1
|
Hussain M, Zaki KE, Asef MA, Song H, Treger RM. Unmeasured Organic Anions as Predictors of Clinical Outcomes in Lactic Acidosis due to Sepsis. J Intensive Care Med 2023; 38:975-982. [PMID: 37264611 DOI: 10.1177/08850666231177602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Background and Objectives: In lactic acidosis, lactate can only explain 30% of the variance in the anion gap (AG), and the elevated AG not explained by lactate is due to unmeasured organic anions (UOAs). Some studies using less precise surrogates for UOA have suggested that UOA may predict clinical outcomes better than lactate. The aim of this study was to determine whether UOA predicts clinical outcomes better than lactate levels. Design, Setting, Participants, & Measurements: This was a retrospective cohort study of adult ICU patients with sepsis. Baseline AG and albumin measurements were obtained. An albumin-corrected delta AG was calculated. UOAs were estimated using the formula: Delta AG - serum lactate. A multivariate logistic regression model with its respective ROC curve was constructed to explore the relationship between in-hospital mortality, UOA, and lactate. Results: 526 patients were included. In the combined model examining both lactate and UOA, the odds ratio (OR) [95% CI] for predicting ICU length of stay (LOS) was 1.050 [1.029-1.072] and 1.022 [1.009-1.035], respectively; the OR [95% CI] for predicting in-hospital mortality was 1.224 [1.104-1.358] and 0.997 [0.943-1.054], respectively. The ROC curve for in-hospital mortality demonstrated that the Area Under the Curve (AUC) for lactate, UOA, and combined lactate and UOA was 0.7726, 0.7486, and 0.7732, respectively. The AUC for combined lactate and UOA were not statistically significantly higher than the AUC for lactate alone (P .9193). Conclusions: As expected, serum lactate predicted both ICU LOS and in-hospital mortality. UOA did predict ICU LOS, although the reason for this association is not known. UOA did not predict in-hospital mortality based on the OR and the ROC curve's AUC, contrary to some previous studies. However, our study used a more precise quantitative estimate of UOA, including the use of baseline albumin-corrected AG. Prior studies attempting to identify UOA have identified Krebs cycle intermediates including citrate and isocitrate, suggesting that in our study these anions associated with the Krebs cycle contributed to the UOA.
Collapse
Affiliation(s)
- Marvi Hussain
- Department of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Kirollos E Zaki
- Department of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Mark A Asef
- Department of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Hubert Song
- Kaiser Permanente Department of Research and Evaluation, Pasadena, CA, USA
| | - Richard M Treger
- Department of Nephrology and Hypertension, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
2
|
Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. J Clin Invest 2023; 133:e171953. [PMID: 37712418 PMCID: PMC10503791 DOI: 10.1172/jci171953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
3
|
Karimi M, Petkova V, Asara JM, Griffin MJ, Sellke FW, Bishop AR, Alexandrov BS, Usheva A. Metabolomics and the pig model reveal aberrant cardiac energy metabolism in metabolic syndrome. Sci Rep 2020; 10:3483. [PMID: 32103083 PMCID: PMC7044421 DOI: 10.1038/s41598-020-60387-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Although metabolic syndrome (MS) is a significant risk of cardiovascular disease (CVD), the cardiac response (MR) to MS remains unclear due to traditional MS models' narrow scope around a limited number of cell-cycle regulation biomarkers and drawbacks of limited human tissue samples. To date, we developed the most comprehensive platform studying MR to MS in a pig model tightly related to human MS criteria. By incorporating comparative metabolomic, transcriptomic, functional analyses, and unsupervised machine learning (UML), we can discover unknown metabolic pathways connections and links on numerous biomarkers across the MS-associated issues in the heart. For the first time, we show severely diminished availability of glycolytic and citric acid cycle (CAC) pathways metabolites, altered expression, GlcNAcylation, and activity of involved enzymes. A notable exception, however, is the excessive succinate accumulation despite reduced succinate dehydrogenase complex iron-sulfur subunit b (SDHB) expression and decreased content of precursor metabolites. Finally, the expression of metabolites and enzymes from the GABA-glutamate, GABA-putrescine, and the glyoxylate pathways significantly increase, suggesting an alternative cardiac means to replenish succinate and malate in MS. Our platform discovers potential therapeutic targets for MS-associated CVD within pathways that were previously unknown to corelate with the disease.
Collapse
Affiliation(s)
- Maryam Karimi
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States
| | - Victoria Petkova
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, United States
| | - John M Asara
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, United States
| | - Michael J Griffin
- Sam Houston State University, College of Osteopathic Medicine, Huntsville, TX, 77320, United States
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States
| | - Alan R Bishop
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | | | - Anny Usheva
- Division of Cardiothoracic Surgery, Department of Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, United States.
| |
Collapse
|
4
|
Zhang X, Liu H, Gao J, Zhu M, Wang Y, Jiang C, Xu M. Metabolic disorder in the progression of heart failure. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1153-1167. [DOI: 10.1007/s11427-019-9548-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
|
5
|
Novel metabolic disturbances in marginal vitamin B6-deficient rat heart. J Nutr Biochem 2019; 65:26-34. [DOI: 10.1016/j.jnutbio.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022]
|
6
|
Bienholz A, Reis J, Sanli P, de Groot H, Petrat F, Guberina H, Wilde B, Witzke O, Saner FH, Kribben A, Weinberg JM, Feldkamp T. Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol 2017; 18:130. [PMID: 28395656 PMCID: PMC5387390 DOI: 10.1186/s12882-017-0546-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/01/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ischemia and reperfusion (I/R) is one of the major causes of acute kidney injury (AKI). Citrate reduces hypoxia-induced mitochondrial energetic deficits in isolated proximal tubules. Moreover, citrate anticoagulation is now frequently used in renal replacement therapy. In the present study a rat model of I/R-induced AKI was utilized to examine renal protection by citrate in vivo. METHODS AKI was induced by bilateral renal clamping (40 min) followed by reperfusion (3 h). Citrate was infused at three different concentrations (0.3 mmol/kg/h; 0.6 mmol/kg/h and 1.0 mmol/kg/h) continuously for 60 min before and 45 min after ischemia. Plasma calcium concentrations were kept stable by infusion of calcium gluconate. The effect of citrate was evaluated by biomonitoring, blood and plasma parameters, histopathology and tissue ATP content. RESULTS In comparison to the normoxic control group bilateral renal ischemia led to an increase of creatinine and lactate dehydrogenase activity and a decrease in tissue ATP content and was accompanied by a drop in mean arterial blood pressure. Infusion of 1.0 mmol/kg/h citrate led to lower creatinine and reduced LDH activity compared to the I/R control group and a tendency for higher tissue ATP content. Pre-ischemic infusion of 1.0 mmol/kg/h citrate stabilized blood pressure during ischemia. CONCLUSIONS Citrate has a protective effect during I/R-induced AKI, possibly by limiting the mitochondrial deficit as well as by beneficial cardiovascular effects. This strengthens the rationale of using citrate in continuous renal replacement therapy and encourages consideration of citrate infusion as a therapeutic treatment for AKI in humans.
Collapse
Affiliation(s)
- Anja Bienholz
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Jonas Reis
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Pinar Sanli
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Herbert de Groot
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Frank Petrat
- Institute of Physiological Chemistry, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Hana Guberina
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Fuat H Saner
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Joel M Weinberg
- Department of Internal Medicine, Division of Nephrology, V.A. Ann Arbor Health System and University of Michigan, 1150 W. Medical Center Drive, 1560C MSRB II, Ann Arbor, MI, 48109-5676, USA
| | - Thorsten Feldkamp
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Schittenhelmstr. 12, 24105, Kiel, Germany
| |
Collapse
|
7
|
Guo J, Yong Y, Aa J, Cao B, Sun R, Yu X, Huang J, Yang N, Yan L, Li X, Cao J, Aa N, Yang Z, Kong X, Wang L, Zhu X, Ma X, Guo Z, Zhou S, Sun H, Wang G. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia. Sci Rep 2016; 6:37919. [PMID: 27905409 PMCID: PMC5131350 DOI: 10.1038/srep37919] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/02/2016] [Indexed: 01/14/2023] Open
Abstract
The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.
Collapse
Affiliation(s)
- Jiahua Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Yonghong Yong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Bei Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Xiaoyi Yu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Jingqiu Huang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Na Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Lulu Yan
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Xinxin Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Jing Cao
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xuanxuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, No. 282 Hanzhong Road, Nanjing, 210029, China
| | - Xiaohui Ma
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Zhixin Guo
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - He Sun
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| |
Collapse
|
8
|
1 H NMR-derived metabolomics of filtered serum of myocardial ischemia in unstable angina patients. Clin Chim Acta 2016; 456:56-62. [DOI: 10.1016/j.cca.2016.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
|
9
|
Exogenous carbon monoxide does not affect cell membrane energy availability assessed by sarcolemmal calcium fluxes during myocardial ischaemia-reperfusion in the pig. Eur J Anaesthesiol 2011; 28:356-62. [PMID: 20811288 DOI: 10.1097/eja.0b013e32833eab96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carbon monoxide is thought to be cytoprotective and may hold therapeutic promise for mitigating ischaemic injury. The purpose of this study was to test low-dose carbon monoxide for protective effects in a porcine model of acute myocardial ischaemia and reperfusion. In acute open-thorax experiments in anaesthetised pigs, pretreatment with low-dose carbon monoxide (5% increase in carboxyhaemoglobin) was conducted for 120 min before localised ischaemia (45 min) and reperfusion (60 min) was performed using a coronary snare. Metabolic and injury markers were collected by microdialysis sampling in the ventricular wall. Recovery of radio-marked calcium delivered locally by microperfusate was measured to assess carbon monoxide treatment effects during ischaemia/reperfusion on the intracellular calcium pool. Coronary occlusion and ischaemia/reperfusion were analysed for 16 animals (eight in each group). Changes in glucose, lactate and pyruvate from the ischaemic area were observed during ischaemia and reperfusion interventions, though there was no difference between carbon monoxide-treated and control groups during ischaemia or reperfusion. Similar results were observed for glycerol and microdialysate ⁴⁵Ca(2+) recovery. These findings show that a relatively low and clinically relevant dose of carbon monoxide did not seem to provide acute protection as indicated by metabolic, energy-related and injury markers in a porcine myocardial ischaemia/reperfusion experimental model. We conclude that protective effects of carbon monoxide related to ischaemia/reperfusion either require higher doses of carbon monoxide or occur later after reperfusion than the immediate time frame studied here. More study is needed to characterise the mechanism and time frame of carbon monoxide-related cytoprotection.
Collapse
|
10
|
Lewis GD, Wei R, Liu E, Yang E, Shi X, Martinovic M, Farrell L, Asnani A, Cyrille M, Ramanathan A, Shaham O, Berriz G, Lowry PA, Palacios IF, Taşan M, Roth FP, Min J, Baumgartner C, Keshishian H, Addona T, Mootha VK, Rosenzweig A, Carr SA, Fifer MA, Sabatine MS, Gerszten RE. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 2008; 118:3503-12. [PMID: 18769631 DOI: 10.1172/jci35111] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/09/2008] [Indexed: 11/17/2022] Open
Abstract
Emerging metabolomic tools have created the opportunity to establish metabolic signatures of myocardial injury. We applied a mass spectrometry-based metabolite profiling platform to 36 patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of planned myocardial infarction (PMI). Serial blood samples were obtained before and at various intervals after PMI, with patients undergoing elective diagnostic coronary angiography and patients with spontaneous myocardial infarction (SMI) serving as negative and positive controls, respectively. We identified changes in circulating levels of metabolites participating in pyrimidine metabolism, the tricarboxylic acid cycle and its upstream contributors, and the pentose phosphate pathway. Alterations in levels of multiple metabolites were detected as early as 10 minutes after PMI in an initial derivation group and were validated in a second, independent group of PMI patients. A PMI-derived metabolic signature consisting of aconitic acid, hypoxanthine, trimethylamine N-oxide, and threonine differentiated patients with SMI from those undergoing diagnostic coronary angiography with high accuracy, and coronary sinus sampling distinguished cardiac-derived from peripheral metabolic changes. Our results identify a role for metabolic profiling in the early detection of myocardial injury and suggest that similar approaches may be used for detection or prediction of other disease states.
Collapse
Affiliation(s)
- Gregory D Lewis
- Cardiology Division and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kristiansen SB, Lfgren B, Stttrup NB, Kimose HH, Nielsen-Kudsk JE, Btker HE, Nielsen TT. CARDIOPROTECTION BY l-GLUTAMATE DURING POSTISCHAEMIC REPERFUSION: REDUCED INFARCT SIZE AND ENHANCED GLYCOGEN RESYNTHESIS IN A RAT INSULIN-FREE HEART MODEL. Clin Exp Pharmacol Physiol 2008; 35:884-8. [DOI: 10.1111/j.1440-1681.2008.04914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Bruegger D, Kemming GI, Jacob M, Meisner FG, Wojtczyk CJ, Packert KB, Keipert PE, Faithfull NS, Habler OP, Becker BF, Rehm M. Causes of metabolic acidosis in canine hemorrhagic shock: role of unmeasured ions. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:R130. [PMID: 18081930 PMCID: PMC2246228 DOI: 10.1186/cc6200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 11/26/2007] [Accepted: 12/14/2007] [Indexed: 02/07/2023]
Abstract
Introduction Metabolic acidosis during hemorrhagic shock is common and conventionally considered to be due to hyperlactatemia. There is increasing awareness, however, that other nonlactate, unmeasured anions contribute to this type of acidosis. Methods Eleven anesthetized dogs were hemorrhaged to a mean arterial pressure of 45 mm Hg and were kept at this level until a metabolic oxygen debt of 120 mLO2/kg body weight had evolved. Blood pH, partial pressure of carbon dioxide, and concentrations of sodium, potassium, magnesium, calcium, chloride, lactate, albumin, and phosphate were measured at baseline, in shock, and during 3 hours post-therapy. Strong ion difference and the amount of weak plasma acid were calculated. To detect the presence of unmeasured anions, anion gap and strong ion gap were determined. Capillary electrophoresis was used to identify potential contributors to unmeasured anions. Results During induction of shock, pH decreased significantly from 7.41 to 7.19. The transient increase in lactate concentration from 1.5 to 5.5 mEq/L during shock was not sufficient to explain the transient increases in anion gap (+11.0 mEq/L) and strong ion gap (+7.1 mEq/L), suggesting that substantial amounts of unmeasured anions must have been generated. Capillary electrophoresis revealed increases in serum concentration of acetate (2.2 mEq/L), citrate (2.2 mEq/L), α-ketoglutarate (35.3 μEq/L), fumarate (6.2 μEq/L), sulfate (0.1 mEq/L), and urate (55.9 μEq/L) after shock induction. Conclusion Large amounts of unmeasured anions were generated after hemorrhage in this highly standardized model of hemorrhagic shock. Capillary electrophoresis suggested that the hitherto unmeasured anions citrate and acetate, but not sulfate, contributed significantly to the changes in strong ion gap associated with induction of shock.
Collapse
Affiliation(s)
- Dirk Bruegger
- Clinic of Anesthesiology, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Almeida AM, Bertoncini CRA, Borecký J, Souza-Pinto NC, Vercesi AE. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. AN ACAD BRAS CIENC 2006; 78:505-14. [PMID: 16936939 DOI: 10.1590/s0001-37652006000300010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Accepted: 11/24/2005] [Indexed: 02/04/2023] Open
Abstract
Iron imbalance/accumulation has been implicated in oxidative injury associated with many degenerative diseases such as hereditary hemochromatosis, beta-thalassemia, and Friedreich's ataxia. Mitochondria are particularly sensitive to iron-induced oxidative stress - high loads of iron cause extensive lipid peroxidation and membrane permeabilization in isolated mitochondria. Here we detected and characterized mitochondrial DNA damage in isolated rat liver mitochondria exposed to a Fe2+-citrate complex, a small molecular weight complex. Intense DNA fragmentation was induced after the incubation of mitochondria with the iron complex. The detection of 3' phosphoglycolate ends at the mtDNA strand breaks by a 32P-postlabeling assay, suggested the involvement of hydroxyl radical in the DNA fragmentation induced by Fe2+-citrate. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine also suggested that Fe2+-citrate-induced oxidative stress causes mitochondrial DNA damage. In conclusion, our results show that iron-mediated lipid peroxidation was associated with intense mtDNA damage derived from the direct attack of reactive oxygen species.
Collapse
Affiliation(s)
- Andréa M Almeida
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | |
Collapse
|
14
|
Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, Berriz GF, Roth FP, Gerszten RE. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005; 112:3868-75. [PMID: 16344383 DOI: 10.1161/circulationaha.105.569137] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recognition of myocardial ischemia is critical both for the diagnosis of coronary artery disease and the selection and evaluation of therapy. Recent advances in proteomic and metabolic profiling technologies may offer the possibility of identifying novel biomarkers and pathways activated in myocardial ischemia. METHODS AND RESULTS Blood samples were obtained before and after exercise stress testing from 36 patients, 18 of whom demonstrated inducible ischemia (cases) and 18 of whom did not (controls). Plasma was fractionated by liquid chromatography, and profiling of analytes was performed with a high-sensitivity electrospray triple-quadrupole mass spectrometer under selected reaction monitoring conditions. Lactic acid and metabolites involved in skeletal muscle AMP catabolism increased after exercise in both cases and controls. In contrast, there was significant discordant regulation of multiple metabolites that either increased or decreased in cases but remained unchanged in controls. Functional pathway trend analysis with the use of novel software revealed that 6 members of the citric acid pathway were among the 23 most changed metabolites in cases (adjusted P=0.04). Furthermore, changes in 6 metabolites, including citric acid, differentiated cases from controls with a high degree of accuracy (P<0.0001; cross-validated c-statistic=0.83). CONCLUSIONS We report the novel application of metabolomics to acute myocardial ischemia, in which we identified novel biomarkers of ischemia, and from pathway trend analysis, coordinate changes in groups of functionally related metabolites.
Collapse
Affiliation(s)
- Marc S Sabatine
- Cardiovascular Division, Brigham and Women's Hospital, Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Forni LG, McKinnon W, Lord GA, Treacher DF, Peron JMR, Hilton PJ. Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:R591-5. [PMID: 16277723 PMCID: PMC1297631 DOI: 10.1186/cc3806] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/01/2005] [Accepted: 08/12/2005] [Indexed: 01/22/2023]
Abstract
Introduction Acute metabolic acidosis of non-renal origin is usually a result of either lactic or ketoacidosis, both of which are associated with a high anion gap. There is increasing recognition, however, of a group of acidotic patients who have a large anion gap that is not explained by either keto- or lactic acidosis nor, in most cases, is inappropriate fluid resuscitation or ingestion of exogenous agents the cause. Methods Plasma ultrafiltrate from patients with diabetic ketoacidosis, lactic acidosis, acidosis of unknown cause, normal anion gap metabolic acidosis, or acidosis as a result of base loss were examined enzymatically for the presence of low molecular weight anions including citrate, isocitrate, α-ketoglutarate, succinate, malate and d-lactate. The results obtained from the study groups were compared with those obtained from control plasma from normal volunteers. Results In five patients with lactic acidosis, a significant increase in isocitrate (0.71 ± 0.35 mEq l-1), α-ketoglutarate (0.55 ± 0.35 mEq l-1), malate (0.59 ± 0.27 mEq l-1), and d-lactate (0.40 ± 0.51 mEq l-1) was observed. In 13 patients with diabetic ketoacidosis, significant increases in isocitrate (0.42 ± 0.35 mEq l-1), α-ketoglutarate (0.41 ± 0.16 mEq l-1), malate (0.23 ± 0.18 mEq l-1) and d-lactate (0.16 ± 0.07 mEq l-1) were seen. Neither citrate nor succinate levels were increased. Similar findings were also observed in a further five patients with high anion gap acidosis of unknown origin with increases in isocitrate (0.95 ± 0.88 mEq l-1), α-ketoglutarate (0.65 ± 0.20 mEq l-1), succinate (0.34 ± 0.13 mEq l-1), malate (0.49 ± 0.19 mEq l-1) and d-lactate (0.18 ± 0.14 mEq l-1) being observed but not in citrate concentration. In five patients with a normal anion gap acidosis, no increases were observed except a modest rise in d-lactate (0.17 ± 0.14 mEq l-1). Conclusion The levels of certain low molecular weight anions usually associated with intermediary metabolism were found to be significantly elevated in the plasma ultrafiltrate obtained from patients with metabolic acidosis. Our results suggest that these hitherto unmeasured anions may significantly contribute to the generation of the anion gap in patients with lactic acidosis and acidosis of unknown aetiology and may be underestimated in diabetic ketoacidosis. These anions are not significantly elevated in patients with normal anion gap acidosis.
Collapse
Affiliation(s)
- Lui G Forni
- Consultant Physician & Intensivist, Department of Critical Care, Worthing Hospital, Worthing, West Sussex, UK
| | - William McKinnon
- Research Fellow, Renal Laboratory, St Thomas' Hospital, London, UK
| | - Gwyn A Lord
- MRC Scientist, MRC Toxicology Unit, Birkbeck College, London, UK
| | - David F Treacher
- Consultant Physician & Intensivist, Renal Laboratory, St Thomas' Hospital, London, UK
| | - Jean-Marie R Peron
- Research Fellow, Department of Chemistry, Kingston University, Surrey, UK
| | - Philip J Hilton
- Consultant Physician & Research Director, Renal Laboratory, St Thomas' Hospital, London, UK
| |
Collapse
|
16
|
Chen OS, Hemenway S, Kaplan J. Genetic analysis of iron citrate toxicity in yeast: implications for mammalian iron homeostasis. Proc Natl Acad Sci U S A 2002; 99:16922-7. [PMID: 12471153 PMCID: PMC139245 DOI: 10.1073/pnas.232392299] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion of the yeast homologue of frataxin, YFH1, results in mitochondrial iron accumulation and respiratory deficiency (petite formation). We used a genetic screen to identify mutants that modify iron-associated defects in respiratory activity in Deltayfh1 cells. A deletion in the peroxisomal citrate synthase CIT2 in Deltayfh1 cells decreased the rate of petite formation. Conversely, overexpression of CIT2 in Deltayfh1 cells increased the rate of respiratory loss. Citrate toxicity in Deltayfh1 cells was dependent on iron but was independent of mitochondrial respiration. Citrate toxicity was not restricted to iron-laden mitochondria but also occurred when iron accumulated in cytosol because of impaired vacuolar iron storage. These results suggest that high levels of citrate may promote iron-mediated tissue damage.
Collapse
Affiliation(s)
- Opal S Chen
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
17
|
Hassel B, Bråthe A, Petersen D. Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. J Neurochem 2002; 82:410-9. [PMID: 12124442 DOI: 10.1046/j.1471-4159.2002.00986.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transport and metabolism of dicarboxylates may be important in the glial-neuronal metabolic interplay. Further, exogenous dicarboxylates have been suggested as cerebral energy substrates. After intrastriatal injection of [(14) C]fumarate or [(14) C]malate, glutamine attained a specific activity 4.1 and 2.6 times higher than that of glutamate, respectively, indicating predominantly glial uptake of these four-carbon dicarboxylates. In contrast, the three-carbon dicarboxylate [(14) C]malonate gave a specific activity in glutamate which was approximately five times higher than that of glutamine, indicating neuronal uptake of malonate. Therefore, neurones and glia take up different types of dicarboxylates, probably by different transport mechanisms. Labelling of alanine from [(14) C]fumarate and [(14) C]malate demonstrated extensive malate decarboxylation, presumably in glia. Intravenous injection of 75 micromol [U-(13) C]fumarate rapidly led to high concentrations of [U-(13) C]fumarate and [U-(13) C]malate in serum, but neither substrate labelled cerebral metabolites as determined by (13) C NMR spectroscopy. Only after conversion of [U-(13) C]fumarate into serum glucose was there (13) C-labelling of cerebral metabolites, and only at <10% of that obtained with 75 micromol [3-(13) C]lactate or [2-(13) C]acetate. These findings suggest a very low transport capacity for four-carbon dicarboxylates across the blood-brain barrier and rule out a role for exogenous fumarate as a cerebral energy substrate.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Norwegian Defence Research Establishment, Division of Environmental Toxicology, Kjeller, Norway.
| | | | | |
Collapse
|
18
|
Bäckström T, Lockowandt U, Liska J, Sylven C, Franco-Cereceda A. Monitoring of porcine myocardial ischemia and reperfusion by intravasal microdialysis. SCAND CARDIOVASC J 2002; 36:27-34. [PMID: 12018763 DOI: 10.1080/140174302317282357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE A novel application of microdialysis is studied where myocardial metabolism is semi-continuously monitored in the myocardial venous outflow during ischemia and reperfusion. DESIGN Microdialysis catheters were introduced into the great cardiac vein, the pulmonary artery, and the right external jugular vein in 20 anesthetized pigs. The left anterior descending artery was occluded in four separate groups of pigs for 0, 10, 15, and 60 min, respectively. Ischemia was followed by 120 min of reperfusion. Microdialysis samples were collected every 10-20 min and analyzed for lactate, pyruvate, glycerol, glutamate, and glucose. RESULTS Myocardial infarction was observed after 15 min of ischemia. Metabolic changes were observed only in the great cardiac vein. Lactate increased early during ischemia. After 60 min of ischemia an increase of the lactate/pyruvate ratio and glutamate was observed. Glycerol was progressively released during prolonged ischemia. Myocardial infarction resulted in an additional release of glycerol early in reperfusion. CONCLUSION Intravasal microdialysis is a semi-continuous method to monitor myocardial metabolism and tissue damage during ischemia and reperfusion.
Collapse
Affiliation(s)
- Tobias Bäckström
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Monti LD, Allibardi S, Piatti PM, Valsecchi G, Costa S, Pozza G, Chierchia S, Samaja M. Triglycerides impair postischemic recovery in isolated hearts: roles of endothelin-1 and trimetazidine. Am J Physiol Heart Circ Physiol 2001; 281:H1122-30. [PMID: 11514278 DOI: 10.1152/ajpheart.2001.281.3.h1122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing evidence that hypertriglyceridemia exacerbates ischemic injury. We tested the hypothesis that triglycerides impair myocardial recovery from low-flow ischemia in an ex vivo model and that such an effect is related to endothelin-1. Hyperglycemic (glucose concentration = 12 mmol/l) and hyperinsulinemic (insulin concentration = 1.2 micromol/l) isolated rat hearts were perfused with Krebs-Henseleit buffer (PO(2) = 670 mmHg, pH 7.4, 37 degrees C) added with increasing triglycerides (0, 1,000, 2,000, and 4,000 mg/dl, n = 6-9 rats/group). Hearts were exposed to 60 min of low-flow ischemia (10% of basal coronary flow), followed by 30 min of reperfusion. We found that increasing triglycerides impaired both the diastolic (P < 0.005) and systolic (P < 0.02) recovery. The release of endothelin-1 during reperfusion increased linearly with triglyceride concentration (P = 0.0009). Elevated triglycerides also increased the release of nitrite and nitrate (NO(x)), the end products of nitric oxide, up to 6 micromol/min. Trimetazidine (1 micromol) further increased NO(x) release, blunted endothelin-1 release, and protected myocardial function during recovery. We conclude that high triglyceride levels impair myocardial recovery after low-flow ischemia in association with endothelin-1 release. The endothelium-mediated effect of triglycerides on both contractile recovery and endothelin-1 release is prevented by 1 microM trimetazidine.
Collapse
Affiliation(s)
- L D Monti
- Divisione di Medicina, Universita' Vita-Salute, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|