011.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 12/24/2022]
|
24
|
A new class of β-carboline alkaloid-peptide conjugates with therapeutic efficacy in acute limb ischemia/reperfusion injury. Eur J Med Chem 2011; 46:1453-62. [DOI: 10.1016/j.ejmech.2011.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/31/2010] [Accepted: 01/12/2011] [Indexed: 12/14/2022]
|
25
|
Haghdoost-Yazdi H, Hosseini SS, Faraji A, Nahid D, Jahanihashemi H. Long term exposure to norharman exacerbates 6-hydroxydopamine-induced parkinsonism: Possible involvement of L-type Ca2+ channels. Behav Brain Res 2010; 215:136-40. [DOI: 10.1016/j.bbr.2010.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/04/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
|
26
|
Nakagawa Y, Suzuki T, Ishii H, Ogata A, Nakae D. Mitochondrial dysfunction and biotransformation of β-carboline alkaloids, harmine and harmaline, on isolated rat hepatocytes. Chem Biol Interact 2010; 188:393-403. [DOI: 10.1016/j.cbi.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
27
|
Réus GZ, Stringari RB, de Souza B, Petronilho F, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:325-31. [PMID: 21150338 PMCID: PMC3154037 DOI: 10.4161/oxim.3.5.13109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 02/07/2023]
Abstract
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the β-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and β-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Laboratório de Neurociências, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberto B. Stringari
- Laboratório de Neurociências, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna de Souza
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, SP, Brazil
| | - Fabrícia Petronilho
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, SP, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, SP, Brazil
| | - Jaime E. Hallak
- Departamento de Neurocincias e Ciências do Comportamento, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio W. Zuardi
- Departamento de Neurocincias e Ciências do Comportamento, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José A. Crippa
- Departamento de Neurocincias e Ciências do Comportamento, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol 2010; 634:77-83. [PMID: 20188725 DOI: 10.1016/j.ejphar.2010.02.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 01/19/2010] [Accepted: 02/08/2010] [Indexed: 11/22/2022]
Abstract
Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. In animals, it has been reported to affect short and long term memory. In the present study, effects of dopamine D1 and D2 receptor antagonists on the harmane (HA)-induced amnesia and exploratory behaviors were examined in mice. One-trial step-down and hole-board paradigms were used for the assessment of memory retention and exploratory behaviors in adult male NMRI mice respectively. Intraperitoneal (i.p.) administration of HA (5 and 10 mg/kg) immediately after training decreased memory consolidation, while had no effect on anxiety-like behavior. Memory retrieval was not altered by 15- or 30 min pre-testing administration of the D1 (SCH23390, 0.025, 0.05 and 0.1 mg/kg) or D2 (sulpiride 12.5, 25 and 50 mg/kg) receptor antagonists, respectively. In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation.
Collapse
|
29
|
Berrougui H, Isabelle M, Cloutier M, Hmamouchi M, Khalil A. Protective effects of Peganum harmala L. extract, harmine and harmaline against human low-density lipoprotein oxidation. J Pharm Pharmacol 2010; 58:967-74. [PMID: 16805957 DOI: 10.1211/jpp.58.7.0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
Oxidative modification of low-density lipoprotein (LDL) particles has been implicated in the process of atherogenesis. Antioxidants that prevent LDL from oxidation may reduce atherosclerosis. We have investigated the protective effect of Peganum harmala-extract (P-extract) and the two major alkaloids (harmine and harmaline) from the seeds of P. harmala against CuSO4-induced LDL oxidation. Through determination of the formation of malondialdehyde (MDA) and conjugated diene as well as the lag phase, the extract (P-extract) and compounds were found to possess an inhibitory effect. Moreover, harmaline and harmine reduced the rate of vitamin E disappearance and exhibited a significant free radical scavenging capacity (DPPH•). However, harmaline had a markedly higher antioxidant capacity than harmine in scavenging or preventive capacity against free radicals as well as inhibiting the aggregation of the LDL protein moiety (apolipoprotein B) induced by oxidation. The results suggested that P. harmala compounds could be a major source of compounds that inhibit LDL oxidative modification induced by copper.
Collapse
Affiliation(s)
- Hicham Berrougui
- Research Centre on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke J1H 4C4, Canada (QC).
| | | | | | | | | |
Collapse
|
30
|
Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Stertz L, Kapczinski F, Pinto JP, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Acute harmine administration induces antidepressive-like effects and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1425-30. [PMID: 19632287 DOI: 10.1016/j.pnpbp.2009.07.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 01/22/2023]
Abstract
Harmine is a beta-carboline alkaloid that inhibits monoamine reuptake systems. Findings point to an antidepressant effect of the compounds that increases the levels of monoamines after monoamine oxidase inhibition. The present study aims to compare the behavioral effects and the BDNF hippocampus levels of acute administration of harmine and imipramine in rats. To this aim, rats were acutely treated with harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) and animal behavior was assessed in the forced swimming and open-field tests. Afterwards, hippocampal BDNF protein levels were assessed in imipramine- and harmine-treated rats by ELISA-sandwich assay. We observed that harmine at doses of 10 and 15 mg/kg, and imipramine at 20 and 30 mg/kg reduced immobility time, and increased both climbing and swimming time of rats compared to saline group, without affecting locomotor activity. Acute administration of harmine at the higher dose, but not imipramine, increased BDNF protein levels in the rat hippocampus. Finally, these findings further support the hypothesis that harmine could be a new pharmacological target for the treatment of mood disorders.
Collapse
Affiliation(s)
- Jucélia J Fortunato
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fortunato JJ, Réus GZ, Kirsch TR, Stringari RB, Fries GR, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Effects of beta-carboline harmine on behavioral and physiological parameters observed in the chronic mild stress model: further evidence of antidepressant properties. Brain Res Bull 2009; 81:491-6. [PMID: 19772900 DOI: 10.1016/j.brainresbull.2009.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 11/30/2022]
Abstract
The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of beta-carboline harmine in rats exposed to CMS procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression.
Collapse
Affiliation(s)
- Jucélia J Fortunato
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Neurotrophin-3 reduces apoptosis induced by 6-OHDA in PC12 cells through Akt signaling pathway. Int J Dev Neurosci 2008; 26:635-40. [PMID: 18462913 DOI: 10.1016/j.ijdevneu.2008.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 11/22/2022] Open
Abstract
Previous work has demonstrated that 6-hydroxydopamine (6-OHDA) induces apoptosis in PC12 cells. The goal of the present study was to investigate the mechanisms underlying the protection by neurotrophin-3 (NT-3) against 6-OHDA-induced apoptosis in PC12 cells. Treatment of PC12 cells with 6-OHDA resulted in activation of caspase-3 and subsequent apoptosis, as detected by TUNEL staining. In addition, Akt phosphorylation was decreased following 6-OHDA treatment. Pretreatment with NT-3 reduced the percentage of apoptotic cells and caspase-3 activity induced by 6-OHDA and suppressed the cleavage of caspase-3 and Poly(ADP-ribose) polymerase (PARP) with a significant decrease in cell viability. Moreover, Akt phosphorylation was enhanced and 6-OHDA-induced chromatin condensation was suppressed by NT-3. Such NT-3-evoked suppression in chromatin condensation was reversed by anti-TrkA antibody receptor blockade. Further study revealed that LY294002, an inhibitor of PI3-kinase (a molecule upstream of Akt), enhanced 6-OHDA-induced apoptosis. These data indicate that NT-3 prevents 6-OHDA-induced apoptosis in PC12 cells via activation of PI3-kinase/Akt pathway.
Collapse
|
33
|
Bonnet U, Scherbaum N, Wiemann M. The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:362-7. [PMID: 17904720 DOI: 10.1016/j.pnpbp.2007.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 08/28/2007] [Accepted: 08/31/2007] [Indexed: 11/26/2022]
Abstract
RATIONALE The endogenous alkaloid harmane is enriched in plasma of patients with neurodegenerative or addictive disorders. As harmane affects neuronal activity and viability and because both parameters are strongly influenced by intracellular pH (pH(i)), we tested whether effects of harmane are correlated with altered pH(i) regulation. METHODS AND RESULTS Pyramidal neurons in the CA3 field of hippocampal slices were investigated under bicarbonate-buffered conditions. Harmane (50 and 100 microM) reversibly decreased spontaneous firing of action potentials and caffeine-induced bursting of CA3 neurons. In parallel experiments, 50 and 100 microM harmane evoked a neuronal acidification of 0.12+/-0.08 and 0.18+/-0.07 pH units, respectively. Recovery from intracellular acidification subsequent to an ammonium prepulse was also impaired, suggesting an inhibition of transmembrane acid extrusion by harmane. CONCLUSION Harmane may modulate neuronal functions via altered pH(i)-regulation. Implications of these findings for neuronal survival are discussed.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Addictive Behaviour and Addiction Medicine, University of Duisburg/Essen, Virchowstr. 174, D-45147 Essen, Germany.
| | | | | |
Collapse
|
34
|
Chattopadhyay D, Das S, Mandal AB, Arunachalam G, Bhattacharya SK. Evaluation of analgesic and antiinflammatory activity of Ophiorrhiza nicobarica, an ethnomedicine from Nicobar Islands, India. ACTA ACUST UNITED AC 2007. [DOI: 10.3742/opem.2007.7.4.395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Iwatsubo K, Suzuki S, Li C, Tsunematsu T, Nakamura F, Okumura S, Sato M, Minamisawa S, Toya Y, Umemura S, Ishikawa Y. Dopamine induces apoptosis in young, but not in neonatal, neurons via Ca2+-dependent signal. Am J Physiol Cell Physiol 2007; 293:C1498-508. [PMID: 17804610 DOI: 10.1152/ajpcell.00088.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.
Collapse
Affiliation(s)
- Kousaku Iwatsubo
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moura DJ, Richter MF, Boeira JM, Pêgas Henriques JA, Saffi J. Antioxidant properties of -carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 2007; 22:293-302. [PMID: 17545209 DOI: 10.1093/mutage/gem016] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The beta-carboline alkaloids found in medical plants and in a variety of foods, beverages and cigarette smoke have a range of action in various biological systems. In vitro studies have demonstrated that these alkaloids can act as scavengers of reactive oxygen species. In this paper, we report the in vivo antioxidative properties of the aromatic (harmane, harmine, harmol) and dihydro-beta-carbolines (harmaline and harmalol) studied by using Saccharomyces cerevisiae strains proficient and deficient in antioxidant defenses. Their antimutagenic activity was also assayed in S. cerevisiae and the antigenotoxicity was tested by the comet assay in V79 cell line, when both eukaryotic systems were exposed to H(2)O(2). We show that the alkaloids have a significant protective effect against H(2)O(2) and paraquat oxidative agents in yeast cells, and that their ability to scavenge hydroxyl radicals contributes to their antimutagenic and antigenotoxic effects.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
37
|
Moura DJ, Rorig C, Vieira DL, Henriques JAP, Roesler R, Saffi J, Boeira JM. Effects of β-carboline alkaloids on the object recognition task in mice. Life Sci 2006; 79:2099-104. [PMID: 16904699 DOI: 10.1016/j.lfs.2006.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/21/2006] [Accepted: 07/05/2006] [Indexed: 11/24/2022]
Abstract
beta-carboline alkaloids are found in several medicinal plants and display a variety of actions on the central nervous, muscular and cardiovascular systems. The aim of the present study was to evaluate the effects of systemic administration of beta-carboline alkaloids on object recognition in mice. Adult Swiss mice received an intra-peritoneal injection (i.p.) of alkaloids (1.0, 2.5 or 5.0 mg/kg) 30 min before training in an object recognition task. The fully aromatic beta-carbolines, harmine and harmol, induced an enhancement of short-term memory (STM) at all doses tested when compared to controls. Harmaline, a dihydro beta-carboline and inverse agonist of the MK-801 binding site on the N-methyl-d-aspartate (NMDA) receptor, also induced an enhancement of both short-term memory (STM) and long-term memory (LTM). These results demonstrate that systemic administration of beta-carboline alkaloids can improve object recognition memory in mice.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Fujita H, Ogino T, Kobuchi H, Fujiwara T, Yano H, Akiyama J, Utsumi K, Sasaki J. Cell-permeable cAMP analog suppresses 6-hydroxydopamine-induced apoptosis in PC12 cells through the activation of the Akt pathway. Brain Res 2006; 1113:10-23. [PMID: 16945353 DOI: 10.1016/j.brainres.2006.06.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 06/13/2006] [Accepted: 06/18/2006] [Indexed: 12/31/2022]
Abstract
Although cAMP protects neuronal cells from various apoptotic stimulations, its mechanism is not fully elucidated. We report here the molecular mechanism of the 6-hydroxydopamine (6-OHDA)-induced apoptosis of pheochromocytoma PC12 cells and its suppression by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (pCPT-cAMP), which is a membrane permeable cAMP analog. Treatment of PC12 cells with 6-OHDA resulted in the activation of caspases and apoptosis, as detected by chromatin condensation. 6-OHDA also induced superoxide generation, Bid cleavage and mitochondrial membrane depolarization. In addition, Akt phosphorylation that was favorable to cell survival was decreased and p38 MAPK phosphorylation was increased by 6-OHDA. PC12 cell apoptosis was inhibited by pCPT-cAMP, Z-VAD-fmk (a broad-range caspase inhibitor) and tiron (a superoxide scavenger), although PC12 cell apoptosis was not inhibited by cyclosporine A (an inhibitor of mitochondrial membrane permeability transition). Moreover, pCPT-cAMP promoted Akt phosphorylation, but it did not prevent superoxide generation and mitochondrial membrane depolarization. Conversely, LY294002, an inhibitor of Akt upstream molecule PI3-kinase, enhanced 6-OHDA-induced apoptosis. These results indicated that the 6-OHDA-induced apoptosis of PC12 cells was initiated by superoxide generation followed by caspase cascade activation, which was associated with the suppressed Akt phosphorylation and increased p38 phosphorylation. It is likely that pCPT-cAMP prevented the 6-OHDA-induced apoptosis via activation of the PI3-kinase/Akt pathway without any effect on superoxide generation or mitochondrial membrane depolarization.
Collapse
Affiliation(s)
- Hirofumi Fujita
- Institute of Medical Science, Kurashiki Medical Center, Kurashiki 710-8522,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee DH, Han YS, Han ES, Bang H, Lee CS. Differential Involvement of Intracellular Ca2+ in 1-Methyl-4-phenylpyridinium- or 6-Hydroxydopamine-Induced Cell Viability Loss in PC12 Cells. Neurochem Res 2006; 31:851-60. [PMID: 16804760 DOI: 10.1007/s11064-006-9088-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP(+)) or 6-hydroxydopamine (6-OHDA) caused a nuclear damage, the mitochondrial membrane permeability changes, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in PC12 cells. Nicardipine (a calcium channel blocker), EGTA (an extracellular calcium chelator), BAPTA-AM (a cell permeable calcium chelator) and calmodulin antagonists (W-7 and calmidazolium) attenuated the MPP(+)-induced mitochondrial damage and cell death. In contrast, the compounds did not reduce the toxicity of 6-OHDA. Treatment with MPP(+ )or 6-OHDA evoked the elevation of intracellular Ca(2+) levels. Unlike cell injury, addition of nicardipine, BAPTA-AM and calmodulin antagonists prevented the elevation of intracellular Ca(2+) levels due to both toxins. The results show that the MPP(+)-induced formation of the mitochondrial permeability transition seems to be mediated by elevation of intracellular Ca(2+) levels and calmodulin action. In contrast, the 6-OHDA-induced cell death seems to be mediated by Ca(2+)-independent manner.
Collapse
Affiliation(s)
- Dong Hee Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756, South Korea
| | | | | | | | | |
Collapse
|
40
|
Lee CS, Park WJ, Ko HH, Han ES. Differential Involvement of Mitochondrial Permeability Transition in Cytotoxicity of 1-Methyl-4-Phenylpyridinium and 6-Hydroxydopamine. Mol Cell Biochem 2006; 289:193-200. [PMID: 16625421 DOI: 10.1007/s11010-006-9164-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP(+)) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP(+) and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP(+)-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP(+), the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP(+) may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea.
| | | | | | | |
Collapse
|
41
|
Wang X, Chen S, Ma G, Ye M, Lu G. Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mech Ageing Dev 2005; 126:1241-54. [PMID: 16112714 DOI: 10.1016/j.mad.2005.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/25/2005] [Accepted: 06/30/2005] [Indexed: 02/03/2023]
Abstract
Increasing evidences suggest that activated microglia may contribute to neurodegeneration in Parkinson's disease (PD). In the present study, primary ventral mesencephalic (VM) cultures from E14 rats and PC12 cells were utilized as in vitro models to examine the mechanism underlying microglia activation mediated dopaminergic neurodegeneration. Using lipopolysaccharide (LPS) (1-100 ng/ml) as a tool, we observed that microglia activation-mediated a selective dopaminergic neurodegeneration in VM neuron-glia cultures, which was supported by the further study showing that conditioned medium (CM) from microglia-enriched cultures treated with LPS (10-100 ng/ml) decreased PC12 cell viability. The results from antibody neutralization, NO inhibition and superoxide neutralization suggested that the dopaminergic cell death was due to the production of microglia-derived proinflammatory factors (TNF-alpha, NO and superoxide), among which reactive oxygen species (ROS) might outweigh proinflammatory cytokines. Apoptosis assay on PC12 cells and primary dopaminergic neurons showed that apoptosis was a mechanism for both microglia activation-mediated dopaminergic cell death. Through Western blot and immunocytochemistry, we found that caspase-3 activation was involved in both dopaminergic cell injuries. Finally, the results from laser scanning confocal microscope demonstrated that PC12 cell intracellular free Ca(2+) ([Ca(2+)](i)) increased early after CM treatment. [Ca(2+)](i) increase involved influx of calcium from the extracellular milieu and release from intracellular stores and participated in the CM-induced PC12 cell apoptosis. Further investigations indicated that TNF-alpha, IL-1beta, NO and superoxide contributed at different degrees to CM-induced [Ca(2+)](i) increase and apoptosis in PC12 cells. Using primary VM cultures and PC12 cells, our study shows the roles of proinflammatory factors, apoptosis, caspase-3 activation and Ca(2+) disturbance in microglia activation-mediated dopaminergic cell degeneration. Understanding the mechanism for microglia activation-mediated dopaminergic neurodegeneration may contribute to the development of new neuroprotective strategies against PD.
Collapse
Affiliation(s)
- Xijin Wang
- Department of Neurology & Institute of Neurology, Clinical & Research Center for Parkinson Disease, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, PR China
| | | | | | | | | |
Collapse
|
42
|
Bahat-Stroomza M, Gilgun-Sherki Y, Offen D, Panet H, Saada A, Krool-Galron N, Barzilai A, Atlas D, Melamed E. A novel thiol antioxidant that crosses the blood brain barrier protects dopaminergic neurons in experimental models of Parkinson's disease. Eur J Neurosci 2005; 21:637-46. [PMID: 15733082 DOI: 10.1111/j.1460-9568.2005.03889.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is believed that oxidative stress (OS) plays an important role in the loss of dopaminergic nigrostriatal neurons in Parkinson's disease (PD) and that treatment with antioxidants might be neuroprotective. However, most currently available antioxidants cannot readily penetrate the blood brain barrier after systemic administration. We now report that AD4, the novel low molecular weight thiol antioxidant and the N-acytel cysteine (NAC) related compound, is capable of penetrating the brain and protects neurons in general and especially dopaminergic cells against various OS-generating neurotoxins in tissue cultures. Moreover, we found that treatment with AD4 markedly decreased the damage of dopaminergic neurons in three experimental models of PD. AD4 suppressed amphetamine-induced rotational behaviour in rats with unilateral 6-OHDA-induced nigral lesion. It attenuated the reduction in striatal dopamine levels in mice treated with 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP). It also reduced the dopaminergic neuronal loss following chronic intrajugular administration of rotenone in rats. Our findings suggest that AD4 is a novel potential new neuroprotective drug that might be effective at slowing down nigral neuronal degeneration and illness progression in patients with PD.
Collapse
Affiliation(s)
- Merav Bahat-Stroomza
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, Petah-Tikva 49100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Vettori MV, Caglieri A, Goldoni M, Castoldi AF, Darè E, Alinovi R, Ceccatelli S, Mutti A. Analysis of oxidative stress in SK-N-MC neurons exposed to styrene-7,8-oxide. Toxicol In Vitro 2005; 19:11-20. [PMID: 15582351 DOI: 10.1016/j.tiv.2004.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
Styrene-7,8-oxide (SO) is the main metabolite of styrene, a neurotoxic volatile organic compound used industrially. Here we report the novel observation that several markers of oxidative stress were affected in SK-N-MC cells exposed for 16 h to concentrations of SO that induce apoptotic cell death. The production of Thiobarbituric Acid Reactive Substances (TBARS), rose from 69.1 +/- 15.7 nmol/g protein (control) to 119.3 +/- 39.2 and 102.0 +/- 17.3 nmol/g protein after exposure to 0.3 and 1 mM SO, respectively. Carbonyl group levels were significantly enhanced by SO at both concentrations. The lower dose also decreased sulphydryl groups. SO caused a marked oxidative DNA damage, as shown by a fivefold increase in 8-hydroxy-2(')-deoxyguanosine (8-OHdG). In addition, SO exposure resulted in alterations of scavenging abilities, given the reduction of both glutathione (GSH) and glutathione-S-transferase (GST) activity. Induction of expression of the oxidative stress response gene heme-oxygenase-1 (HO-1) and an increased HO-1 activity were also observed. These data provide compelling evidence that oxidative stress significantly contributes to SO toxicity in neuronal cells.
Collapse
Affiliation(s)
- M V Vettori
- ISPESL Research Center at the University of Parma, via Gramsci 14, Parma 43100, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Han YS, Kim JM, Cho JS, Lee CS, Kim DE. Comparison of the Protective Effect of Indole beta-carbolines and R-(-)-deprenyl Against Nitrogen Species-Induced Cell Death in Experimental Culture Model of Parkinson's Disease. J Clin Neurol 2005; 1:81-91. [PMID: 20396475 PMCID: PMC2854935 DOI: 10.3988/jcn.2005.1.1.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 02/07/2005] [Indexed: 11/17/2022] Open
Abstract
Background The membrane permeability transition of mitochondria has been suggested to be involved in toxic and oxidative forms of cell injury. Mitochondrial dysfunction is considered to play a critical role in neurodegeneration in Parkinson's disease. Despite the suggestion that indole β-carbolines may be neurotoxic, these compounds provide a protective effect against cytotoxicity of other neurotoxins. In addition, the effect of indole β-carbolines on change in the mitochondrial membrane permeability due to reactive nitrogen species (RNS), which may lead to cell death, has not been clarified. Methods Differentiated PC12 cells were used as the experimental culture model for the investigation of neuronal cell injury, which occurs in Parkinson's disease. The effect of indole β-carbolines (harmalol and harmine) on differentiated PC12 cells against toxicity of S-nitroso-N-acetyl-DL-penicillamine (SNAP) was determined by measuring the effect on the change in transmembrane potential, cytochrome c release, formation of ROS, GSH contents, caspase-3 activity and cell viability, and was compared to that of R-(-)-deprenyl. Results Specific inhibitors of caspases (z-LEHD.fmk, z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell death in PC12 cells due to SNAP. β-Carbolines and R-(-)-deprenyl attenuated the SNAP-induced cell death and GSH depletion concentration dependently with a maximal inhibitory effect at 25-50 µM. The compounds inhibited the nuclear damage, decrease in mitochondrial transmembrane potential, cytochrome c release and formation of reactive oxygen species caused by SNAP in PC12 cells. β-Carbolines and R-(-)-deprenyl attenuated the H2O2-induced cell death and depletion of GSH. Conclusions The results suggest that indole β-carbolines attenuate the SNAP-induced viability loss in PC12 cells by inhibition of change in the mitochondrial membrane permeability, which may be caused by free radicals. Indole β-carbolines appear to exert a protective effect against the nitrogen species-mediated neuronal cell injury in Parkinson's disease comparable to R-(-)-deprenyl.
Collapse
Affiliation(s)
- Young-Su Han
- Department of Neurology, Seoul Veterans Hospital, Seoul, Korea
| | | | | | | | | |
Collapse
|
45
|
Splettstoesser F, Bonnet U, Wiemann M, Bingmann D, Büsselberg D. Modulation of voltage-gated channel currents by harmaline and harmane. Br J Pharmacol 2005; 144:52-8. [PMID: 15644868 PMCID: PMC1575976 DOI: 10.1038/sj.bjp.0706024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/14/2004] [Accepted: 09/16/2004] [Indexed: 11/09/2022] Open
Abstract
Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABA(A) receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (I(Ca(V))), sodium- (I(Na(V))) and potassium (I(K(V)))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced I(Ca(V)), I(Na(V)) and I(K(V)) concentration-dependent (10-500 microM) over the voltage range tested. I(Ca(V)) was reduced with an IC(50) of 100.6 microM for harmaline and by a significantly lower concentration of 75.8 microM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 microM for both substances. The steady state of inhibition of I(Ca(V)) by harmaline or harmane was reached within several minutes. The action was not use-dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (I(Ca(L+N))), while the transient voltage-gated calcium channel current (I(Ca(T))) was only partially affected. We conclude that harmaline and harmane are modulators of I(Ca(V)) in vitro. This might be related to their neuroprotective effects.
Collapse
Affiliation(s)
- Frank Splettstoesser
- Institut für Physiologie, Universitätsklinikum Essen, Universität-Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Udo Bonnet
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Essen, Universität Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Martin Wiemann
- Institut für Physiologie, Universitätsklinikum Essen, Universität-Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Dieter Bingmann
- Institut für Physiologie, Universitätsklinikum Essen, Universität-Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Dietrich Büsselberg
- Institut für Physiologie, Universitätsklinikum Essen, Universität-Duisburg Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
46
|
Reglodi D, Tamás A, Lubics A, Szalontay L, Lengvári I. Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. ACTA ACUST UNITED AC 2004; 123:85-94. [PMID: 15518897 DOI: 10.1016/j.regpep.2004.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) has several different actions in the nervous system, including neuroprotective effects. In the present study, we investigated the effects of different doses of PACAP on the functional and morphological outcome in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 1, 0.1 or 0.01 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days post-lesion when compared to normal animals or those receiving saline only. PACAP treatment resulted in less severe acute hypokinesia, and complete recovery by 10 days. Asymmetrical signs were observed in all lesioned animals 1 day post-lesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Best behavioral outcome was observed in animals treated with 0.1 microg PACAP. Tyrosine-hydroxylase (TH) immunohistochemistry revealed increased number of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area in all PACAP-treated rats in contrast to the severe cell loss in control animals. These results indicate that PACAP may be a promising therapeutic agent in Parkinson's disease.
Collapse
Affiliation(s)
- Dóra Reglodi
- Department of Anatomy, Pécs University Medical Faculty and Neurohumoral Regulations Research Group of the Hungarian Academy of Sciences, Szigeti u 12, 7624 Pécs, Hungary.
| | | | | | | | | |
Collapse
|
47
|
Lee CS, Han ES, Lee WB. Antioxidant effect of phenelzine on MPP+-induced cell viability loss in differentiated PC12 cells. Neurochem Res 2004; 28:1833-41. [PMID: 14649725 DOI: 10.1023/a:1026119708124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenelzine, deprenyl, and antioxidants (SOD, catalase, ascorbate, or rutin) reduced the loss of cell viability in differentiated PC12 cells treated with 250 microM MPP+, whereas N-acetylcysteine and dithiothreitol did not inhibit cell death. Phenelzine reduced the condensation and fragmentation of nuclei caused by MPP+ in PC12 cells. Phenelzine and deprenyl prevented the MPP+-induced decrease in mitochondrial membrane potential, cytochrome c release, formation of reactive oxygen species, and depletion of GSH in PC12 cells. Phenelzine revealed a scavenging action on hydrogen peroxide and reduced the hydrogen peroxide-induced cell death in PC12 cells, whereas deprenyl did not depress the cytotoxic effect of hydrogen peroxide. Both compounds reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose degradation. The results suggest that phenelzine attenuates the MPP+-induced viability loss in PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, South Korea.
| | | | | |
Collapse
|
48
|
Lee CS, Song EH, Park SY, Han ES. Combined effect of dopamine and MPP+ on membrane permeability in mitochondria and cell viability in PC12 cells. Neurochem Int 2003; 43:147-54. [PMID: 12620283 DOI: 10.1016/s0197-0186(02)00214-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined the combined effect of dopamine and 1-methyl-4-phenylpyridinium (MPP(+)) on the membrane permeability in isolated brain mitochondria and on cell viability in PC12 cells. MPP(+) increased effect of dopamine against the swelling, membrane potential, and Ca(2+) transport in isolated mitochondria, which was not inhibited by the addition of antioxidant enzymes (SOD and catalase). Dopamine or MPP(+) caused the decrease in transmembrane potential, increase in reactive oxygen species, depletion of GSH, and cell death in PC12 cells. Antioxidant enzymes reduced each effect of dopamine and MPP(+) against PC12 cells. Co-addition of dopamine and MPP(+) caused the decrease in the transmembrane potential and increase in the formation of reactive oxygen species in PC12 cells, in which they showed an additive effect. Dopamine plus MPP(+)-induced the depletion of GSH and cell death in PC12 cells were not decreased by the addition of antioxidant enzymes, rutin, diethylstilbestrol, and ascorbate. Melanin caused a cell viability loss in PC12 cells. The N-acetylcysteine, N-phenylthiourea, and 5-hydroxyindole decreased the cell death and the formation of dopamine quinone and melanin induced by co-addition of dopamine and MPP(+), whereas deprenyl and chlorgyline did not show an inhibitory effect. The results suggest that co-addition of dopamine and MPP(+) shows an enhancing effect on the change in mitochondrial membrane permeability and cell death, which may be accomplished by toxic quinone and melanin derived from the MPP(+)-stimulated dopamine oxidation.
Collapse
Affiliation(s)
- Chung Soo Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, 156-756, Seoul, South Korea.
| | | | | | | |
Collapse
|
49
|
Park TH, Kwon OS, Park SY, Han ES, Lee CS. N-methylated beta-carbolines protect PC12 cells from cytotoxic effect of MPP+ by attenuation of mitochondrial membrane permeability change. Neurosci Res 2003; 46:349-58. [PMID: 12804796 DOI: 10.1016/s0168-0102(03)00097-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of beta-carbolines (harmaline and harmalol) on the MPP(+)-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. beta-Carbolines and antioxidants (superoxide dismutase, catalase, ascorbate or rutin) prevented the loss of cell viability in PC12 cells treated with 250 microM MPP(+), while the effects of N-acetylcysteine and dithiothreitol were not observed. beta-Carbolines reduced the condensation and fragmentation of nuclei caused by MPP(+) in PC12 cells. beta-Carbolines alone did not exhibit a significant cytotoxic effect on PC12 cells. beta-Carbolines (50 microM) inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, activation of caspase-3, formation of reactive oxygen species (ROS) and depletion of GSH caused by MPP(+) in PC12 cells. beta-Carbolines reduced the hydrogen peroxide- or SIN-1-induced cell death in PC12 cells. The results suggest that beta-carbolines may attenuate the MPP(+)-induced viability loss in PC12 cells by inhibition of change in the mitochondrial membrane permeability and by antioxidant effect.
Collapse
Affiliation(s)
- Tai Hwan Park
- Department of Neurology, College of Medicine, Chung-Ang University, 156-756, Seoul, South Korea
| | | | | | | | | |
Collapse
|
50
|
Higashi Y, Asanuma M, Miyazaki I, Haque ME, Fujita N, Tanaka KI, Ogawa N. The p53-activated gene, PAG608, requires a zinc finger domain for nuclear localization and oxidative stress-induced apoptosis. J Biol Chem 2002; 277:42224-32. [PMID: 12196512 DOI: 10.1074/jbc.m203594200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53-activated gene PAG608, which encodes a nuclear zinc finger protein, is a p53-inducible gene that contributes to p53-mediated apoptosis. However, the mechanisms by which PAG608 is involved in the apoptosis of neuronal cells are still obscure. In this study, we demonstrated that expression of p53 was induced by 100 microm 6-hydroxydopamine (6-OHDA), accompanied by increased PAG608 expression in PC12 cells. On the other hand, transient or permanent transfection of antisense PAG608 cDNA into PC12 cells significantly prevented apoptotic cell death induced by 100 microm 6-OHDA or 200 microm hydrogen peroxide but not by 250 microm 1-methyl-4-phenylpyridinium ion. The 6-OHDA-induced activation of caspase-3, DNA fragmentation, loss of mitochondrial membrane potential, and induction of p53 and Bax were also prevented in PC12 cells that stably expressed antisense PAG608 cDNA. These results suggest that PAG608 is associated with the apoptotic pathway induced by these oxidative stress-generating reagents, upstream of the collapse in the mitochondrial membrane potential in PC12 cells. Interestingly, transient transfection with PAG608 cDNA increased p53 expression in both PC12 cells and B65 cells, indicating that PAG608 induced by p53 is able to induce p53 expression in these cells inversely. Furthermore, transient transfection of a truncated mutant PAG608 cDNA, lacking the first zinc finger domain, inhibited 6-OHDA-induced cell death and altered the nuclear and nucleolar localization of wild-type PAG608 in PC12 cells. These results suggest that PAG608 may induce or regulate p53 expression and translocate to the nucleus and nucleolus using its first zinc finger domain during oxidative stress-induced apoptosis of catecholamine-containing cells.
Collapse
Affiliation(s)
- Youichirou Higashi
- Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikatacho, Japan
| | | | | | | | | | | | | |
Collapse
|