1
|
Chiari P, Fellahi JL. Myocardial protection in cardiac surgery: a comprehensive review of current therapies and future cardioprotective strategies. Front Med (Lausanne) 2024; 11:1424188. [PMID: 38962735 PMCID: PMC11220133 DOI: 10.3389/fmed.2024.1424188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiac surgery with cardiopulmonary bypass results in global myocardial ischemia-reperfusion injury, leading to significant postoperative morbidity and mortality. Although cardioplegia is the cornerstone of intraoperative cardioprotection, a number of additional strategies have been identified. The concept of preconditioning and postconditioning, despite its limited direct clinical application, provided an essential contribution to the understanding of myocardial injury and organ protection. Therefore, physicians can use different tools to limit perioperative myocardial injury. These include the choice of anesthetic agents, remote ischemic preconditioning, tight glycemic control, optimization of respiratory parameters during the aortic unclamping phase to limit reperfusion injury, appropriate choice of monitoring to optimize hemodynamic parameters and limit perioperative use of catecholamines, and early reintroduction of cardioprotective agents in the postoperative period. Appropriate management before, during, and after cardiopulmonary bypass will help to decrease myocardial damage. This review aimed to highlight the current advancements in cardioprotection and their potential applications during cardiac surgery.
Collapse
Affiliation(s)
- Pascal Chiari
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Fellahi
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Mathematical Models of Cell Response Following Heating. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30315551 DOI: 10.1007/978-3-319-96445-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The cells of the cardiovascular system can experience temperature excesses of a few degrees during a diseased state or of tens of degrees during a thermal therapy treatment. These raised temperatures may be acute or of long duration. The multiple cell lines that compose each tissue then react, in approximate order of increasing thermal insult, by expressing heat shock proteins, undergoing apoptosis, or suffering necrosis. Mathematical models of the response of cells could aid in planning and designing thermal therapies. The multi-factor nature of the cell response makes it challenging to develop such models. The models most used clinically are mathematically simple and based on the response of representative tissues. The model that might provide the most fundamental understanding of the biochemical response of cells requires many parameters, some of which are difficult to measure. None of the semi-empirical models that provide improved prediction of cell fate have been widely accepted to plan therapies. There remain great opportunities for developing mathematical models cell response.
Collapse
|
3
|
Pabbidi MR, Ji X, Maxwell JT, Mignery GA, Samarel AM, Lipsius SL. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes. PLoS One 2016; 11:e0168505. [PMID: 27977772 PMCID: PMC5158063 DOI: 10.1371/journal.pone.0168505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate ICa,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of ICa,L in-PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in-PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCα, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of ICa,L in + LMN myocytes compared to control +LMN myocytes infected with Adv-βgal. In +LMN myocytes, zint-β2-AR stimulation of ICa,L was enhanced by adenoviral overexpression of wild-type cPLA2 and inhibited by double dn-cPLA2S505A/S515A mutant compared to control +LMN myocytes infected with Adv-βgal. In-PKA myocytes depletion of intracellular Ca2+ stores by 5 μM thapsigargin failed to inhibit zint-β2-AR stimulation of ICa,L via cPLA2. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of ICa,L in-PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCα/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the remodeling of β-AR signaling in failing and/or aging heart, both of which exhibit decreases in adenylate cyclase activity.
Collapse
MESH Headings
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/genetics
- Carbazoles/pharmacology
- Cats
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Group IV Phospholipases A2/genetics
- Group IV Phospholipases A2/metabolism
- Heart Atria/cytology
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/metabolism
- Pyrroles/pharmacology
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- M. R. Pabbidi
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| | - X. Ji
- Department of Physiology, Loyola University Medical Center, Maywood, IL, United States of America
| | - J. T. Maxwell
- Department of Physiology, Loyola University Medical Center, Maywood, IL, United States of America
| | - G. A. Mignery
- Department of Physiology, Loyola University Medical Center, Maywood, IL, United States of America
| | - A. M. Samarel
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States of America
| | - S. L. Lipsius
- Department of Physiology, Loyola University Medical Center, Maywood, IL, United States of America
| |
Collapse
|
4
|
Griecsová L, Farkašová V, Gáblovský I, Khandelwal VKM, Bernátová I, Tatarková Z, Kaplan P, Ravingerová T. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res 2015; 64:S685-96. [PMID: 26674286 DOI: 10.33549/physiolres.933222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.
Collapse
Affiliation(s)
- L Griecsová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jafari A, Pourrazi H, Nikookheslat S, Baradaran B. Effect of Exercise Training on Bcl-2 and Bax Gene Expression in the Rat Heart. ACTA ACUST UNITED AC 2015. [DOI: 10.17795/gct-32833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Walton RD, Jones SA, Rostron KA, Kayani AC, Close GL, McArdle A, Lancaster MK. Interactions of Short-Term and Chronic Treadmill Training With Aging of the Left Ventricle of the Heart. J Gerontol A Biol Sci Med Sci 2015; 71:1005-13. [PMID: 26248561 PMCID: PMC4945880 DOI: 10.1093/gerona/glv093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
With aging, there is a decline in cardiac function accompanying increasing risk of arrhythmias. These effects are likely to be mechanistically associated with age-associated changes in calcium regulation within cardiac myocytes. Previous studies suggest that lifelong exercise can potentially reduce age-associated changes in the heart. Although exercise itself is associated with changes in cardiac function, little is known about the interactions of aging and exercise with respect to myocyte calcium regulation. To investigate this, adult (12 months) and old (24 months) C57/Bl6 mice were trained using moderate-intensity treadmill running. In response to 10 weeks’ training, comparable cardiac hypertrophic responses were observed, although aging independently associated with additional cardiac hypertrophy. Old animals also showed increased L- and T-type calcium channels, the sodium–calcium exchange, sarcoendoplasmic reticulum calcium ATPase, and collagen (by 50%, 92%, 66%, 88%, and 113% respectively). Short-term exercise training increased D-type and T-type calcium channels in old animals only, whereas an increase in sodium–calcium exchange was seen only in adult animals. Long-term (12 months) training generally opposed the effects of aging. Significant hypertrophy remained in long-term trained old animals, but levels of sarcoendoplasmic reticulum calcium ATPase, sodium–calcium exchange, and collagen were not significantly different from those found in the adult trained animals.
Collapse
Affiliation(s)
| | | | | | - Anna C Kayani
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Graeme L Close
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | - Anne McArdle
- Institute of Ageing & Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool
| | | |
Collapse
|
7
|
Li F, Li Y, Tang Y, Lin B, Kong X, Oladele OA, Yin Y. Protective effect of myokine IL-15 against H2O2-mediated oxidative stress in skeletal muscle cells. Mol Biol Rep 2014; 41:7715-22. [PMID: 25103021 DOI: 10.1007/s11033-014-3665-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/27/2014] [Indexed: 11/26/2022]
Abstract
The production of reactive oxygen species (ROS) during oxidative stress may cause cellular injury. Interleukin-15 (IL-15) is one of the skeletal muscle secreted myokines, and there is no information that reported its anti-oxidative capability in skeletal muscle. The aim of this study therefore is to investigate the protective effects of myokine IL-15 against H2O2-mediated oxidative stress in C2C12 myoblasts. The results showed that IL-15 pre-incubation reduced the intracellular creatine kinase and lactate dehydrogenase activities, decreased the ROS overload, and protect the mitochondrial network via up-regulated mRNA expression levels of IL-15 and uncoupling protein 3. It also down-regulated the levels of IL-6 and p21 of the myoblasts compared to the cells treated only with H2O2. Meanwhile, apurinic/aprimidinic endonuclease 1 expression and the Akt signaling pathway were stimulated. These effects could contribute to the resumption of cell viability and act as protective mechanism. In conclusion, myokine IL-15 could be a novel endogenous regulator to control intracellular ROS production and attenuate oxidative stress in skeletal muscle cells.
Collapse
Affiliation(s)
- Fengna Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China,
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim SY, Lee J. Exercise Training suppresses vascular fibrosis in aging obesity induced rats. J Exerc Nutrition Biochem 2014; 18:175-80. [PMID: 25566453 PMCID: PMC4241917 DOI: 10.5717/jenb.2014.18.2.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the effects of exercise training (ET) on vascular fibrosis in aging model rats with diet-induced obesity. [Methods] Twenty-four male Sprague-Dawley rats were divided into 3 groups: Aging control (A-C), A-C with high fat diet (AHF), AHF with ET (AHF + ET). Aging was induced by D-galactose (D-gal) and obesity was induced by HFD (60% fat) for 9 weeks. The experimental rats performed swimming (60 min/day, 5 days/week) for 8 weeks. All rat aorta samples were harvested for RT-PCR and morphologic analyses. [Results] The exercise training significantly decreased levels of AT-1, TGF-ß and Coll-1 gene expression compared to AHF group. The AHF + ET group showed a reduced collagen accumulation in the aorta media compared to AHF group. [Conclusion] These results suggest that ET could protect the aging obesity aorta against down-regulation of fibrotic factors (AT-1, TGF-ß and Coll-1 gene) and fibrosis by inhibition of collagen accumulation in the aorta media.
Collapse
Affiliation(s)
- Shin Young Kim
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, Seoul, 133-791, Korea
| | - Jin Lee
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, Seoul, 133-791, Korea
| |
Collapse
|
9
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Ko IG, Kim SE, Kim CJ, Jee YS. Treadmill Exercise Alleviates Aging-induced Apoptosis in Rat Cardiac Myocytes. INT J GERONTOL 2013. [DOI: 10.1016/j.ijge.2013.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Diabetes mellitus associated cardiovascular signalling alteration: A need for the revisit. Cell Signal 2013; 25:1149-55. [DOI: 10.1016/j.cellsig.2013.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/25/2013] [Indexed: 01/25/2023]
|
12
|
Kwak HB. Effects of aging and exercise training on apoptosis in the heart. J Exerc Rehabil 2013; 9:212-9. [PMID: 24278863 PMCID: PMC3836520 DOI: 10.12965/jer.130002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/04/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022] Open
Abstract
Aging is characterized by a progressive decline in cardiac function. A critical contributor to the age-related impairment in cardiac function is the loss of cardiac myocytes through “apoptosis”, or programmed cell death. Structural remodeling in the heart with advancing age includes (a) loss of cardiomyocytes, (b) reactive hypertrophy of the remaining cardiomyocytes, and (c) increased connective tissue and altered geometry. The loss of cardiomyocytes with aging occurs through apoptosis. Particularly, mitochondrial-mediated apoptotic pathway is the best characterized and believed critical in regulating apoptosis with aging, suggesting that mitochondria are very important sites of programmed cell death. It has been also reported that mitochondrial dysfunction, oxidative stress, and impaired stress response contribute to age-induced mechanical remodeling as well as apoptosis. In contrast, exercise training not only improves cardiac function, but also reduces the risk of heart disease. We recently found that aging increased mitochondrial-mediated apoptotic signaling and apoptosis in the left ventricle, while chronic exercise training was effective in diminishing mitochondrial-mediated apoptotic signaling pathways in the aging heart, as indicated by lower DNA fragmentation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive staining, and caspase-3 cleavage, when compared with left ventricles from the age-matched sedentary group. In this review, we will provide a comprehensive update regarding the effects of aging and exercise training on apoptosis in the heart.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
13
|
Stiaccini G, Mannari C, Bertelli AAE, Giovannini L. Resveratrol-poor red wines modulate SIRT1 in human renal cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:289-293. [PMID: 22706671 DOI: 10.1007/s11130-012-0296-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The cardioprotective and anti-aging effects of red wine phenols, especially resveratrol (RSV), are well known. One of the most interesting biological properties of RSV and other naturally occurring phenols is the regulation of the expression and activity of SIRT1 (silent mating type information regulation 2 homolog). In view of the role of SIRT1 in acute and chronic renal diseases, we decided to study the effects of RSV-poor red wines on the expression of SIRT1 and HIF-2α (hypoxia-inducible factor 2α) to be compared with a nanomolar concentration of RSV or malvidin in proximal tubular cells of human kidneys (PTEC). Survival signaling systems activation (extracellular signal-regulated kinases, ERK and AMP-activated protein kinase, AMPK) was also investigated in PTEC incubated with wines. PTEC cells were incubated in the presence of RSV-poor wines diluted 1:1,000 for 30', 90', 120' and 24 h. Expression of SIRT1 and HIF-2α, and activation of ERK and AMPK were analyzed by Western Blot. The data obtained show that wine modulates the expression of anti-aging molecular systems even when RSV is present in very small amounts.
Collapse
Affiliation(s)
- Giulia Stiaccini
- Department of Neuroscience, Pharmacology section, University of Pisa, Via Roma 55, Pisa, Italy
| | | | | | | |
Collapse
|
14
|
Przyklenk K. Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 2011; 28:331-43. [PMID: 21542657 DOI: 10.2165/11587190-000000000-00000] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence obtained in multiple experimental models has revealed that cardiac 'conditioning' strategies--including ischaemic preconditioning, postconditioning, remote conditioning and administration of pharmacological conditioning mimetics--are profoundly protective and significantly attenuate myocardial ischaemia-reperfusion injury. As a result, there is considerable interest in translating these cardioprotective paradigms from the laboratory to patients. However, the majority of studies investigating conditioning-induced cardioprotection have utilized healthy adult animals devoid of the risk factors and co-morbidities associated with cardiovascular disease and acute myocardial infarction. The aim of this article is to summarize the growing consensus that two well established risk factors, aging and diabetes mellitus, may render the heart refractory to the favourable effects of myocardial conditioning, and discuss the clinical implications of a loss in efficacy of cardiac conditioning paradigms in these patient populations.
Collapse
Affiliation(s)
- Karin Przyklenk
- Cardiovascular Research Institute and Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
15
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
16
|
Vinten-Johansen J, Granfeldt A, Mykytenko J, Undyala VV, Dong Y, Przyklenk K. The multidimensional physiological responses to postconditioning. Antioxid Redox Signal 2011; 14:791-810. [PMID: 20618066 DOI: 10.1089/ars.2010.3396] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reperfusion is the definitive treatment to reduce infarct size and other manifestations of postischemic injury. However, reperfusion contributes to postischemic injury, and, therefore, reperfusion therapies do not achieve the optimal salvage of myocardium. Other tissues as well undergo injury after reperfusion, notably, the coronary vascular endothelium. Postconditioning has been shown to have salubrious effects on different tissue types within the heart (cardiomyocytes, endothelium) and to protect against various pathologic processes, including necrosis, apoptosis, contractile dysfunction, arrhythmias, and microvascular injury or "no-reflow." The mechanisms by which postconditioning alters the pathophysiology of reperfusion injury is exceedingly complex and involves physiological mechanisms (e.g., delaying re-alkalinization of tissue pH, triggering release of autacoids, and opening and closing of various channels) and molecular mechanisms (activation of kinases) that affect cellular and subcellular targets or effectors. The physiologic responses to postconditioning are not isolated or mutually exclusive, but are interactive, with one response affecting another in an integrated manner. This integrated response on multiple targets differs from the monotherapy approach by drugs that have failed to reduce reperfusion injury on a consistent basis and may underlie the efficacy of this therapeutic approach across species and in human trials.
Collapse
Affiliation(s)
- Jakob Vinten-Johansen
- Department of Surgery (Cardiothoracic), Carlyle Fraser Heart Center, Emory University, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J 2010; 25:1106-17. [PMID: 21148111 DOI: 10.1096/fj.10-172924] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aging impairs function in the nonischemic heart and is associated with mechanical remodeling. This process includes accumulation of collagen (i.e., fibrosis) and dysregulation of active matrix metalloproteinases (MMPs). Exercise training (ET) improves cardiac function, but the pathways of protection remain poorly understood. Young (3 mo) and old (31 mo) FBNF1 rats were assigned into sedentary and exercise groups, with ET group rats training on a treadmill 45 min/d, 5 d/wk for 12 wk. Nonlinear optical microscopy (NLOM), histology, immunohistochemistry (IHC), and Western blot analyses were performed on the left ventricle and septum. NLOM, IHC, and histological imaging revealed that ET reduced age-associated elevation of collagen type I fibers. Active MMP-1, active MMP-2, and MMP-14 in the ECM fraction of the left ventricle were reduced by aging, an effect abrogated by ET. Tissue inhibitor of MMP (TIMP-1) was elevated with age but protected by ET. Transforming growth factor-β (TGF-β), upstream regulator of TIMP-1, increased with age but was attenuated by ET. Therefore, exercise training could protect the aging heart against dysregulation of MMPs and fibrosis by suppressing elevation of TIMP-1 and TGF-β.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
TW96, a synthetic 1,4-naphthoquinone, differentially regulates vascular and endothelial cells survival. Vascul Pharmacol 2009; 51:225-35. [DOI: 10.1016/j.vph.2009.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 04/22/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
|
20
|
|
21
|
Lawler JM, Kwak HB, Kim JH, Suk MH. Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1496-502. [PMID: 19297546 DOI: 10.1152/ajpregu.90314.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the stress response to heat and exercise is limited in the heart with progressive aging, recent data indicate that acute or short-term exercise upregulates the Mn isoform of superoxide dismutase (MnSOD), which may provide protection against ischemia-reperfusion injury and cell death by reducing oxidative stress. Growing evidence indicates that inducible nitric oxide synthase (iNOS) contributes to age-induced increases in oxidative stress and risk of heart failure. We postulated that oxidative stress and iNOS levels would be related to the ability of the aging heart to upregulate MnSOD in response to long-term exercise training. Six- and twenty-seven-mo-old Fischer-344 rats had been assigned to young sedentary (YS), young exercise (YE), old sedentary (OS), or old exercise (OE) groups. ET groups ran on a treadmill for 60 min/day, 5 days/wk for a total of 12 wk. MnSOD protein expression in the left ventricle was increased (+43%) by 12 wk of exercise training in the old age group, with no changes in Cu,ZnSOD. Exercise training also increased MnSOD activity in left ventricles from old and young rats. HSP70 was inducible by exercise training in hearts exclusively from the young age group. iNOS protein expression increased markedly with aging (+548%), while exercise training decreased iNOS levels by -73% in OE compared with OS. In addition, 4-hydroxynonenal protein adducts in the left ventricle increased by 237% with aging, while 12 wk of exercise training resulted in attenuation (-55%). These data indicate that inducibility of MnSOD is preserved with long-term exercise training in the aging rat heart. Moreover, upregulation of MnSOD in the aging heart was directly associated with attenuated levels of oxidative stress, including iNOS.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA.
| | | | | | | |
Collapse
|
22
|
Exercise training improves functional post-ischemic recovery in senescent heart. Exp Gerontol 2009; 44:177-82. [DOI: 10.1016/j.exger.2008.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/16/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022]
|
23
|
Abstract
Not only the prevalence, but also the mortality due to ischaemic cardiovascular disease is higher in older than in young humans, and the demographic shift towards an ageing population will further increase the prevalence of age-related cardiovascular disease. In order to develop strategies aimed to limit reversible and irreversible myocardial damage in older patients, there is a need to better understand age-induced alterations in protein expression and cell signalling. Cardioprotective phenomena such as ischaemic and pharmacological pre and postconditioning attenuate ischaemia/reperfusion injury in young hearts. Whether or not pre and postconditioning are still effective in aged organs, animals, or patients, i.e. under conditions where such cardioprotection is most relevant, is still a matter of debate; most studies suggest a loss of protection in aged hearts. The present review discusses changes in protein expression and cell signalling important to ischaemia/reperfusion injury with myocardial ageing. The efficacy of cardioprotective manoeuvres, e.g. ischaemic pre and postconditioning in aged organs and animals will be discussed, and the development of strategies aimed to antagonize the age-induced loss of protection will be addressed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
24
|
Vatner SF, Yan L, Ishikawa Y, Vatner DE, Sadoshima J. Adenylyl cyclase type 5 disruption prolongs longevity and protects the heart against stress. Circ J 2008; 73:195-200. [PMID: 19106458 DOI: 10.1253/circj.cj-08-0957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart failure remains the leading cause of mortality in the USA, despite major advances in therapy over the past several decades, including angiotensin-converting enzyme or angiotensin II inhibitors, vasodilators, calcium-channel blockers and beta-adrenergic receptor blockers. New therapeutic approaches are clearly required and the conceptual origin of these new techniques will be derived from agents that protect the heart against stress and prolong longevity. The combination of stress protection and longevity has been observed in a variety of organisms, from yeast to worms to mammals, and could be the basis for a novel approach to heart failure therapy. A mouse model has been developed with genetic disruption of adenylyl cyclase type 5, which lives one-third longer than the wild-type and is protected from aging-induced, pressure overload-induced and catecholamine-induced stresses. Accordingly, inhibition of this molecule should be considered as a new therapeutic modality for heart failure.
Collapse
Affiliation(s)
- Stephen F Vatner
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School Newark, NJ 07103, USA.
| | | | | | | | | |
Collapse
|
25
|
Age-related attenuation of isoflurane preconditioning in human atrial cardiomyocytes: roles for mitochondrial respiration and sarcolemmal adenosine triphosphate-sensitive potassium channel activity. Anesthesiology 2008; 108:612-20. [PMID: 18362592 DOI: 10.1097/aln.0b013e318167af2d] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Clinical trials suggest that anesthetic-induced preconditioning (APC) produces cardioprotection in humans, but the mechanisms of APC and significance of aging for APC in humans are not well understood. Here, the impact of age on the role of two major effectors of APC, mitochondria and sarcolemmal adenosine triphosphate-sensitive potassium (sarcKATP) channels, in preconditioning of the human atrial myocardium were investigated. METHODS Right atrial appendages were obtained from adult patients undergoing cardiac surgery and assigned to mid-aged (MA) and old-aged (OA) groups. APC was induced by isoflurane in isolated myocardium and isolated cardiomyocytes. Mitochondrial oxygen consumption measurements, myocyte survival testing, and patch clamp techniques were used to investigate mitochondrial respiratory function and sarcKATP channel activity. RESULTS After in vitro APC with isoflurane, the respiratory function of isolated mitochondria was better preserved after hypoxia-reoxygenation stress in MA than in OA. In isolated intact myocytes, APC significantly decreased oxidative stress-induced cell death in MA but not in OA, and isoflurane protection from cell death was attenuated by the sarcKATP channel inhibitor HMR-1098. Further, the properties of single sarcKATP channels were similar in MA and OA, and isoflurane sensitivity of pinacidil-activated whole cell KATP current was no different between MA and OA myocytes. CONCLUSION Anesthetic-induced preconditioning with isoflurane decreases stress-induced cell death and preserves mitochondrial respiratory function to a greater degree in MA than in OA myocytes; however, sarcKATP channel activity is not differentially affected by isoflurane. Therefore, effectiveness of APC in humans may decrease with advancing age partly because of altered mitochondrial function of myocardial cells.
Collapse
|
26
|
Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008; 44:142-52. [PMID: 18191750 DOI: 10.1016/j.freeradbiomed.2007.02.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/16/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
Contraction-induced production of reactive oxygen species has been shown to cause oxidative stress to skeletal muscle. As an adaptive response, muscle antioxidant defense systems are upregulated in response to exercise. Nuclear factor kappaB and mitogen-activated protein kinase are two major oxidative-stress-sensitive signal transduction pathways that have been shown to activate the gene expression of a number of enzymes and proteins that play important roles in maintenance of intracellular oxidant-antioxidant homeostasis. This mini-review will discuss the main mechanisms and gene targets for these signaling pathways during exercise and the biological significance of the adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Vinokur V, Leibowitz G, Grinberg L, Eliashar R, Berenshtein E, Chevion M. Diabetes and the heart: could the diabetic myocardium be protected by preconditioning? Redox Rep 2008; 12:246-56. [PMID: 17961296 DOI: 10.1179/135100007x239289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Both type 1 and type 2 diabetes (insulin-dependent and non-insulin dependent diabetes, respectively) are associated with increased risk for microvascular and macrovascular complications including retinopathy, neuropathy, nephropathy and atherosclerosis. Type 2 diabetes markedly increases the risk for cardiovascular morbidity and mortality, which has major public health implications. In this review, molecular mechanisms pertaining to diabetes-induced heart pathology are addressed.
Collapse
Affiliation(s)
- Vladimir Vinokur
- Department of Cellular Biochemistry and Human Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59:418-58. [PMID: 18048761 DOI: 10.1124/pr.107.06002] [Citation(s) in RCA: 527] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapeutic strategies to protect the ischemic myocardium have been studied extensively. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate lethal tissue injury, a process termed "reperfusion injury." Ischemia/reperfusion injury may lead to myocardial infarction, cardiac arrhythmias, and contractile dysfunction. Ischemic preconditioning of myocardium is a well described adaptive response in which brief exposure to ischemia/reperfusion before sustained ischemia markedly enhances the ability of the heart to withstand a subsequent ischemic insult. Additionally, the application of brief repetitive episodes of ischemia/reperfusion at the immediate onset of reperfusion, which has been termed "postconditioning," reduces the extent of reperfusion injury. Ischemic pre- and postconditioning share some but not all parts of the proposed signal transduction cascade, including the activation of survival protein kinase pathways. Most experimental studies on cardioprotection have been undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of other disease processes. However, ischemic heart disease in humans is a complex disorder caused by or associated with known cardiovascular risk factors including hypertension, hyperlipidemia, diabetes, insulin resistance, atherosclerosis, and heart failure; additionally, aging is an important modifying condition. In these diseases and aging, the pathological processes are associated with fundamental molecular alterations that can potentially affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Among many other possible mechanisms, for example, in hyperlipidemia and diabetes, the pathological increase in reactive oxygen and nitrogen species and the use of the ATP-sensitive potassium channel inhibitor insulin secretagogue antidiabetic drugs and, in aging, the reduced expression of connexin-43 and signal transducer and activator of transcription 3 may disrupt major cytoprotective signaling pathways thereby significantly interfering with the cardioprotective effect of pre- and postconditioning. The aim of this review is to show the potential for developing cardioprotective drugs on the basis of endogenous cardioprotection by pre- and postconditioning (i.e., drug applied as trigger or to activate signaling pathways associated with endogenous cardioprotection) and to review the evidence that comorbidities and aging accompanying coronary disease modify responses to ischemia/reperfusion and the cardioprotection conferred by preconditioning and postconditioning. We emphasize the critical need for more detailed and mechanistic preclinical studies that examine car-dioprotection specifically in relation to complicating disease states. These are now essential to maximize the likelihood of successful development of rational approaches to therapeutic protection for the majority of patients with ischemic heart disease who are aged and/or have modifying comorbid conditions.
Collapse
Affiliation(s)
- Peter Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary.
| | | | | |
Collapse
|
29
|
Yan L, Vatner DE, O'Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 2007; 130:247-58. [PMID: 17662940 DOI: 10.1016/j.cell.2007.05.038] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 03/14/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
Mammalian models of longevity are related primarily to caloric restriction and alterations in metabolism. We examined mice in which type 5 adenylyl cyclase (AC5) is knocked out (AC5 KO) and which are resistant to cardiac stress and have increased median lifespan of approximately 30%. AC5 KO mice are protected from reduced bone density and susceptibility to fractures of aging. Old AC5 KO mice are also protected from aging-induced cardiomyopathy, e.g., hypertrophy, apoptosis, fibrosis, and reduced cardiac function. Using a proteomic-based approach, we demonstrate a significant activation of the Raf/MEK/ERK signaling pathway and upregulation of cell protective molecules, including superoxide dismutase. Fibroblasts isolated from AC5 KO mice exhibited ERK-dependent resistance to oxidative stress. These results suggest that AC is a fundamentally important mechanism regulating lifespan and stress resistance.
Collapse
Affiliation(s)
- Lin Yan
- Department of Cell Biology and Molecular Medicine and Cardiovascular Research Institute, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ji LL. Antioxidant signaling in skeletal muscle: A brief review. Exp Gerontol 2007; 42:582-93. [PMID: 17467943 DOI: 10.1016/j.exger.2007.03.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 01/22/2023]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous biological phenomenon in eukaryotic cell life. During the past two decades, much attention has been paid to the detrimental effects of ROS such as oxidative stress, pathogenesis and aging. However, there is now increasing evidence and recognition that ROS are not merely damaging agents inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, differentiation, proliferation, and apoptosis, at least within the physiological concentration. In skeletal muscle contractile activity has been shown to upregulate antioxidant defense systems and ROS has been postulated to be essential in this adaptation. Available research data suggest that nuclear factor (NF)kappaB and mitogen-activated protein kinase (MAPK) play a critical role in the relay of oxidative stress signals to gene expression apparatus in the myocytes under a variety of physiological and pathological conditions. This mini-review will discuss the main mechanisms and gene targets for these antioxidant signaling pathways during exercise, inflammation and aging.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
31
|
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114:208-21. [PMID: 17408751 DOI: 10.1016/j.pharmthera.2007.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/18/2022]
Abstract
Adenosine, formed primarily via hydrolysis of 5'-AMP, has been historically dubbed a "retaliatory" metabolite due to enhanced local release and beneficial actions during cellular/metabolic stress. From a cardiovascular perspective, evidence indicates the adenosinergic system is essential in mediation of intrinsic protection (e.g., pre- and postconditioning) and determining myocardial resistance to insult. Modulation of adenosine and its receptors thus remains a promising, though as yet not well-realized, approach to amelioration of injury in ischemic-reperfused myocardium. Adenosine exerts effects through A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes (A(1)AR, A(2A)AR, A(2B)AR, and A(3)AR), which are all expressed in myocardial and vascular cells, and couple to G proteins to trigger a range of responses (generally, but not always, beneficial). Adenosine can also enhance tolerance to injurious stimuli via receptor-independent metabolic effects. Given adenosines contribution to preconditioning, it is no surprise that postreceptor signaling typically mimics that associated with preconditioning. This involves activation/translocation of PKC, PI3 kinase, and MAPKs, with ultimate effects at the level of mitochondrial targets-the mitochondrial K(ATP) channel and/or the mitochondrial permeability transition pore (mPTP). Nonetheless, differences in cytoprotective signaling and actions of the different adenosine receptor subtypes have been recently revealed. Our understanding of adenosinergic cytoprotection continues to evolve, with roles for the A(2) subtypes emerging, together with evidence of essential receptor "cross-talk" in mediation of protection. This review focuses on current research into adenosine-mediated cardioprotection, highlighting recent findings which, together with a wealth of prior knowledge, may ultimately facilitate adenosinergic approaches to clinical cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, PMB 50 Gold Coast Mail Center, QLD, 4217, Australia.
| | | |
Collapse
|
32
|
Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 2006; 292:H1764-9. [PMID: 17142336 DOI: 10.1152/ajpheart.01071.2006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Webster RP, Macha S, Brockman D, Myatt L. Peroxynitrite treatment in vitro disables catalytic activity of recombinant p38 MAPK. Proteomics 2006; 6:4838-44. [PMID: 16878296 DOI: 10.1002/pmic.200600176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein tyrosine nitration is a post-translational modification occurring under conditions of oxidative stress in a number of diseases. The causative agent of tyrosine nitration is the potent prooxidant peroxynitrite that results from the interaction of nitric oxide and superoxide. We have previously demonstrated existence of nitrotyrosine in placenta from pregnancies complicated by preeclampsia, which suggested the possibility of the existence of nitrated proteins. Nitration of various proteins has been demonstrated to more commonly result in loss of protein function. Potential nitration of p38 MAPK, a critical signaling molecule has been suggested and also tentatively identified in certain in vivo systems. In this study we demonstrate for the first time nitration of recombinant p38 MAPK in vitro and an associated loss of its catalytic activity. LC-MS data identified tyrosine residues Y132, Y245 and Y258 to be nitrated. Nitration of these specific residues was deduced from the 45.0-Da change in mass that these residues exhibited that was consistent with the loss of a proton and addition of the nitro group.
Collapse
Affiliation(s)
- Rose P Webster
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0526, USA.
| | | | | | | |
Collapse
|
34
|
Zhang S, Hacham M, Panepinto J, Hu G, Shin S, Zhu X, Williamson PR. The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol Microbiol 2006; 62:1090-101. [PMID: 17040492 DOI: 10.1111/j.1365-2958.2006.05422.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hsp70 proteins are a well-known class of chaperones that have also been described to have roles in cellular regulation. Here, we show that a Cryptococcus neoformans Hsp70 homologue Ssa1 acts as a DNA-binding transcriptional co-activator of the fungal virulence factor, laccase, via binding to a GC-rich element within the 5'-UAS in response to glucose starvation, iron, copper, calcium and temperature. In addition, Ssa1 forms a regulatory complex with heat shock transcription factor and TATA-binding protein during laccase induction. Furthermore, deletion of Ssa1 results in reduced laccase and attenuated virulence using a mouse model. These results indicate that Hsp70 functions as a stress-related transcriptional co-activator required for fungal virulence.
Collapse
Affiliation(s)
- Shirong Zhang
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Webster RP, Brockman D, Myatt L. Nitration of p38 MAPK in the placenta: association of nitration with reduced catalytic activity of p38 MAPK in pre-eclampsia. Mol Hum Reprod 2006; 12:677-85. [PMID: 16951426 DOI: 10.1093/molehr/gal071] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peroxynitrite, a potent pro-oxidant formed from the interaction of superoxide and nitric oxide, has been widely reported to be nitrating tyrosine residues in proteins resulting in the formation of nitrotyrosine. Biological nitration of tyrosine, a footprint of oxidative injury, has been found to occur in various pathological states including pre-eclampsia, a leading cause of maternal mortality and increased perinatal mortality. Oxidative stress is a major contributor to endothelial dysfunction in pre-eclampsia. Previously, we have demonstrated increased nitrotyrosine immunostaining in placental villous vascular endothelium, surrounding vascular smooth muscle and villous stroma from pre-eclamptic or diabetic pregnancies. Immunoprecipitation (IP) with antinitrotyrosine antibodies followed by immunoblot analysis identified increased nitration of phospho-p38 mitogen-activated protein kinase (MAPK) in the pre-eclamptic placenta. The catalytic activity of p38 MAPK and concentration of phospho-p38 MAPK was also found to be reduced in placentae from pre-eclamptic pregnancies. Comparison of peptide masses of a 42-kDa protein obtained by mass spectrometry with masses of a theoretical tryptic digest of p38 MAPK that was modified by phosphorylation and nitration identified the protein to be p38 MAPK.
Collapse
Affiliation(s)
- R P Webster
- Department of Obstetrics and Gynecology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0526, USA.
| | | | | |
Collapse
|
36
|
Kwak HB, Song W, Lawler JM. Exercise training attenuates age‐induced elevation in Bax/Bcl‐2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006; 20:791-3. [PMID: 16459353 DOI: 10.1096/fj.05-5116fje] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aging is characterized by loss of myocytes, remodeling, and impaired contractile function in the heart. The rate of programmed cell death, or "apoptosis," in the left ventricle increases with age, and contributes to a 30% reduction in myocytes. Aging may preferentially target the Bcl-2 pathway of apoptosis in the heart. Exercise can protect cardiac function of the aging heart, although the mechanisms are poorly understood. We tested the hypothesis that 12 wk of exercise training would attenuate age-induced increases in remodeling, apoptosis, and Bax/Bcl-2 ratio in rat left ventricle. We found that exercise training provided significant protection against loss of cardiac myocytes, reduction in number of myonuclei, reactive hypertrophy of remaining myocytes, and increased connective tissue in left ventricle of the aging rat heart. Exercise training significantly attenuated age-induced increases of apoptosis in the left ventricle, as indicated by lower DNA fragmentation, TUNEL-positive staining, and caspase-3 cleavage, when compared with left ventricles from the age-matched sedentary group. Further, exercise training in the aging reduced caspase-9 levels and Bax/Bcl-2 ratio by lowering Bax protein expression while increasing Bcl-2 levels. These are the first data to demonstrate protective effects of endurance exercise training against elevated apoptosis and remodeling in the aging heart.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Redox Biology and Cell Signaling Laboratory, Texas A&M University, College Station, Texas 77843-4243, USA
| | | | | |
Collapse
|
37
|
Riess ML, Camara AKS, Rhodes SS, McCormick J, Jiang MT, Stowe DF. Increasing Heart Size and Age Attenuate Anesthetic Preconditioning in Guinea Pig Isolated Hearts. Anesth Analg 2005; 101:1572-1576. [PMID: 16301221 DOI: 10.1213/01.ane.0000181834.39483.0b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anesthetic preconditioning (APC) reduces myocardial ischemia/reperfusion injury. Recent investigations have reported that older hearts are not susceptible to APC. We investigated if increasing heart size with age determines the susceptibility to APC in young guinea pigs. Langendorff-prepared guinea pig hearts of different weights (1.1-2.2 g) and ages (2-7 wks) were exposed to 1.3 mM sevoflurane for 15 min followed by 30 min washout (APC; n = 20) before 30 min global ischemia and 120 min reperfusion. Control hearts (n = 20) were not subject to APC. Left ventricular pressure was measured isovolumetrically and infarct size was determined by triphenyltetrazolium staining. Functional data were not different between groups at the beginning of the experiments nor did they correlate with heart weight or age. At 120 min reperfusion, left ventricular pressure, coronary flow, and tissue viability showed significant negative correlations with increasing heart weight and age in APC but not in control hearts; i.e., APC improved function and attenuated infarct size better in smaller/younger hearts than in larger/older hearts. Thus, increasing age and heart size attenuate the susceptibility for APC even in younger guinea pigs. This may have important implications for further basic science research and the possible clinical applicability of APC in humans.
Collapse
Affiliation(s)
- Matthias L Riess
- Departments of Anesthesiology and Physiology, Cardiovascular Research Center, Medical College of Wisconsin, and the VA Medical Center Research Service, Milwaukee, Wisconsin
| | | | | | | | | | | |
Collapse
|
38
|
Starnes JW, Choilawala AM, Taylor RP, Nelson MJ, Delp MD. Myocardial Heat Shock Protein 70 Expression in Young and Old Rats After Identical Exercise Programs. J Gerontol A Biol Sci Med Sci 2005; 60:963-9. [PMID: 16127097 DOI: 10.1093/gerona/60.8.963] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthesis of inducible heat shock protein 70 (HSP70) is impaired in aged animals following acute stresses including exercise. In this study we determined whether aging affects expression of this cytoprotective protein following chronic exercise participation. Male Fischer 344 rats, final ages 6 and 24 months, exercised identically for 10 weeks on a treadmill (15 degrees incline, 15 m/min for up to 60 minutes, 5 days/week). In 6-month-old animals, exercise increased HSP70 in heart (44%), liver (216%), and skeletal muscle (126%) (p <.05 vs sedentary). In 24-month-old animals, exercise increased HSP70 in muscle (69%), but not in heart or liver. In heart, antioxidant enzyme activities and HSP70 messenger RNA were measured and found to be unaffected by exercise at both ages. Our results indicate an age-related decrease in HSP70 production in heart and liver following chronic exercise. Furthermore, the aged heart does not increase its antioxidant enzyme defenses to compensate for the HSP70 deficit.
Collapse
Affiliation(s)
- Joseph W Starnes
- Department of Kinesiology and Health Education, University of Texas, Austin, TX, USA.
| | | | | | | | | |
Collapse
|
39
|
Chicco AJ, Schneider CM, Hayward R. Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 2005; 289:R424-R431. [PMID: 15845878 DOI: 10.1152/ajpregu.00636.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical use of doxorubicin (DOX) is limited by a dose-dependent cardiotoxicity. The purpose of this study was to determine whether voluntary exercise training would confer protection against DOX cardiotoxicity in the isolated perfused rat heart. Female Sprague-Dawley rats were randomly assigned to standard holding cages or cages with running wheels for 8 wk. Twenty-four hours after the sedentary (SED) or voluntary exercise (VEX) running period, rats were anesthetized with pentobarbital sodium, and hearts were isolated and perfused with oxygenated Krebs-Henseleit (KH) buffer at a constant flow of 15 ml/min. After a 20-min stabilization period, hearts were paced at 300 beats per minute and perfused with KH buffer containing 10 μM DOX for 60 min. A set of control hearts from SED and VEX rats were perfused under identical conditions without DOX for the same period. DOX perfusion led to significant decreases in left ventricular developed pressure, +dP/d t, and −dP/d t, and significant increases in LV lipid peroxidation in sedentary rats compared with non-DOX controls ( P < 0.05). Prior voluntary exercise training attenuated these DOX-induced effects and was associated with a significant increase (78%, P < 0.05) in heat shock protein (HSP72), but not mitochondrial isoform of SOD (MnSOD) or CuZnSOD protein expression in the hearts of wheel-run animals. These data indicate that chronic physical activity may provide resistance against the cardiac dysfunction and oxidative damage associated with DOX exposure and provide novel evidence of HSP72 induction in the heart after voluntary exercise.
Collapse
Affiliation(s)
- Adam J Chicco
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
| | | | | |
Collapse
|
40
|
Li S, Zheng J, Carmichael ST. Increased oxidative protein and DNA damage but decreased stress response in the aged brain following experimental stroke. Neurobiol Dis 2005; 18:432-40. [PMID: 15755669 DOI: 10.1016/j.nbd.2004.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 11/17/2004] [Accepted: 12/10/2004] [Indexed: 11/22/2022] Open
Abstract
Aged individuals experience the highest rate of stroke and have less functional recovery, but do not have larger infarcts. We hypothesized that aged individuals experience greater sublethal damage in peri-infarct cortex. Focal cortical stroke was produced in aged and young adult animals. After 30 min, 1, 3 and 5 days brain sections and Western blot were used to analyze markers of apoptotic cell death, oxidative DNA and protein damage, heat shock protein (HSP) 70 induction, total neuronal number and infarct size. Focal stroke produces significantly more oxidative DNA and protein damage and fewer cells with HSP70 induction in peri-infarct cortex of aged animals. There is no difference in infarct size or the number of cells undergoing apoptosis between aged and young adults. Stroke in the aged brain is associated with a greater degree of DNA and protein damage and a reduced stress response in intact, surviving tissue that surrounds the infarct.
Collapse
Affiliation(s)
- Songlin Li
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
41
|
Chiari P, Bouvet F, Piriou V. Préconditionnement myocardique induit par les agents anesthésiques halogénés : bases fondamentales et implications cliniques. ACTA ACUST UNITED AC 2005; 24:383-96. [PMID: 15826789 DOI: 10.1016/j.annfar.2005.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/27/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Volatile halogenated anaesthetics offer a myocardial protection when they are administrated before a myocardial ischaemia. Cellular mechanisms involved in anaesthetic preconditioning are now better understood. The objectives of this review are to understand the anaesthetic-induced preconditioning underlying mechanisms and to know the clinical implications. DATA SOURCES References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: volatile anaesthetic, isoflurane, halothane, sevoflurane, desflurane, preconditioning, protection, myocardium. DATA SYNTHESIS Ischaemic preconditioning (PC) is a myocardial endogenous protection against ischaemia. It has been described as one or several short ischaemia before a sustained ischemia. These short ischaemia trigger a protective signal against this longer ischaemia. An ischemic organ is able to precondition a remote organ. It is possible to replace the short ischaemia by a preadministration of halogenated volatile anaesthetic with the same protective effect, this is called anaesthetic PC (APC). APC and ischaemic PC share similar underlying biochemical mechanisms including protein kinase C, tyrosine kinase activation and mitochondrial and sarcolemnal K(ATP) channels opening. All halogenated anaesthetics can produce an anaesthetic PC effect. Myocardial protection during reperfusion, after the long ischaemia, has been shown by successive short ischaemia or volatile anaesthetic administration, this is called postconditioning. Ischaemic PC has been described in humans in 1993. Clinical studies in human cardiac surgery have shown the possibility of anaesthetic PC with volatile anaesthetics. These studies have shown a decrease of postoperative troponin in patient receiving halogenated anaesthetics.
Collapse
Affiliation(s)
- P Chiari
- Inserm E 0226, département d'anesthésie-réanimation, hôpital cardiovasculaire Louis-Pradel, 28, avenue Doyen-Lépine, 69500 Lyon Bron, France
| | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Riess ML, Stowe DF, Warltier DC. Cardiac pharmacological preconditioning with volatile anesthetics: from bench to bedside? Am J Physiol Heart Circ Physiol 2004; 286:H1603-7. [PMID: 15072968 DOI: 10.1152/ajpheart.00963.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A steadily increasing number of investigations demonstrate that preconditioning with volatile anesthetics attenuates the deleterious effects of myocardial ischemia and reperfusion injury by an ischemic preconditioning-like mechanism. Thus volatile anesthetics may represent the best choice for anesthesia of patients at risk for myocardial ischemia. However, factors such as old age, coexisting conditions such as diabetes mellitus and the use of oral hypoglycemic drugs or cyclooxygenase inhibitors, timing and duration of myocardial ischemia, and possible constraints of a complicated preconditioning protocol may limit the benefits of this powerful tool under clinical conditions. The purpose of this minireview is to provide a brief overview of the results of basic and clinical research on cardioprotection by volatile anesthetics.
Collapse
Affiliation(s)
- Matthias L Riess
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|