1
|
Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, Bernoud-Hubac N, Potier MC. Lipid Dys-Homeostasis Contributes to APOE4-Associated AD Pathology. Cells 2022; 11:cells11223616. [PMID: 36429044 PMCID: PMC9688773 DOI: 10.3390/cells11223616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The association of the APOE4 (vs. APOE3) isoform with an increased risk of Alzheimer's disease (AD) is unequivocal, but the underlying mechanisms remain incompletely elucidated. A prevailing hypothesis incriminates the impaired ability of APOE4 to clear neurotoxic amyloid-β peptides (Aβ) from the brain as the main mechanism linking the apolipoprotein isoform to disease etiology. The APOE protein mediates lipid transport both within the brain and from the brain to the periphery, suggesting that lipids may be potential co-factors in APOE4-associated physiopathology. The present study reveals several changes in the pathways of lipid homeostasis in the brains of mice expressing the human APOE4 vs. APOE3 isoform. Carriers of APOE4 had altered cholesterol turnover, an imbalance in the ratio of specific classes of phospholipids, lower levels of phosphatidylethanolamines bearing polyunsaturated fatty acids and an overall elevation in levels of monounsaturated fatty acids. These modifications in lipid homeostasis were related to increased production of Aβ peptides as well as augmented levels of tau and phosphorylated tau in primary neuronal cultures. This suite of APOE4-associated anomalies in lipid homeostasis and neurotoxic protein levels may be related to the accrued risk for AD in APOE4 carriers and provides novel insights into potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Adina-Nicoleta Lazar
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
- Correspondence: (A.-N.L.); (M.-C.P.)
| | - Linda Hanbouch
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Lydie Boussicaut
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
| | - Baptiste Fourmaux
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | - Patricia Daira
- Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, 69621 Villeurbanne, France
| | - Mark J. Millan
- Institut De Recherche Servier IDRS, Neuroscience Inflammation Thérapeutic Area, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medical, Vet and life Sciences, Glasgow University, 68 Hillhead Street, Glasgow G12 8QB, Scotland, UK
| | | | - Marie-Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié-Salpêtrière, 47 Bd de l’Hôpital, 75013 Paris, France
- Correspondence: (A.-N.L.); (M.-C.P.)
| |
Collapse
|
2
|
Dai L, Shen Y. Insights into T-cell dysfunction in Alzheimer's disease. Aging Cell 2021; 20:e13511. [PMID: 34725916 PMCID: PMC8672785 DOI: 10.1111/acel.13511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer's disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| | - Yong Shen
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
3
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Liang Y, Raven F, Ward JF, Zhen S, Zhang S, Sun H, Miller SJ, Choi SH, Tanzi RE, Zhang C. Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. J Alzheimers Dis 2021; 76:1071-1082. [PMID: 32597805 DOI: 10.3233/jad-200128] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The amyloid cascade hypothesis of Alzheimer's disease (AD) posits that amyloid-β (Aβ) protein accumulation underlies the pathogenesis of the disease by leading to the formation of amyloid plaques, a pathologic hallmark of AD. Aβ is a proteolytic product of amyloid-β protein precursor (AβPP; APP), which is expressed in both neurons and astrocytes. Although considerable evidence shows that astrocytes may play critical roles in the pathogenesis of AD, the longitudinal changes of amyloid plaques in relationship to AβPP expression in astrocytes and cellular consequences are largely unknown. OBJECTIVE Here, we aimed to investigate astrocyte-related pathological changes of Aβ and AβPP using immunohistochemistry and biochemical studies in both animal and cell models. METHODS/RESULTS We utilized 5XFAD transgenic mice and found age-dependent upregulation of AβPP in astrocytes demonstrated with astrocytic reactive properties, which followed appearance of amyloid plaques in the brain. We also observed that AβPP proteins presented well-defined punctate immuno reactivity in young animals, whereas AβPP staining showed disrupted structures surrounding amyloid plaques in older mice. Moreover, we utilized astrocyte cell models and showed that pretreatment of Aβ42 resulted in downstream astrocyte autonomous changes, including up regulation in AβPP and BACE1 levels, as well as prolonged amyloidogenesis that could be reduced by pharmacological inhibition of BACE1. CONCLUSION Collectively, our results show that age-dependent AβPP up regulation in astrocytes is a key feature in AD, which will not only provide novel insights for understanding AD progression, but also may offer new therapeutic strategies for treating AD.
Collapse
Affiliation(s)
- Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Frank Raven
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joseph F Ward
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Siyi Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Najm R, Jones EA, Huang Y. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Mol Neurodegener 2019; 14:24. [PMID: 31186040 PMCID: PMC6558779 DOI: 10.1186/s13024-019-0324-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD.
Collapse
Affiliation(s)
- Ramsey Najm
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94143, USA.
- Department of Neurology, University of California, San Francisco, CA, 94143, USA.
- Department of Pathology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
6
|
Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. Amyloid toxicity in Alzheimer's disease. Rev Neurosci 2018; 29:613-627. [PMID: 29447116 DOI: 10.1515/revneuro-2017-0063] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
A major feature of Alzheimer's disease (AD) pathology is the plaque composed of aggregated amyloid-β (Aβ) peptide. Although these plaques may have harmful properties, there is much evidence to implicate soluble oligomeric Aβ as the primary noxious form. Aβ oligomers can be generated both extracellularly and intracellularly. Aβ is toxic to neurons in a myriad of ways. It can cause pore formation resulting in the leakage of ions, disruption of cellular calcium balance, and loss of membrane potential. It can promote apoptosis, cause synaptic loss, and disrupt the cytoskeleton. Current treatments for AD are limited and palliative. Much research and effort is being devoted to reducing Aβ production as an approach to slowing or preventing the development of AD. Aβ formation results from the amyloidogenic cleavage of human amyloid precursor protein (APP). Reconfiguring this process to disfavor amyloid generation might be possible through the reduction of APP or inhibition of enzymes that convert the precursor protein to amyloid.
Collapse
Affiliation(s)
- Allison B Reiss
- Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
| | - Hirra A Arain
- Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
| | - Mark M Stecker
- Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
| | - Nicolle M Siegart
- Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
| | - Lora J Kasselman
- Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
| |
Collapse
|
7
|
Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Mol Neurobiol 2017; 55:5243-5254. [PMID: 28879423 DOI: 10.1007/s12035-017-0757-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The major genetic risk factor for sporadic Alzheimer's disease (AD) is the lipid binding and transporting carrier protein apolipoprotein E, epsilon 4 allele (ApoE4). One of the unsolved mysteries of AD is how the presence of ApoE4 elicits this age-associated, currently incurable neurodegenerative disease. Recently, we showed that ApoE4 acts as a transcription factor and binds to the promoters of genes involved in a range of processes linked to aging and AD disease pathogenesis. These findings point to novel therapeutic strategies for AD and aging, resulting in an extension of human healthspan, the disease-free and functional period of life. Here, we review the effects and implications of the putative transcriptional role of ApoE4 and propose a model of Alzheimer's disease that focuses on the transcriptional nature of ApoE4 and its downstream effects, with the aim that this knowledge will help to define the role ApoE4 plays as a risk factor for AD, aging, and other processes such as inflammation and cardiovascular disease.
Collapse
|
8
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Tambini MD, Pera M, Kanter E, Yang H, Guardia-Laguarta C, Holtzman D, Sulzer D, Area-Gomez E, Schon EA. ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep 2015; 17:27-36. [PMID: 26564908 PMCID: PMC4718413 DOI: 10.15252/embr.201540614] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
In addition to the appearance of senile plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by aberrant lipid metabolism and early mitochondrial dysfunction. We recently showed that there was increased functionality of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a subdomain of the ER involved in lipid and cholesterol homeostasis, in presenilin-deficient cells and in fibroblasts from familial and sporadic AD patients. Individuals carrying the ε4 allele of apolipoprotein E (ApoE4) are at increased risk for developing AD compared to those carrying ApoE3. While the reason for this increased risk is unknown, we hypothesized that it might be associated with elevated MAM function. Using an astrocyte-conditioned media (ACM) model, we now show that ER-mitochondrial communication and MAM function-as measured by the synthesis of phospholipids and of cholesteryl esters, respectively-are increased significantly in cells treated with ApoE4-containing ACM as compared to those treated with ApoE3-containing ACM. Notably, this effect was seen with lipoprotein-enriched preparations, but not with lipid-free ApoE protein. These data are consistent with a role of upregulated MAM function in the pathogenesis of AD and may help explain, in part, the contribution of ApoE4 as a risk factor in the disease.
Collapse
Affiliation(s)
- Marc D Tambini
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Marta Pera
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Hua Yang
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - David Holtzman
- Department of Neurology, Hope Center for Neurological Disorders Knight Alzheimer's Disease Research Center Washington University School of Medicine, St. Louis, MO, USA
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
10
|
(-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer's disease model mice by upregulating neprilysin expression. Exp Cell Res 2015; 334:136-45. [PMID: 25882496 DOI: 10.1016/j.yexcr.2015.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 01/04/2023]
Abstract
Epigenetic changes are involved in learning and memory, and histone deacetylase (HDAC) inhibitors are considered potential therapeutic agents for Alzheimer's disease (AD). We previously reported that (-)-epigallocatechin-3-gallate (EGCG) acts as an HDAC inhibitor. Here, we demonstrate that EGCG reduced β-amyloid (Aβ) accumulation in vitro and rescued cognitive deterioration in senescence-accelerated mice P8 (SAMP8) via intragastric administration of low- and high-dose EGCG (5 and 15 mg/kg, respectively) for 60 days. The AD brain has decreased levels of the rate-limiting degradation enzyme of Aβ, neprilysin (NEP). We found an association between EGCG-induced reduction in Aβ accumulation and elevated NEP expression. Further, NEP silencing prevented the EGCG-induced Aβ downregulation. Our findings suggest that EGCG might be effective for treating AD.
Collapse
|
11
|
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron 2014; 81:740-54. [PMID: 24559670 DOI: 10.1016/j.neuron.2014.01.045] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
Among the three human apolipoprotein E (apoE) isoforms, apoE4 increases the risk of Alzheimer's disease (AD). While transporting cholesterol is a primary function, apoE also regulates amyloid-β (Aβ) metabolism, aggregation, and deposition. Although earlier work suggests that different affinities of apoE isoforms to Aβ might account for their effects on Aβ clearance, recent studies indicate that apoE also competes with Aβ for cellular uptake through apoE receptors. Thus, several factors probably determine the variable effects apoE has on Aβ. In this Review, we examine biochemical, structural, and functional studies and propose testable models that address the complex mechanisms underlying apoE-Aβ interaction and how apoE4 may increase AD risk and also serve as a target pathway for therapy.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Abstract
The canonical pathogenesis of Alzheimer's disease links the expression of apolipoprotein E ε4 allele (ApoE) to amyloid precursor protein (APP) processing and Aβ peptide accumulation by a set of mechanisms that is incompletely defined. The development of a simple system that focuses not on a single variable but on multiple factors and pathways would be valuable both for dissecting the underlying mechanisms and for identifying candidate therapeutics. Here we show that, although both ApoE3 and ApoE4 associate with APP with nanomolar affinities, only ApoE4 significantly (i) reduces the ratio of soluble amyloid precursor protein alpha (sAPPα) to Aβ; (ii) reduces Sirtuin T1 (SirT1) expression, resulting in markedly differing ratios of neuroprotective SirT1 to neurotoxic SirT2; (iii) triggers Tau phosphorylation and APP phosphorylation; and (iv) induces programmed cell death. We describe a subset of drug candidates that interferes with the APP-ApoE interaction and returns the parameters noted above to normal. Our data support the hypothesis that neuronal connectivity, as reflected in the ratios of critical mediators such as sAPPα:Aβ, SirT1:SirT2, APP:phosphorylated (p)-APP, and Tau:p-Tau, is programmatically altered by ApoE4 and offer a simple system for the identification of program mediators and therapeutic candidates.
Collapse
|
13
|
Roles of apolipoprotein E4 (ApoE4) in the pathogenesis of Alzheimer's disease: lessons from ApoE mouse models. Biochem Soc Trans 2011; 39:924-32. [DOI: 10.1042/bst0390924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65–80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.
Collapse
|
14
|
Tarditi A, Caricasole A, Terstappen G. Therapeutic targets for Alzheimer's disease. Expert Opin Ther Targets 2009; 13:551-67. [DOI: 10.1517/14728220902865614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Esposito G, De Filippis D, Steardo L, Scuderi C, Savani C, Cuomo V, Iuvone T. CB1 receptor selective activation inhibits beta-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci Lett 2006; 404:342-6. [PMID: 16837132 DOI: 10.1016/j.neulet.2006.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/26/2006] [Accepted: 06/05/2006] [Indexed: 11/25/2022]
Abstract
Among the wide range of neuro-inflammatory signalling molecules released by beta-amyloid-stimulated astroglial cells, nitric oxide (NO) plays a fundamental role in AD aethiopathogenesis since it directly promotes neuronal tau protein hyperphosphorylation leading to neurofibrillary tangle formation. Synthetic cannabinoids (CBs), via a selective CB1 receptor activation, negatively modulates both iNOS protein expression and NO production induced by pro-inflammatory stimuli. In this study we investigated the role of both the non-selective WIN 55,212-2 and the selective CB1 receptor agonist, ACEA, on: (i) NO production, (ii) iNOS protein expression in (1-42) beta-amyloid peptide (Abeta)-stimulated C6 rat glioma cells and (iii) tau protein hyperphosphorylation in co-cultured differentiated PC12 neurons. Our results demonstrated that synthetic CBs, by a selective CB1 effect, down-regulate iNOS protein expression and NO production in Abeta-stimulated C6 cells. This effect leads, in turn, to a significant and concentration-dependent inhibition of NO-dependent tau protein hyperphosphorylation in co-cultured PC12 neurons. The results of the present study extend our knowledge about the neuroprotective actions of synthetic CBs on Abeta-dependent neurotoxicity in vitro. Furthermore, our study allows us to identify, in the CB1-mediated inhibition of astroglial-derived NO, a new potential target to blunt tau hyperphosphorylation and the consequent related tauopathy in AD.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Human Physiology and Pharmacology, Vittorio Espamer Faculty of Pharmacy, University of Rome La Sapienza Piazzale A. Moro 5, 00151 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 2006; 26:4985-94. [PMID: 16687490 PMCID: PMC6674234 DOI: 10.1523/jneurosci.5476-05.2006] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study the profile and regulation of apolipoprotein E (apoE) expression in the CNS, we generated mice in which apoE expression can be detected in vivo with unprecedented sensitivity and resolution. cDNA encoding enhanced green fluorescent protein (EGFP) with a stop codon was inserted by gene targeting into the apoE gene locus (EGFPapoE) immediately after the translation initiation site. Insertion of EGFP into one apoE allele provides a real-time location marker of apoE expression in vivo; the remaining allele is sufficient to maintain normal cellular physiology. In heterozygous EGFPapoE mice, EGFP was highly expressed in hepatocytes and peritoneal macrophages. EGFP was also expressed in brain astrocytes; however some astrocytes (approximately 25%) expressed no EGFP, suggesting that a subset of these cells does not express apoE. EGFP was expressed in <10% of microglia after kainic acid treatment, suggesting that microglia are not a major source of brain apoE. Although hippocampal neurons did not express EGFP under normal conditions, kainic acid treatment induced intense expression of EGFP in injured neurons, demonstrating apoE expression in neurons in response to excitotoxic injury. The neuronal expression was confirmed by in situ hybridization of mouse apoE mRNA and by anti-apoE immunostaining. Smooth muscle cells of large blood vessels and cells surrounding small vessels in the CNS also strongly expressed EGFP, as did cells in the choroid plexus. EGFPapoE reporter mice will be useful for studying the regulation of apoE expression in the CNS and might provide insights into the diverse mechanisms of apoE4-related neurodegeneration.
Collapse
|
17
|
Ye S, Huang Y, Müllendorff K, Dong L, Giedt G, Meng EC, Cohen FE, Kuntz ID, Weisgraber KH, Mahley RW. Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci U S A 2005; 102:18700-5. [PMID: 16344478 PMCID: PMC1311738 DOI: 10.1073/pnas.0508693102] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer's disease, and many studies have suggested that apoE has isoform-specific effects on the deposition or clearance of amyloid beta (Abeta) peptides. We examined the effects of apoE isoforms on the processing of amyloid precursor protein (APP) and on Abeta production in rat neuroblastoma B103 cells stably transfected with human wild-type APP695 (B103-APP). Lipid-poor apoE4 increased Abeta production in B103-APP cells to a greater extent than lipid-poor apoE3 (60% vs. 30%) due to more pronounced stimulation of APP recycling by apoE4 than apoE3. The difference in Abeta production was abolished by preincubating the cells with the receptor-associated protein (25 nM), which blocks the low-density lipoprotein receptor-related protein (LRP) pathway, or by reducing LRP expression by small interference RNA. The differences were also attenuated by replacing Arg-61 with threonine in apoE4 or pretreating apoE4 with small molecules, both of which abolish apoE4 intramolecular domain interaction. Thus, apoE4 appears to modulate APP processing and Abeta production through both the LRP pathway and domain interaction. These findings provide insights into why apoE4 is associated with increased risk for Alzheimer's disease and may represent a potential target for drug development.
Collapse
Affiliation(s)
- Shiming Ye
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Conboy L, Murphy KJ, Regan CM. Amyloid precursor protein expression in the rat hippocampal dentate gyrus modulates during memory consolidation. J Neurochem 2005; 95:1677-88. [PMID: 16236032 DOI: 10.1111/j.1471-4159.2005.03484.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances in our understanding of the basic biology of amyloid precursor protein (APP), the normal physiological function(s) of APP in learning and memory remains unclear. Here we show increased APP degradation in the hippocampus to be associated with the consolidation of a passive avoidance response. Neurone-specific APP695 expression became transiently reduced 2-4 h post-training through association with endosomal adaptin proteins and enhanced internalization. By contrast, internalization of glial-associated APP containing a Kunitz protease inhibitor-like domain (APP-KPI) was dependent on the low-density lipoprotein receptor-related protein (LRP). In addition, LRP expression and association with apolipoprotein E increased in the 2-4 h post-training period. The LRP antagonist receptor-associated protein prevented the APP-KPI internalization and LRP-apolipoprotein E association and this resulted in amnesia. Degradation of APP695 and APP-KPI did not appear to be related to alpha-secretase activity, as no learning-associated increase of secreted APP was observed in the CSF. Moreover, as internalization of APP isoforms was observed only in dentate gyrus, it probably relates to the learning-associated restructuring of the perforant path terminals. Memory-associated APP processing in both neuronal and glial compartments points to a role for glial unsheathing of synaptic connections, an event required for the synaptic restructuring that accompanies memory consolidation. These observations may have a direct relevance to understanding the pathophysiology of Alzheimer's disease as beta/gamma-secretase-derived beta-amyloid is formed following internalization of cell surface APP into the endosomal compartment.
Collapse
Affiliation(s)
- Lisa Conboy
- Applied Neurotherapeutics Research Group, Department of Pharmacology, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
19
|
Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer's disease. J Mol Neurosci 2004; 23:189-204. [PMID: 15181247 DOI: 10.1385/jmn:23:3:189] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 02/04/2004] [Indexed: 11/11/2022]
Abstract
Apolipoprotein E4 (apoE4) is a major risk factor for Alzheimer's disease (AD). Several hypotheses have been proposed to explain the association of the APOE epsilon4 allele with AD; however, the mechanisms underlying this association are largely unknown. Initially, apoE was thought to be synthesized primarily by astrocytes but not by neurons in the brain. However, subsequent studies have demonstrated that central nervous system neurons also express apoE under diverse physiological and pathological conditions. Detailed studies of the structure and biophysical properties of apoE isoforms have demonstrated unique properties distinguishing apoE4 from apoE3. Because the structural and biophysical properties of a protein determine how it functions under normal and abnormal conditions, apoE4, with its multiple cellular origins and multiple structural and biophysical properties, might contribute to the pathology of AD through several different mechanisms. Some of these mechanisms might be suitable targets for the development of new treatments for AD.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institute of Cardiovascular Disease, and the Department of Pathology, University of California, San Francisco, CA 94141-9100, USA.
| | | | | | | |
Collapse
|
20
|
Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004; 45:545-52. [PMID: 15186921 DOI: 10.1016/j.neuint.2003.11.006] [Citation(s) in RCA: 534] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
This review surveys evidence for the flow of brain interstitial fluid (ISF) via preferential pathways through the brain, and its relation to cerebrospinal fluid (CSF). Studies over >100 years have raised several controversial points, not all of them resolved. Recent studies have usefully combined a histological and a mathematical approach. Taken together the evidence indicates an ISF bulk flow rate of 0.1-0.3 microl min(-1) g(-1) in rat brain along preferential pathways especially perivascular spaces and axon tracts. The main source of this fluid is likely to be the brain capillary endothelium, which has the necessary ion transporters, channels and water permeability to generate fluid at a low rate, c1/100th of the rate per square centimeter of CSF secretion across choroid plexus epithelium. There is also evidence that a proportion of CSF may recycle from the subarachnoid space into arterial perivascular spaces on the ventral surface of the brain, and join the circulating ISF, draining back via venous perivascular spaces and axon tracts into CSF compartments, and out both through arachnoid granulations and along cranial nerves to the lymphatics of the neck. The bulk flow of ISF has implications for non-synaptic cell:cell communication (volume transmission); for drug delivery, distribution, and clearance; for brain ionic homeostasis and its disturbance in brain edema; for the immune function of the brain; for the clearance of beta-amyloid deposits; and for the migration of cells (malignant cells, stem cells).
Collapse
Affiliation(s)
- N Joan Abbott
- Centre for Neuroscience Research, GKT School of Biomedical Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
21
|
Harris FM, Tesseur I, Brecht WJ, Xu Q, Mullendorff K, Chang S, Wyss-Coray T, Mahley RW, Huang Y. Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer's disease. J Biol Chem 2003; 279:3862-8. [PMID: 14585838 DOI: 10.1074/jbc.m309475200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although apolipoprotein (apo) E is synthesized in the brain primarily by astrocytes, neurons in the central nervous system express apoE, albeit at lower levels than astrocytes, in response to various physiological and pathological conditions, including excitotoxic stress. To investigate how apoE expression is regulated in neurons, we transfected Neuro-2a cells with a 17-kilobase human apoE genomic DNA construct encoding apoE3 or apoE4 along with upstream and downstream regulatory elements. The baseline expression of apoE was low. However, conditioned medium from an astrocytic cell line (C6) or from apoE-null mouse primary astrocytes increased the expression of both isoforms by 3-4-fold at the mRNA level and by 4-10-fold at the protein level. These findings suggest that astrocytes secrete a factor or factors that regulate apoE expression in neuronal cells. The increased expression of apoE was almost completely abolished by incubating neurons with U0126, an inhibitor of extracellular signal-regulated kinase (Erk), suggesting that the Erk pathway controls astroglial regulation of apoE expression in neuronal cells. Human neuronal precursor NT2/D1 cells expressed apoE constitutively; however, after treatment of these cells with retinoic acid to induce differentiation, apoE expression diminished. Cultured mouse primary cortical and hippocampal neurons also expressed low levels of apoE. Astrocyte-conditioned medium rapidly up-regulated apoE expression in fully differentiated NT2 neurons and in cultured mouse primary cortical and hippocampal neurons. Thus, neuronal expression of apoE is regulated by a diffusible factor or factors released from astrocytes, and this regulation depends on the activity of the Erk kinase pathway in neurons.
Collapse
Affiliation(s)
- Faith M Harris
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ezra Y, Oron L, Moskovich L, Roses AD, Beni SM, Shohami E, Michaelson DM. Apolipoprotein e4 decreases whereas apolipoprotein e3 increases the level of secreted amyloid precursor protein after closed head injury. Neuroscience 2003; 121:315-25. [PMID: 14521991 DOI: 10.1016/s0306-4522(03)00436-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (apoE4) and head trauma are important genetic and environmental risk factors for Alzheimer's disease. Furthermore, apoE4 increases both the acute and chronic consequences of head trauma. The latter are associated with the deposition of amyloid-beta, which is particularly elevated in apoE4 subjects. The short-term effects of head injury are associated with transiently increased metabolism of amyloid precursor protein (APP) and its secreted fragment, APPs. In the present study, we examined the possibility that the acute, short-term pathological effects of apoE4 following head trauma and the corresponding neuroprotective effects of apoE3 are related to isoform-specific effects of apoE on APP metabolism. Accordingly, male transgenic mice expressing human apoE3 or apoE4 on a null mouse apoE background and apoE-deficient and control mice were subjected to closed head injury (CHI). The resulting effects on brain APP, and on its secreted products, APPs and secreted product of the alpha-cleavage of APP (APPsalpha) were then determined 24 h following injury. Immunoblotting revealed no significant differences between the basal APP, APPs and APPsalpha levels of the hippocampus or the cortex of the control and the apoE3 and ApoE4 transgenic mice. The apoE-deficient mice also had similar cortical basal levels of APP and its metabolites, whereas their corresponding basal hippocampal APP and APPs levels were lower than those of the other groups. CHI lowered the hipppocampal APPs and APPsalpha levels of the apoE4 transgenic mice, whereas those of the apoE3 transgenic mice and of the control and apoE-deficient mice were not affected by this insult. In contrast, CHI raised the cortical APP and APPs levels of the apoE3 transgenic mice but had no significant effect on those of the other mice groups. These animal model findings suggest that the acute, short-term pathological effects of apoE4 following CHI and the corresponding neuroprotective effects of apoE3 may be mediated by their opposing effects on the expression and cleavage of cortical and hippocampal APP. Similar isoform-specific interactions between apoE and APP may play a role in the acute, short-term effects of head trauma in humans.
Collapse
Affiliation(s)
- Y Ezra
- Department of Neurobiochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Olsson A, Höglund K, Sjögren M, Andreasen N, Minthon L, Lannfelt L, Buerger K, Möller HJ, Hampel H, Davidsson P, Blennow K. Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 2003; 183:74-80. [PMID: 12957490 DOI: 10.1016/s0014-4886(03)00027-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the major histopathological hallmarks of Alzheimer's disease (AD) is redundant senile plaques mainly composed of beta-amyloid (Abeta) aggregates. Alternative cleavage of the amyloid precursor protein (APP), occurring in both normal and AD subjects, results in the generation and secretion of soluble APP (sAPP) and Abeta. We examined the cerebrospinal fluid (CSF) for alpha- and beta-secretase cleaved sAPP (alpha-sAPP and beta-sAPP) in 81 sporadic AD patients, 19 patients with mild cognitive impairment, and 42 healthy controls by using newly developed sandwich enzyme-linked immunosorbent assay methods. We found that neither the level of CSF-alpha-sAPP nor CSF-beta-sAPP differed between sporadic AD patients and healthy controls. These findings further support the conclusion that there is no change in APP expression in sporadic AD. However, the level of CSF-beta-sAPP was significantly increased in patients with mild cognitive impairment compared to controls. We also investigated the relationship between the CSF level of alpha/beta-sAPP and Abeta(42) and the apoE epsilon 4 (apoE4) allele. Significantly lower levels of CSF-alpha-sAPP were found in AD patients possessing one or two apoE4 alleles than in those not possessing the apoE4 allele. Neither the levels of CSF-beta-sAPP nor CSF-Abeta(42) differed when comparing ApoE4 allele-positive with allele-negative individuals.
Collapse
Affiliation(s)
- Annika Olsson
- Institute of Clinical Neuroscience, Experimental Neuroscience Section, Göteborg University, Sahlgrenska University Hospital/, Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Laws SM, Hone E, Gandy S, Martins RN. Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 2003; 84:1215-36. [PMID: 12614323 DOI: 10.1046/j.1471-4159.2003.01615.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed form of dementia in the elderly. Predominantly this disease is sporadic in nature with only a small percentage of patients exhibiting a familial trait. Early-onset AD may be explained by single gene defects; however, most AD cases are late onset (> 65 years) and, although there is no known definite cause for this form of the disease, there are several known risk factors. Of these, the epsilon4 allele of the apolipoprotein E (apoE) gene (APOE) is a major risk factor. The epsilon4 allele of APOE is one of three (epsilon2 epsilon3 and epsilon4) common alleles generated by cysteine/arginine substitutions at two polymorphic sites. The possession of the epsilon 4 allele is recognized as the most common identifiable genetic risk factor for late-onset AD across most populations. Unlike the pathogenic mutations in the amyloid precursor or those in the presenilins, APOE epsilon4 alleles increase the risk for AD but do not guarantee disease, even when present in homozygosity. In addition to the cysteine/arginine polymorphisms at the epsilon2/epsilon3/epsilon4 locus, polymorphisms within the proximal promoter of the APOE gene may lead to increased apoE levels by altering transcription of the APOE gene. Here we review the genetic and biochemical evidence supporting the hypothesis that regulation of apoE protein levels may contribute to the risk of AD, distinct from the well known polymorphisms at the epsilon2/epsilon3/epsilon4 locus.
Collapse
Affiliation(s)
- Simon M Laws
- Sir James McCusker Alzheimer's Disease Research Unit, School of Psychiatry and Neuroscience, University of Western Australia, Hollywood Private Hospital, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
25
|
Abstract
One of the goals of modern medicine is to foster successful aging. In order to age successfully, one must accomplish two things: first, survive; and second, survive with good health and a sharp mind. In this discussion of apolipoproteins and aging, the focus will be on apolipoprotein E (apoE), a protein with three common isoforms, which has a large impact on longevity and successful aging. One variant of apoE (E4) is associated with increased risk for heart disease, stroke and Alzheimer's disease (AD). In addition, some of the potential mechanisms for the observed effects of apoE on aging will be discussed.
Collapse
Affiliation(s)
- Jonathan D Smith
- Lab. Biochem. Gen. & Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
26
|
Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 2002; 9:305-18. [PMID: 11950276 DOI: 10.1006/nbdi.2002.0483] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease (AD), perhaps through effects on amyloid-beta (Abeta) metabolism. Detailed analyses of various Abeta parameters in aging APP(V717F+/-) transgenic mice expressing mouse apoE, no apoE, or human apoE2, apoE3, or apoE4 demonstrate that apoE facilitates, but is not required for, Abeta fibril formation in vivo. Human apoE isoforms markedly delayed Abeta deposition relative to mouse apoE, with apoE2 (and apoE3 to a lesser extent) having a prolonged ability to prevent Abeta from converting into fibrillar forms. Isoform-specific effects of human apoE on Abeta levels and neuritic plaque formation mimicked that observed in AD (E4 > E3 > E2). Importantly, observation of an apoE-dependent decrease in percent soluble Abeta and enrichment of Abeta in membrane microdomains prior to Abeta deposition indicates that apoE influences Abeta metabolism early in the amyloidogenic process and provides a possible novel mechanism by which apoE affects AD pathogenesis.
Collapse
Affiliation(s)
- Anne M Fagan
- Center for the Study of Nervous System Injury, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|