1
|
Matsuo H, Kawakami K, Ohara H, Kaneko T, Mashimo T, Yamada T, Nabika T. Apolipoprotein E-depletion accelerates arterial fat deposition in the spontaneously hypertensive rat. Exp Anim 2023; 72:439-445. [PMID: 37081644 PMCID: PMC10658095 DOI: 10.1538/expanim.23-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension and atherosclerosis are often found in one patient causing serious cardiovascular events. An animal model simultaneously expressing hypertension and atherosclerosis would be useful to study such a complex risk status. We therefore attempted to introduce a null mutation of the apolipoprotein E (ApoE) gene into the spontaneously hypertensive rat (SHR) using CRISPR/Cas9 to establish a genetic model for atherosclerosis with hypertension. We successfully established SHRApoE(-/-) having a 13-bps deletion in the 5'-end of ApoE gene. Deletion of ApoE protein was confirmed by Western blotting. Blood pressure of SHRApoE(-/-) was comparable to that of SHR. Feeding the rats with high fat high cholesterol diet (HFD) caused a significant increase in LDL cholesterol as well as in triglyceride in SHRApoE(-/-). After 8 weeks of HFD loading, superficial fat deposition was observed both in the aorta and the mesenteric arteries of SHRApoE(-/-) instead of mature atheromatous lesions found in humans. In addition, a null mutation of peroxiredoxin 2 (Prdx2) was introduced into SHRApoE(-/-) to examine the effect of increased oxidative stress on the development of atherosclerosis. SHR with the double depletion of ApoE and Prdx2 did not show mature atheroma either. Further, salt loading did not promote development of atheroma although it accelerated the development of fat deposition. These results indicated that when compared with ApoE-knockout mice, SHRApoE(-/-) was more resistant to atherosclerosis even though they have severe hypertension.
Collapse
Affiliation(s)
- Hiroyuki Matsuo
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Hiroki Ohara
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Takehito Kaneko
- Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyou-ku, Kyoto 606-8501, Japan
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
2
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
3
|
Nishiwaki S, Saito S, Takeshita K, Kato H, Ueda R, Takami A, Naoe T, Ogawa M, Nakayama T. In vivo tracking of transplanted macrophages with near infrared fluorescent dye reveals temporal distribution and specific homing in the liver that can be perturbed by clodronate liposomes. PLoS One 2020; 15:e0242488. [PMID: 33301448 PMCID: PMC7728253 DOI: 10.1371/journal.pone.0242488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages play an indispensable role in both innate and acquired immunity, while the persistence of activated macrophages can sometimes be harmful to the host, resulting in multi-organ damage. Macrophages develop from monocytes in the circulation. However, little is known about the organ affinity of macrophages in the normal state. Using in vivo imaging with XenoLight DiR®, we observed that macrophages showed strong affinity for the liver, spleen and lung, and weak affinity for the gut and bone marrow, but little or no affinity for the kidney and skin. We also found that administered macrophages were still alive 168 hours after injection. On the other hand, treatment with clodronate liposomes, which are readily taken up by macrophages via phagocytosis, strongly reduced the number of macrophages in the liver, spleen and lung.
Collapse
Affiliation(s)
- Satoshi Nishiwaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeki Saito
- Departments of Hematology, Japanese Red Cross Nagoya Daiini Hospital, Nagoya, Aichi, Japan
| | - Kyosuke Takeshita
- Department of Clinical Laboratory, Saitama Medical Center, Kawagoe, Saitama, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Tumor Immunology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Hematology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomoki Naoe
- Departments of Hematology, Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Mika Ogawa
- Clinical Laboratory, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takayuki Nakayama
- Clinical Laboratory, Aichi Medical University, Nagakute, Aichi, Japan
- * E-mail:
| |
Collapse
|
4
|
Hirako S, Tsuda H, Ito F, Okazaki Y, Hirayama T, Nagasawa H, Nakano T, Imai K, Kotani T, Kikkawa F, Toyokuni S. Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114). J Clin Biochem Nutr 2017; 61:176-182. [PMID: 29203958 PMCID: PMC5703780 DOI: 10.3164/jcbn.17-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening neonatal disease that leads to lung hypoplasia and pulmonary hypertension. We recently found that maternal prenatal administration of Saireito (TJ-114) ameliorates fetal CDH in a nitrofen-induced rat model. Here, we studied the role of iron and oxidative stress in neonates of this model and in lung fibroblasts IMR90-SV in association with nitrofen and Saireito. We observed increased immunostaining of 8-hydroxy-2'-deoxyguanosine in the lungs of neonates with CDH, which was ameliorated by maternal Saireito intake. Pulmonary transferrin receptor expression was significantly decreased in both CDH and CDH after Saireito in comparison to normal controls, indicating functional lung immaturity, whereas catalytic Fe(II) and pulmonary DMT1/ferroportin expression remained constant among the three groups. Saireito revealed a dose-dependent scavenging capacity with electron spin resonance spin trapping in vitro against hydroxyl radicals but not against superoxide. Finally, nitrofen revealed dose-dependent cytotoxicity to IMR90-SV cells, accompanied by an increase in oxidative stress, as seen by 5(6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and catalytic Fe(II). Saireito ameliorated all of these in IMR90-SV cells. In conclusion, catalytic Fe(II)-dependent oxidative stress by nitrofen may be the pathogenic cause of CDH, and the antioxidative activity of Saireito is at least partially responsible for improving nitrofen-induced CDH.
Collapse
Affiliation(s)
- Shima Hirako
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroyuki Tsuda
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tomoko Nakano
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Imai
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomomi Kotani
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Ito F, Nishiyama T, Shi L, Mori M, Hirayama T, Nagasawa H, Yasui H, Toyokuni S. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis. Biochem Biophys Res Commun 2016; 476:600-606. [DOI: 10.1016/j.bbrc.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
6
|
Wang Y, Okazaki Y, Shi L, Kohda H, Tanaka M, Taki K, Nishioka T, Hirayama T, Nagasawa H, Yamashita Y, Toyokuni S. Role of hemoglobin and transferrin in multi-wall carbon nanotube-induced mesothelial injury and carcinogenesis. Cancer Sci 2016; 107:250-7. [PMID: 26679080 PMCID: PMC4814253 DOI: 10.1111/cas.12865] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/05/2015] [Accepted: 12/14/2015] [Indexed: 01/18/2023] Open
Abstract
Multi‐wall carbon nanotubes (MWCNT) are a form of flexible fibrous nanomaterial with high electrical and thermal conductivity. However, 50‐nm MWCNT in diameter causes malignant mesothelioma (MM) in rodents and, thus, the International Agency of Research on Cancer has designated them as a possible human carcinogen. Little is known about the molecular mechanism through which MWCNT causes MM. To elucidate the carcinogenic mechanisms of MWCNT in mesothelial cells, we used a variety of lysates to comprehensively identify proteins specifically adsorbed on pristine MWCNT of different diameters (50 nm, NT50; 100 nm, NT100; 150 nm, NT150; and 15 nm/tangled, NTtngl) using mass spectrometry. We identified >400 proteins, which included hemoglobin, histone, transferrin and various proteins associated with oxidative stress, among which we selected hemoglobin and transferrin for coating MWCNT to further evaluate cytotoxicity, wound healing, intracellular catalytic ferrous iron and oxidative stress in rat peritoneal mesothelial cells (RPMC). Cytotoxicity to RPMC was observed with pristine NT50 but not with NTtngl. Coating NT50 with hemoglobin or transferrin significantly aggravated cytotoxicity to RPMC, with an increase in cellular catalytic ferrous iron and DNA damage also observed. Knockdown of transferrin receptor with ferristatin II decreased not only NT50 uptake but also cellular catalytic ferrous iron. Our results suggest that adsorption of hemoglobin and transferrin on the surface of NT50 play a role in causing mesothelial iron overload, contributing to oxidative damage and possibly subsequent carcinogenesis in mesothelial cells. Uptake of NT50 at least partially depends on transferrin receptor 1. Modifications of NT50 surface may decrease this human risk.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lei Shi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiro Kohda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minoru Tanaka
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kentaro Taki
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Nishioka
- Department of Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoriko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Cold Microwave-Enabled Protein Detection and Quantification. Methods Mol Biol 2015; 1314:207-17. [PMID: 26139270 DOI: 10.1007/978-1-4939-2718-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio is highly beneficial in many research areas. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, Western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 24-45 min.
Collapse
|
8
|
Receptor role of the annexin A2 in the mesothelial endocytosis of crocidolite fibers. J Transl Med 2015; 95:749-64. [PMID: 25915724 DOI: 10.1038/labinvest.2015.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022] Open
Abstract
Asbestos-induced mesothelioma is a worldwide problem. Parietal mesothelial cells internalize asbestos fibers that traverse the entire lung parenchyma, an action that is linked to mesothelial carcinogenesis. Thus far, vitronectin purified from serum reportedly enhances the internalization of crocidolite by mesothelial cells via integrin αvβ5. To reveal another mechanism by which mesothelial cells endocytose (phagocytose) asbestos, we first evaluated the effects of serum on asbestos uptake, which proved to be nonessential. Thereafter, we undertook a study to identify proteins on the surface of mesothelial cells (MeT5A) that act as receptors for asbestos uptake based on the assumption that receptors bind to asbestos with physical affinity. To this end, we incubated the membrane fraction of MeT5A cells with crocidolite or chrysotile and evaluated the adsorbed proteins using sodium dodecyl sulfate polyacrylamide gel analysis. Next, we extensively identified the proteins using an in-solution or in-gel digestion coupled with mass spectrometry. Among the identified proteins, annexin A2 (ANXA2) and transferrin receptor protein 1 (TFRC) were distinguished because of their high score and presence at the cell surface. Crocidolite uptake by MeT5A cells was significantly decreased by shRNA (short hairpin RNA)-induced knockdown of ANXA2 and direct blockade of cell surface ANXA2 using anti-ANXA2 antibody. In addition, abundant ANXA2 protein was present on the cell membrane of mesothelial cells, particularly facing the somatic cavity. These findings demonstrate that ANXA2 has a role in the mesothelial phagocytosis of crocidolite and may serve as its receptor.
Collapse
|
9
|
Liu YT, Toyokuni S. Application of Intermittent Microwave Irradiation to Western Blot Analysis. Methods Mol Biol 2015; 1314:185-190. [PMID: 26139267 DOI: 10.1007/978-1-4939-2718-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We established a shortened protocol for Western blot analysis using intermittent microwave irradiation. With this method, the procedure is completed within 1 h after applying the primary antibody, and thus greatly saves time. This procedure appears to be applicable to any antibody based on our experience of several years.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
10
|
Jiang L, Yamashita Y, Chew SH, Akatsuka S, Ukai S, Wang S, Nagai H, Okazaki Y, Takahashi T, Toyokuni S. Connective tissue growth factor and β-catenin constitute an autocrine loop for activation in rat sarcomatoid mesothelioma. J Pathol 2014; 233:402-14. [PMID: 24839947 DOI: 10.1002/path.4377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/17/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022]
Abstract
Due to the formerly widespread use of asbestos, malignant mesothelioma (MM) is increasingly frequent worldwide. MM is classified into epithelioid (EM), sarcomatoid (SM), and biphasic subtypes. SM is less common than EM but is recognized as the most aggressive type of MM, and these patients have a poor prognosis. To identify genes responsible for the aggressiveness of SM, we induced EM and SM in rats, using asbestos, and compared their transcriptomes. Based on the results, we focused on connective tissue growth factor (Ctgf), whose expression was significantly increased in SM compared with EM; EM itself exhibited an increased expression of Ctgf compared with normal mesothelium. Particularly in SM, Ctgf was a major regulator of MM proliferation and invasion through activation of the β-catenin-TCF-LEF signalling pathway, which is autocrine and formed a positive feedback loop via LRP6 as a receptor for secreted Ctgf. High Ctgf expression also played a role in the epithelial-mesenchymal transition in MM. Furthermore, Ctgf is a novel serum biomarker for both early diagnosis and determining the MM prognosis in rats. These data link Ctgf to SM through the LRP6-GSK3β-β-catenin-TCF-Ctgf autocrine axis and suggest Ctgf as a therapeutic target.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nishiwaki S, Nakayama T, Murata M, Nishida T, Terakura S, Saito S, Kato T, Mizuno H, Imahashi N, Seto A, Ozawa Y, Miyamura K, Ito M, Takeshita K, Kato H, Toyokuni S, Nagao K, Ueda R, Naoe T. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions. PLoS One 2014; 9:e96252. [PMID: 24806147 PMCID: PMC4012982 DOI: 10.1371/journal.pone.0096252] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/05/2014] [Indexed: 01/04/2023] Open
Abstract
Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.
Collapse
Affiliation(s)
- Satoshi Nishiwaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Japan Society for the Promotion of Science, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Takayuki Nakayama
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
- * E-mail:
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Nishida
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shigeki Saito
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomonori Kato
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroki Mizuno
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuhiko Imahashi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Aika Seto
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keisuke Nagao
- Department of Dermatology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
12
|
Ferdaus MZ, Xiao B, Ohara H, Nemoto K, Harada Y, Saar K, Hübner N, Isomura M, Nabika T. Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat. PLoS One 2014; 9:e95091. [PMID: 24736434 PMCID: PMC3988177 DOI: 10.1371/journal.pone.0095091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/23/2014] [Indexed: 12/21/2022] Open
Abstract
The stroke-prone spontaneously hypertensive rat (SHRSP) is known to have exaggerated sympathetic nerve activity to various types of stress, which might contribute to the pathogenesis of severe hypertension and stroke observed in this strain. Previously, by using a congenic strain (called SPwch1.72) constructed between SHRSP and the normotensive Wistar-Kyoto rat (WKY), we showed that a 1.8-Mbp fragment on chromosome 1 (Chr1) of SHRSP harbored the responsible gene(s) for the exaggerated sympathetic response to stress. To further narrow down the candidate region, in this study, another congenic strain (SPwch1.71) harboring a smaller fragment on Chr1 including two functional candidate genes, Phox2a and Ship2, was generated. Sympathetic response to cold and restraint stress was compared among SHRSP, SPwch1.71, SPwch1.72 and WKY by three different methods (urinary norepinephrine excretion, blood pressure measurement by the telemetry system and the power spectral analysis on heart rate variability). The results indicated that the response in SPwch1.71 did not significantly differ from that in SHRSP, excluding Phox2a and Ship2 from the candidate genes. As the stress response in SPwch1.72 was significantly less than that in SHRSP, it was concluded that the 1.2-Mbp congenic region covered by SPwch1.72 (and not by SPwch1.71) was responsible for the sympathetic stress response. The sequence analysis of 12 potential candidate genes in this region in WKY/Izm and SHRSP/Izm identified a nonsense mutation in the stromal interaction molecule 1 (Stim1) gene of SHRSP/Izm which was shared among 4 substrains of SHRSP. A western blot analysis confirmed a truncated form of STIM1 in SHRSP/Izm. In addition, the analysis revealed that the protein level of STIM1 in the brainstem of SHRSP/Izm was significantly lower when compared with WKY/Izm. Our results suggested that Stim1 is a strong candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP.
Collapse
Affiliation(s)
| | - Bing Xiao
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroki Ohara
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
- * E-mail:
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuji Harada
- Department of Surgical Pathology, Shimane University Hospital, Izumo, Japan
| | - Kathrin Saar
- Department of Experimental Genetics of Cardiovascular Diseases, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Norbert Hübner
- Department of Experimental Genetics of Cardiovascular Diseases, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
13
|
Okazaki Y, Nagai H, Chew SH, Li J, Funahashi S, Tsujimura T, Toyokuni S. CD146 and insulin-like growth factor 2 mRNA-binding protein 3 predict prognosis of asbestos-induced rat mesothelioma. Cancer Sci 2013; 104:989-95. [PMID: 23621518 DOI: 10.1111/cas.12185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/21/2013] [Accepted: 04/25/2013] [Indexed: 11/27/2022] Open
Abstract
Malignant mesothelioma (MM), which is associated with asbestos exposure, is one of the most deadly tumors in humans. Early MM is concealed in the serosal cavities and lacks specific clinical symptoms. For better treatment, early detection and prognostic markers are necessary. Recently, CD146 and insulin-like growth factor 2 mRNA-binding protein 3 (IMP3) were reported as possible positive markers of MM to distinguish from reactive mesothelia in humans. However, their application on MM of different species and its impact on survival remain to be elucidated. To disclose the utility of these molecules as early detection and prognostic markers of MM, we injected chrysotile or crocidolite intraperitoneally to rats, thus obtaining 26 peritoneal MM and establishing 11 cell lines. We immunostained CD146 and IMP3 using paraffin-embedded tissues and cell blocks and found CD146 and IMP3 expression in 58% (15/26) and 65% (17/26) of MM, respectively, but not in reactive mesothelia. There was no significant difference in both immunostainings for overexpression among the three histological subtypes of MM and the expression of CD146 and IMP3 was proportionally associated. Furthermore, the overexpression of CD146 and/or IMP3 was proportionally correlated with shortened survival. These results suggest that CD146 and IMP3 are useful diagnostic and prognostic markers of MM.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Protein tyrosine phosphatase ζ enhances proliferation by increasing β-catenin nuclear expression in VHL-inactive human renal cell carcinoma cells. World J Urol 2013; 31:1547-54. [PMID: 23588815 DOI: 10.1007/s00345-013-1077-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE We investigated the role of protein tyrosine phosphatase ζ (Ptprz1) in human renal cell carcinoma (RCC) cells' proliferation and associations between Ptprz1 expression and von Hippel-Lindau (VHL) activation. METHODS A normal human renal cell line and four human RCC cell lines were used in this study. VHL or Ptprz1 expression in RCC cells was increased by transfection with a VHL or Ptprz1 vector. VHL or Ptprz1 expression was decreased in these cells by siRNA using Lipofectamine 2000. Cells' proliferative activity was assessed by WST-1 assay. RESULTS Our results suggested that Ptprz1 was a target of VHL, and a loss of VHL activation increased Ptprz1 expression in RCC cells. Ptprz1 enhanced β-catenin protein expressions in the nuclear fractions of RCC cells and participated in regulating proliferation by activating β-catenin and its downstream genes. In addition, a loss of VHL activity may enhance the proliferative activity of RCC cells by increasing Ptprz1 expression. CONCLUSION Ptprz1-enhanced RCC cells' proliferation depends on VHL inactivation, and the Ptprz1/β-catenin pathway may be a potential target for treating RCC with inactive VHL.
Collapse
|
15
|
Jiang L, Akatsuka S, Nagai H, Chew SH, Ohara H, Okazaki Y, Yamashita Y, Yoshikawa Y, Yasui H, Ikuta K, Sasaki K, Kohgo Y, Hirano S, Shinohara Y, Kohyama N, Takahashi T, Toyokuni S. Iron overload signature in chrysotile-induced malignant mesothelioma. J Pathol 2012; 228:366-77. [PMID: 22864872 DOI: 10.1002/path.4075] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 01/10/2023]
Abstract
Exposure to asbestos is a risk for malignant mesothelioma (MM) in humans. Among the commercially used types of asbestos (chrysotile, crocidolite, and amosite), the carcinogenicity of chrysotile is not fully appreciated. Here, we show that all three asbestos types similarly induced MM in the rat peritoneal cavity and that chrysotile caused the earliest mesothelioma development with a high fraction of sarcomatoid histology. The pathogenesis of chrysotile-induced mesothelial carcinogenesis was closely associated with iron overload: repeated administration of an iron chelator, nitrilotriacetic acid, which promotes the Fenton reaction, significantly reduced the period required for carcinogenesis; massive iron deposition was found in the peritoneal organs with high serum ferritin; and homozygous deletion of the CDKN2A/2B/ARF tumour suppressor genes, the most frequent genomic alteration in human MM and in iron-induced rodent carcinogenesis, was observed in 92.6% of the cases studied with array-based comparative genomic hybridization. The induced rat MM cells revealed high expression of mesoderm-specific transcription factors, Dlx5 and Hand1, and showed an iron regulatory profile of active iron uptake and utilization. These data indicate that chrysotile is a strong carcinogen when exposed to mesothelia, acting through the induction of local iron overload. Therefore, an intervention to remove local excess iron might be a strategy to prevent MM after asbestos exposure.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nagai H, Ishihara T, Lee WH, Ohara H, Okazaki Y, Okawa K, Toyokuni S. Asbestos surface provides a niche for oxidative modification. Cancer Sci 2011; 102:2118-25. [PMID: 21895868 PMCID: PMC11158102 DOI: 10.1111/j.1349-7006.2011.02087.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/22/2011] [Accepted: 08/27/2011] [Indexed: 11/28/2022] Open
Abstract
Asbestos is a potent carcinogen associated with increased risks of malignant mesothelioma and lung cancer in humans. Although the mechanism of carcinogenesis remains elusive, the physicochemical characteristics of asbestos play a role in the progression of asbestos-induced diseases. Among these characteristics, a high capacity to adsorb and accommodate biomolecules on its abundant surface area has been linked to cellular and genetic toxicity. Several previous studies identified asbestos-interacting proteins. Here, with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry, we systematically identified proteins from various lysates that adsorbed to the surface of commercially used asbestos and classified them into the following groups: chromatin/nucleotide/RNA-binding proteins, ribosomal proteins, cytoprotective proteins, cytoskeleton-associated proteins, histones and hemoglobin. The surfaces of crocidolite and amosite, two iron-rich types of asbestos, caused more protein scissions and oxidative modifications than that of chrysotile by in situ-generated 4-hydroxy-2-nonenal. In contrast, we confirmed the intense hemolytic activity of chrysotile and found that hemoglobin attached to chrysotile, but not silica, can work as a catalyst to induce oxidative DNA damage. This process generates 8-hydroxy-2'-deoxyguanosine and thus corroborates the involvement of iron in the carcinogenicity of chrysotile. This evidence demonstrates that all three types of asbestos adsorb DNA and specific proteins, providing a niche for oxidative modification via catalytic iron. Therefore, considering the affinity of asbestos for histones/DNA and the internalization of asbestos into mesothelial cells, our results suggest a novel hypothetical mechanism causing genetic alterations during asbestos-induced carcinogenesis.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Ohara H, Akatsuka S, Nagai H, Liu YT, Jiang L, Okazaki Y, Yamashita Y, Nakamura T, Toyokuni S. Stage-specific roles of fibulin-5 during oxidative stress-induced renal carcinogenesis in rats. Free Radic Res 2010; 45:211-20. [PMID: 20942562 DOI: 10.3109/10715762.2010.523702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
By using a rat model of renal cell carcinoma (RCC) induced by ferric nitrilotriacetate (Fe-NTA), this study performed genome-wide analysis to identify target genes during carcinogenesis. It screened for genes with decreased expression in RCCs, with simultaneous loss of heterozygosity, eventually to focus on the fibulin-5 (fbln5) gene. Oxidative damage via Fe-NTA markedly increased Fbln5 in the proximal tubules. RCCs presented lower levels of Fbln5. However, a fraction of RCCs presenting pulmonary metastasis revealed significantly higher levels of Fbln5 than those without metastasis, accompanied by immunopositivity of RCC cells and myofibroblast proliferation. Experiments revealed that RCC cell lines showed lower expression of fbln5 than its non-transformed counterpart NRK52E, but that fbln5 transfection to RCC cell lines changed neither proliferation nor migration/invasion. The data suggest that Fbln5 plays a role not only in the tissue repair and remodelling after renal tubular oxidative damage but also in RCC metastasis, presumably as a cytokine.
Collapse
Affiliation(s)
- Hiroki Ohara
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shirase T, Mori K, Okazaki Y, Itoh K, Yamamoto M, Tabuchi M, Kishi F, Jiang L, Akatsuka S, Nakao K, Toyokuni S. Suppression of SLC11A2 expression is essential to maintain duodenal integrity during dietary iron overload. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:677-85. [PMID: 20558581 DOI: 10.2353/ajpath.2010.090823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron is essential for the survival of mammals, but iron overload causes fibrosis and carcinogenesis. Reduced iron absorption and regulated release into circulation in duodenal mucosa constitute two major mechanisms of protection against dietary iron overload; however, their relative contribution remains elusive. To study the significance of the former process, we generated SLC11A2 transgenic mice (TGs) under the control of the chicken beta-actin promoter. TGs were viable and fertile, and displayed no overt abnormalities up to 20 months. No significant difference in iron concentration was observed in major solid organs between TGs and their wild-type littermates, suggesting that increased number of iron transporters does not lead to increased iron absorption. To test the sensitivity to iron overload, TGs and wild-type mice were fed with an iron-rich diet containing 2% ferric citrate. Iron supplementation caused suppression of endogenous duodenal SLC11A2 expression, down-regulation of duodenal ferroportin, and overexpression of hepatic hepcidin, precluding excessive iron uptake both in the TGs and wild-type mice. However, iron-treated TGs revealed increased mortality, resulting from oxidative mucosal damage leading to hemorrhagic erosion throughout the whole intestinal area. These findings suggest that reduced iron release from duodenal cells into circulation plays a role in mitigating excessive iron uptake from the diet and that finely regulated duodenal absorption is essential to protect intestinal mucosa from iron-induced oxidative damage.
Collapse
Affiliation(s)
- Tomoyuki Shirase
- Department of Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang L, Yamashita Y, Toyokuni S. A novel method for efficient collection of normal mesothelial cells in vivo. J Clin Biochem Nutr 2010; 46:265-8. [PMID: 20490323 PMCID: PMC2872233 DOI: 10.3164/jcbn.10-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/21/2010] [Indexed: 12/22/2022] Open
Abstract
Asbestos-induced mesothelioma is a challenging social problem in many countries, and oxidative stress via iron is closely associated with its carcinogenesis. Mesothelioma is thought to originate from the mesothelial cells that cover the somatic cavity such as pleural, pericardial and peritoneal cavities. They are single layered and so flat that it is extremely difficult to obtain pure mesothelial cells as control samples from experimental animals. Here we describe a novel method to collect mesothelial cells from animals by the use of simple equipments. Surface of the most organs including lung, spleen and liver are covered with a single layer of mesothelial cells. Scraping the surface of those organs with razor blades after snap-freeze in liquid nitrogen satisfactorily confers almost pure population of mesothelial cells. This simple method would be helpful for obtaining mesothelial control samples from animals to elucidate the molecular mechanisms of a variety of mesothelial pathology.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
20
|
Homozygous deletion of CDKN2A/2B is a hallmark of iron-induced high-grade rat mesothelioma. J Transl Med 2010; 90:360-73. [PMID: 20065947 DOI: 10.1038/labinvest.2009.140] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In humans, mesothelioma has been linked to asbestos exposure, especially crocidolite and amosite asbestos, which contain high amounts of iron. Previously, we established a rat model of iron-induced peritoneal mesothelioma with repeated intraperitoneal injections of iron saccharate and an iron chelator, nitrilotriacetate. Here, we analyze these mesotheliomas using array-based comparative genomic hybridization (aCGH) and gene expression profiling by microarray. Mesotheliomas were classified into two distinct types after pathologic evaluation by immunohistochemistry. The major type, epithelioid mesothelioma (EM), originated in the vicinity of tunica vaginalis testis, expanded into the upper peritoneal cavity and exhibited papillary growth and intense podoplanin immunopositivity. The minor type, sarcomatoid mesothelioma (SM), originated from intraperitoneal organs and exhibited prominent invasiveness and lethality. Both mesothelioma types showed male preponderance. SMs revealed massive genomic alterations after aCGH analysis, including homozygous deletion of CDKN2A/2B and amplification of ERBB2 containing region, whereas EMs showed less genomic alterations. Uromodulin was highly expressed in most of the cases. After 4-week treatment, iron deposition in the mesothelia was observed with 8-hydroxy-2'-deoxyguanosine formation. These results not only show two distinct molecular pathways for iron-induced peritoneal mesothelioma, but also support the hypothesis that oxidative stress by iron overload is a major cause of CDKN2A/2B homozygous deletion.
Collapse
|
21
|
Improved protein detection using cold microwave technology. Methods Mol Biol 2009. [PMID: 19378090 DOI: 10.1007/978-1-59745-542-8_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio would be highly beneficial to many researchers. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 45 min.
Collapse
|
22
|
Intermittent microwave irradiation facilitates antigen-antibody reaction in Western blot analysis. Methods Mol Biol 2009; 536:307-12. [PMID: 19378070 DOI: 10.1007/978-1-59745-542-8_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We established a shortened protocol for western blot analysis using intermittent microwave irradiation. With this method, the procedure is completed within 1 h after applying the primary antibody, and thus greatly saves time. This procedure appears to be applicable to any antibody based on our experience of several years.
Collapse
|
23
|
Zhong Y, Onuki J, Yamasaki T, Ogawa O, Akatsuka S, Toyokuni S. Genome-wide analysis identifies a tumor suppressor role for aminoacylase 1 in iron-induced rat renal cell carcinoma. Carcinogenesis 2008; 30:158-64. [PMID: 19028700 DOI: 10.1093/carcin/bgn255] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A growing number of studies indicate a link between oxidative stress and cancer. We previously developed a rat model of renal cell carcinoma (RCC) induced by ferric nitrilotriacetate (Fe-NTA). Here, we performed a genome-wide analysis to study characteristics of genomic alteration and identify putative genes involved in the development of Fe-NTA-induced RCCs. Array-based comparative genomic hybridization analyses revealed a chromosomal loss spanning chromosome 8 in most of the RCCs studied, with a common deletion at 8q31-32, which was confirmed by loss of heterozygosity (LOH) analysis. Studies of gene expression in RCCs or following Fe-NTA treatment revealed globally decreased transcription levels of 34 genes derived from chromosome 8 that are expressed in the kidney. Among them, the aminoacylase 1 (Acy1) gene, which maps to 8q32 and is highly expressed in the kidney, displayed a significantly decreased level of expression in RCCs. Significant amounts of the Acy1 protein were detected in the cytoplasm as well as in the nuclei of renal proximal tubular cells of untreated rats. Transfection of Acy1 into RCC cell lines inhibited proliferation and colony formation on soft agar. An increased number of apoptotic cells were observed following Acy1 transfection. The rat 8q31-32 chromosomal region corresponds to human 3p21.31-24.1, a hot spot where LOH is frequently found in various human cancers. Thus, Fe-NTA-induced renal tumor model is ideal for studying the link between deletions within this region and tumor formation. Our data demonstrate that Acy1 functions as a tumor suppressor in this rat RCC model.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Protein screening using cold microwave technology. Anal Biochem 2008; 375:313-7. [DOI: 10.1016/j.ab.2008.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/19/2022]
|
25
|
Liu YT, Shang D, Akatsuka S, Ohara H, Dutta KK, Mizushima K, Naito Y, Yoshikawa T, Izumiya M, Abe K, Nakagama H, Noguchi N, Toyokuni S. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1978-88. [PMID: 18055543 DOI: 10.2353/ajpath.2007.070741] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ferric nitrilotriacetate induces oxidative renal tubular damage via Fenton-reaction, which subsequently leads to renal cell carcinoma (RCC) in rodents. Here, we used gene expression microarray and array-based comparative genomic hybridization analyses to find target oncogenes in this model. At the common chromosomal region of amplification (4q22) in rat RCCs, we found ptprz1, a tyrosine phosphatase (also known as protein tyrosine phosphatase zeta or receptor tyrosine phosphatase beta) highly expressed in the RCCs. Analyses revealed genomic amplification up to eightfold. Despite scarcity in the control kidney, the amounts of PTPRZ1 were increased in the kidney after 3 weeks of oxidative stress, and mRNA levels were increased 16 approximately 552-fold in the RCCs. Network analysis of the expression revealed the involvement of the beta-catenin pathway in the RCCs. In the RCCs, dephosphorylated beta-catenin was translocated to nuclei, resulting in the expression of its target genes cyclin D1, c-myc, c-jun, fra-1, and CD44. Furthermore, knockdown of ptprz1 with small interfering RNA (siRNA), in FRCC-001 and FRCC-562 cell lines established from the induced RCCs, decreased the amounts of nuclear beta-catenin and suppressed cellular proliferation concomitant with a decrease in the expression of target genes. These results demonstrate that chronic oxidative stress can induce genomic amplification of ptprz1, activating beta-catenin pathways without the involvement of Wnt signaling for carcinogenesis. Thus, iron-mediated persistent oxidative stress confers an environment for gene amplification.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dutta KK, Zhong Y, Liu YT, Yamada T, Akatsuka S, Hu Q, Yoshihara M, Ohara H, Takehashi M, Shinohara T, Masutani H, Onuki J, Toyokuni S. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci 2007; 98:1845-52. [PMID: 17888029 DOI: 10.1111/j.1349-7006.2007.00619.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently Welch et al. reported that microRNA (miRNA)-34a functions as a potential tumor suppressor in neuroblastoma cells (Oncogene 26: 5017-22, 2007). Here, we conversely show that miRNA-34a supports cell proliferation in rat oxidative stress-induced renal carcinogenesis and is overexpressed in various types of human cancers. While searching for genetically unstable chromosomal areas in rat renal carcinogenesis, we found the miRNA-34 family reciprocally overexpressed in chromosomal areas with frequent allelic loss. By in situ hybridization and reverse transcription-polymerase chain reaction, cerebral neurons and Purkinje cells showed the highest expression of a major type, miRNA-34a, followed by a variety of endocrine cells and proliferating cells including germinal center lymphocytes and mouse embryonic fibroblasts and stem cells. In contrast, normal renal tubules, hepatocytes and myocardial cells showed faint expression. After 3 weeks of ferric nitrilotriacetate (Fe-NTA)-induced oxidative stress, regenerating renal proximal tubular cells showed high miRNA-34a expression. All of the Fe-NTA-induced rat renal carcinomas and an array of human cancers (151 positive cases of 177) showed high expression of miRNA-34a. Furthermore, knockdown of miRNA-34a with small interfering RNA significantly suppressed proliferation not only of renal carcinoma cells but also of HeLa and MCF7 cells. These results indicate that miRNA-34a overexpression, an acquired trait during carcinogenesis, supports cell proliferation in the majority of cancers suggesting an unexpected link in the cellular metabolism between cancer and neuronal and/or endocrine cells, which warrants further investigation.
Collapse
Affiliation(s)
- Khokon Kumar Dutta
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhong Y, Jiang L, Hiai H, Toyokuni S, Yamada Y. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 2007; 26:6937-47. [PMID: 17486074 DOI: 10.1038/sj.onc.1210494] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Dimerization
- Gene Rearrangement, T-Lymphocyte
- Helix-Loop-Helix Motifs
- Humans
- Immunophenotyping
- Immunoprecipitation
- Luciferases/metabolism
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Two-Hybrid System Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Y Zhong
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
28
|
Lee WH, Akatsuka S, Shirase T, Dutta KK, Jiang L, Liu YT, Onuki J, Yamada Y, Okawa K, Wada Y, Watanabe A, Kohro T, Noguchi N, Toyokuni S. α-Tocopherol induces calnexin in renal tubular cells: Another protective mechanism against free radical-induced cellular damage. Arch Biochem Biophys 2006; 453:168-78. [PMID: 16908007 DOI: 10.1016/j.abb.2006.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/08/2006] [Indexed: 10/24/2022]
Abstract
Pre-administration of alpha-tocopherol is protective against oxidative renal tubular damage and subsequent carcinogenesis by ferric nitrilotriacetate (Fe-NTA) in rats. We searched for mechanisms other than the scavenging effect of alpha-tocopherol with microarray analyses, which implicated calnexin, a chaperone for glycoproteins. Renal mRNA levels of calnexin significantly increased 3h after an injection of Fe-NTA in rats fed a standard diet whereas those fed an alpha-tocopherol-supplemented diet showed an increase prior to injection, but after injection showed a decrease in renal calnexin mRNA levels, with unaltered protein levels. In experiments using LLC-PK1 cells, addition of alpha-tocopherol was protective against oxidative stress by H2O2, concomitant with calnexin induction. Knockdown of calnexin by siRNA significantly reduced this protection. Furthermore, COS-7 cells transfected with the calnexin gene were more resistant to H2O2. Together with the fact that alpha-tocopherol induced N-acetylglucosaminyltransferase 3, our data suggest that alpha-tocopherol modifies glycoprotein metabolism partially by conferring mild ER stress. This adds another molecular mechanism of alpha-tocopherol toward cancer prevention.
Collapse
Affiliation(s)
- Wen-Hua Lee
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dutta KK, Nishinaka Y, Masutani H, Akatsuka S, Aung TT, Shirase T, Lee WH, Yamada Y, Hiai H, Yodoi J, Toyokuni S. Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. J Transl Med 2005; 85:798-807. [PMID: 15834431 DOI: 10.1038/labinvest.3700280] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Thioredoxin is a major component of thiol-reducing system. Recently, we identified thioredoxin-binding protein-2 (TBP-2) as a negative regulator of thioredoxin. Here, we report the role of TBP-2 in oxidative renal tubular injury and the subsequent carcinogenesis by ferric nitrilotriacetate. TBP-2 was abundantly expressed in the rat kidney. Immunohistochemical analysis revealed that TBP-2 was present in association with nuclei and mitochondrial intermembrane space in the proximal tubular cells and coimmunoprecipitated with cytochrome c. After acute oxidative tubular damage, TBP-2 protein, but not messenger RNA, markedly decreased, demonstrating shortened half-life of this protein. Most cases of the induced renal cell carcinoma showed undetectable levels of TBP-2 protein, which was associated with the methylation of CpG island in the promoter region. Genome sequence analyses identified the poly-A tract in the 3' untranslated region as a mutation hot spot in this rather nonselective environment. Collectively, the amounts of TBP-2 protein were inversely associated with proliferation of tubular cells, as evaluated by proliferating cell nuclear antigen. These results suggest that loss of TBP-2 is essential for proliferation of not only neoplastic but also non-neoplastic renal tubular cells, and that TBP-2 is a target gene in oxidative stress-induced renal carcinogenesis by ferric nitrilotriacetate.
Collapse
Affiliation(s)
- Khokon K Dutta
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nishinaka Y, Masutani H, Oka SI, Matsuo Y, Yamaguchi Y, Nishio K, Ishii Y, Yodoi J. Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem 2004; 279:37559-65. [PMID: 15234975 DOI: 10.1074/jbc.m405473200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin-binding protein-2 (TBP-2)/vitamin D(3) up-regulated protein 1 is an endogenous molecule interacting with thioredoxin (TRX), negatively regulating TRX function, and being implicated in the suppression of tumor development and metastasis. We found that TBP-2 ectopically expressed in the breast cancer cell line MCF-7 was localized predominantly in the nucleus exhibiting growth suppressive activity. The nuclear accumulation of endogenous TBP-2 protein was also demonstrated when the cells were treated with an anti-cancer drug, suberoylanilide hydroxamic acid. To investigate the mechanism underlying the nuclear localization, we performed a yeast two-hybrid screening and identified importin alpha(1) (Rch1) as a protein interacting with TBP-2. The physical interaction between TBP-2 and Rch1 was confirmed with a glutathione S-transferase pull-down assay. The interaction of TBP-2 was specific to Rch1 among other importin alpha subfamilies (Qip1 and NPI-1), and amino acids 1-227 of TBP-2 were sufficient for both the interaction with Rch1 and the nuclear localization, although there is no typical nuclear localization signal in this sequence. The expression of short interfering RNA of Rch1 suppressed suberoylanilide hydroxamic acid-induced nuclear accumulation of TBP-2. Collectively, our results strongly suggest that an interaction with importin system is required for TBP-2 nuclear translocation and growth control tightly associated with TRX-dependent redox regulation of transcription factors.
Collapse
Affiliation(s)
- Yumiko Nishinaka
- Department of Biological Responses, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tanaka T, Akatsuka S, Ozeki M, Shirase T, Hiai H, Toyokuni S. Redox regulation of annexin 2 and its implications for oxidative stress-induced renal carcinogenesis and metastasis. Oncogene 2004; 23:3980-9. [PMID: 15048081 DOI: 10.1038/sj.onc.1207555] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ferric nitrilotriacetate (Fe-NTA) induces oxidative renal damage leading to a high incidence of renal cell carcinoma (RCC) in rats. Differential display analysis of such RCCs revealed elevated expression of annexin 2 (Anx2), a substrate for kinases and a receptor for tissue-type plasminogen activator and plasminogen. We conducted this study to clarify the significance of Anx2 in Fenton reaction-based carcinogenesis. Messenger RNA and protein levels of Anx2 were increased time-dependently in the rat kidney after Fe-NTA administration as well as in LLC-PK1 cells after exposure to H2O2. The latter was inhibited by pretreatment with N-acetylcysteine, pyrrolidine dithiocarbamate or catalase. Immunohistochemistry revealed negligible staining in the normal renal proximal tubules, but strong staining in regenerating proximal tubules, karyomegalic cells and RCCs. Metastasizing RCCs showed higher Anx2 protein levels. Anx2 was phosphorylated at serine and tyrosine residues in these cells and coimmunoprecipitated with phosphorylated actin. Overexpression of Anx2 induced a higher cell proliferation rate in LLC-PK1 cells. In contrast, a decrease in proliferation leading to apoptosis was observed after Anx2 antisense treatment to cell lines established from Fe-NTA-induced RCCs. These results suggest that Anx2 is regulated by redox status, and that persistent operation of this adaptive mechanism plays a role in the proliferation and metastasis of oxidative stress-induced cancer.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|